
Gesture Search: A Tool for Fast Mobile Data Access
Yang Li

Google Research
1600 Amphitheatre Parkway
Mountain View, CA 94043

yangli@acm.org

ABSTRACT
Modern mobile phones can store a large amount of data,

such as contacts, applications and music. However, it is
difficult to access specific data items via existing mobile

user interfaces. In this paper, we present Gesture Search, a

tool that allows a user to quickly access various data items

on a mobile phone by drawing gestures on its touch screen.

Gesture Search contributes a unique way of combining

gesture-based interaction and search for fast mobile data

access. It also demonstrates a novel approach for coupling

gestures with standard GUI interaction. A real world de-

ployment with mobile phone users showed that Gesture

Search enabled fast, easy access to mobile data in their day-

to-day lives. Gesture Search has been released to public and
is currently in use by hundreds of thousands of mobile us-

ers. It was rated positively by users, with a mean of 4.5 out

of 5 for over 5000 ratings.

Author Keywords
Gesture-based interaction, search, mobile computing,

shortcuts, Hidden Markov Models.

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User Inter-

faces. H.3.3 [Information Storage and Retrieval]: Informa-

tion Search and Retrieval.

General Terms
Design, Human Factors, Algorithms.

INTRODUCTION
With increasing computing power and storage, the potential

use of mobile phones goes far beyond their original pur-

pose for making phone calls. However, this potential is

hampered by existing mobile user interfaces. In particular,

a mobile device such as an iPhone [4] or an Android-

powered device [1] often has a large amount of data that a

user frequently accesses, such as contacts, applications or

music. However, it is difficult and time-consuming to lo-

cate a target item with current mobile interfaces. A user
often needs to navigate through a deep interface hierarchy

and manually scan a large collection of items. The small

screen of mobile phones as well as the lack of a keyboard

makes the data access even harder.

Similar to desktop search utilities for PCs (e.g., [5, 6]),

keyword-based search tools have been developed for mo-

bile phones, in which a user finds various types of data

items by entering a textual query at a single place, e.g., the

Quick Search Box on Android phones [2]. Although these

search tools avoid the hassle of navigating in a mobile in-

terface, entering a search query requires a user to scan and
type on tiny keys in a keypad, which can be stressful and as

hard as manually locating the target item on the device.

Search with voice input is promising but not always so-

cially acceptable, especially in public, quiet situations. In

addition, voice-based interaction can be inefficient when

the recognition or search results are wrong and revision is

needed.

Alternatively, touch screen gestures have been employed as

shortcuts for invoking commands or accessing frequently

used data items (e.g., [12, 14]). Gestures are easy to input

and rich in semantics. Users can associate a gesture with a

target data item and then activate the item by drawing a
similar gesture later (e.g., [12]). However, traditional ges-

ture shortcuts suffer several problems. First, users need to

explicitly create or learn the mapping from a gesture to a

data item, which a mobile phone user is often less moti-

vated to spend the effort. Second, as the number of short-

cuts increases, it is difficult for the system to accurately

match or recognize gestures, and it also becomes challeng-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

Figure 1. Gesture Search allows a user to quickly access

contacts, bookmarks, applications and music tracks by

drawing gestures.

87

ing for users to learn and recall. Command Strokes by

Kristensson and Zhai [8] made great progress in addressing

these issues. However, it still requires a soft keypad to be

visible on the screen, which consumes the mobile phone’s

limited screen real estate. In addition, a user first learning

to use Command Strokes needs to scan and locate the
correct keys on the keypad. It takes time for users to learn

ShapeWriter shortcuts [14] that Command Strokes are

based on before they can gain speed.

To address these issues, we created Gesture Search (see

Figure 1), a tool that allows users to quickly access mobile

phone data such as contacts, applications, bookmarks and

music tracks by drawing gestures1. It demonstrates a novel

approach in combining search and gesture-based interac-

tion. To find a data item, a user draws gestures anywhere

on the touch screen. Gesture Search finds relevant items by

simultaneously matching multiple possible interpretations

of a gesture sequence against the target dataset. Based on
the user’s search history, Gesture Search continuously op-

timizes search performance to allow even quicker data ac-

cess with shorter gesture sequences.

Since a gesture query is a sequence of regular character

gestures that is mnemonically related to the target data

items, e.g., “Qu” for “Stock Quote”, a user does not need to

learn how to input these gestures nor recall the mappings

from gestures to data items. Instead, Gesture Search ac-

tively learns from users’ search behaviors and continuously

optimizes search performance. As shown in our log analy-

sis on the usage of Gesture Search, users were able to use
single-gesture queries to complete 61% of their 5,497 data

accesses.

In the remainder of the paper, we first describe how a user

uses Gesture Search for accessing their mobile phone data.

Next, we dive into the technical details of Gesture Search.

We discuss how we implement the novel gesture-based

interaction techniques that Gesture Search uses, and our

search and optimization algorithms. We then report on a

longitudinal user study that we conducted with mobile

phone users over a period of three months. Finally, we

compare Gesture Search with prior work before we con-

clude the paper.

THE GESTURE SEARCH SYSTEM
To use Gesture Search, a user draws a sequence of gestures

on the touch screen. Gesture Search leverages the entire

touch screen for gesture input (see Figure 2).

An Introductory Example
Let us assume a user, Bill, wants to call his friend Anne.

Bill first draws letter “A” on the screen. Once the gesture is

finished, Gesture Search automatically starts a search proc-

ess. Since the gesture is ambiguous to Gesture Search — it

looks similar to both the letters “H” and “A” — Gesture

1 Gestures here are handwritten letters or numbers. Thus, we use

gesture and handwriting recognition interchangeably.

Figure 2. A user draws capital letter A on the screen us-

ing her finger. Gesture Search uses a timeout to delimit

multi-stroke gestures.

Figure 3. A scaled-down version of the gesture in Figure

2 is shown in the gesture query field at the bottom of the

screen. The user then adds the second letter by drawing

the letter directly on top of the research result list.

Figure 4. With the two gestures, the contact of Anne pops

up at the second place of the list.

88

Search returns data items that match either of these letters

(see Figure 3). Meanwhile, a scaled-down version of the

original gesture is shown at the bottom of the screen, while

possible recognitions of the gesture are displayed in the

context of search results, e.g., “H” is highlighted in “Car

Home” and “A” in “Aaron”. These highlights explain to the
user why these data items are included in the search results.

At this point, Bill can scroll down the list to find “Anne” or

keep adding more gestures by drawing directly on top of

the search result list. Gesture Search automatically differen-

tiates gestures from scrolling by analyzing the trajectories

of the user’s touch traces. We will discuss this in more de-

tail in the next section. Here the user draws a second letter,

“n” (see Figure 3).

Gesture Search immediately revises the search result list as

each gesture is drawn. With the two gestures inputted,

Anne’s contact is shown at the second place in the list (see

Figure 4). Bill can click on the item to see Anne’s contact
details or tap on the green phone icon to call her directly.

In case the user needs to redraw a gesture or the entire

query, he or she can wipe horizontally in the gesture query

field at the bottom of the screen. Wiping from right to left

removes the last gesture in the query and doing that in the

opposite direction clears out the entire query.

As shown in this example, Gesture Search uses all of the

possible interpretations of a gesture query to match against

each data item; the user does not need to draw the entire

name of a target item before matching starts. To make a

search query more likely to form a unique match, a user can
draw a multiple-prefix gesture query by delimiting charac-

ters with spaces, e.g., using “B S” to match a target applica-

tion named “Barcode Scanner”. A user draws a horizontal

line on top of the search result list to add a space.

Searching With Even Shorter Gesture Sequences
A user can quickly search through a large amount of data

with short gesture sequences in Gesture Search. To enable

even shorter gesture queries, we further optimize the search

performance by learning from the user’s search history.

For example, when Bill draws the “A”/“H” gesture again,

Gesture Search automatically shows “Anne” at the top of

the search result list after only receiving one single gesture
(see Figure 5). Notice that Gesture Search still considers

Bill’s gesture to be closer to the letter “H” than “A”, so

items that match “H” are still ranked above those that

match “A”. However, Anne’s contact is shown as the top

result. This is because, in addition to the results of individ-

ual character recognition, Gesture Search takes into account

the occurrence frequency of mappings from gesture queries

to data items in the search history, e.g., Bill previously se-

lected “Anne” after drawing the two-gesture query (see

Figure 4).

As a user uses Gesture Search over a period of time, access
to a set of frequently visited items becomes more reliable

and further accelerated. Since Gesture Search continuously

learns from the user’s search history, it automatically

adapts itself to users’ evolving data access needs in their

day-to-day lives.

Distinctions with Traditional Handwriting Technologies
Gesture Search employs a handwriting recognition engine

to recognize individual gestures. However, it goes beyond

simply using recognized results by closely coupling hand-

writing recognition with search and taking a holistic view

to address handwriting and search query ambiguity. The

novelty of our approach is reflected both in the UI and un-

derlying algorithms of Gesture Search. We will discuss the

differences in more detail in the related work section.

INTERACTION TECHNIQUES & ALGORITHMS
Here we discuss how Gesture Search works by elaborating

on its interaction techniques and algorithms. To address the

small form factor of mobile phones, Gesture Search maxi-

mizes the gesture input area by using the entire screen for

gesture input and by overlaying a gesture input layer on top

of the search result list. This brings up the challenge of how

to effectively separate gestures from regular touch events
for a list widget such as tapping, scrolling and flicking,

which we discuss first. We then discuss how Gesture

Search searches with a probabilistic distribution of a ges-

ture query and how it optimizes searches by learning from a

user’s search history.

Separating Gesturing from GUI Touch Events
Gesture Search overlays gesture input over the search result

list and allows modeless input of gestures and GUI events

such as scrolling and tapping to select. It does not require a

user to explicitly signal the system for drawing a gesture or

manipulating the list widget.

When it is uncertain whether touch events are making up a

gesture, the gesture overlay dispatches touch events to the

Figure 5. Gesture Search further accelerates data access by

learning from the user’s search history. Consequently, a

user often can access a frequently visited item with one sin-

gle gesture that is casually or less perfectly drawn.

Inferred from the
search history

89

list widget for immediate interface feedback (e.g., scrolling

the search result list as it normally does). Meanwhile, Ges-

ture Search buffers existing touch events and looks ahead

for more events that might form a gesture. Gesture Search

also renders collected events as translucent, less obvious

yellow traces on the list to indicate that these strokes are
still being evaluated to potentially form a gesture.

Once the gesture overlay determines that the user is draw-

ing a gesture instead of scrolling, it turns the traces bright

yellow, which is used for showing a gesture (see Figure 1).

At the same time, Gesture Search stops dispatching touch

events to the search result list underneath. As a result, the

list stops scrolling, giving the user a static background for

drawing the rest of the gesture.

Typical events for the list widget include tapping to select,

flicking and scrolling. To separate these events and ges-

tures in a modeless way and as early as possible when users

slide their finger on a touch screen, we need to explore the
difference between their touch traces.

Hypotheses. Intuitively, GUI-oriented touch input should

have less variation in its trajectory than gestures. This dif-

ference is rooted in the different interaction styles that GUI

and gesture-based interactions support. GUI operations are

mostly embodied by visual widgets that a user can manipu-

late, which often requires a simple motion, e.g., acquiring a

target. However, the interaction semantics of gesture-based

interactions are mostly represented by the shape or the mo-

tion of a gesture. As a result, gesture-based interactions

require rich variations in touch input trajectories to repre-
sent different gestures for various interaction semantics.

To investigate this hypothesis, we collected GUI events on

touch screen mobile devices and compared them against

gesture data. For our analysis to be applied broadly, our

data collection and analysis went beyond character gestures

and list widgets that are used in Gesture Search.

Data Collection. We asked seven participants to perform a

set of GUI interaction tasks on an Android phone that in-

volved finding four contacts in a contact list that has hun-

dreds of items and locating two locations on the Google

Map (e.g., finding San Francisco). The participants were

not informed of the purpose of the study and were asked to

perform these tasks as they would normally do. All the par-

ticipants were regular Android phone users. These tasks

were designed in a way so that tapping, flicking, scrolling

and panning could naturally occur. In total, over 560 touch

trajectories for these GUI interactions were collected.

Our analysis of gesture data included both user-defined and

alphabet gestures. For user-defined gestures, we reused

previously published data [13], which includes 4800 sam-

ples for 16 single-stroke gesture categories from 10 users.

We also collected 14,269 alphabet gesture samples for

Latin letters written by over 100 users. These users opted

into contributing their data on their own mobile devices

using a remote data collection application.

Data Analysis & Classification Methods. As expected, all of
the taps had trajectories with much smaller bounding boxes

than gestures. Consequently, when the bounding box for

the trajectory of a touch input being drawn is smaller than a

threshold, we do not consider it to be a gesture. However,

this rule breaks when multi-stroke alphabet gestures are

allowed. For example, a user might draw a dot first to com-

plete a two-stroke gesture j, and the dot will conflict with a

tap event. To address this ambiguity, when both tapping

and dots are possible, we delay dispatching the tap event by

a short amount of time to give the user an opportunity to

add more strokes.

When the bounding box of a trajectory is larger than a thre-

shold, we consider the touch input to be potentially either a

gesture or a GUI manipulation such as scrolling, flicking

and panning. A GUI input could have more variations than

we expect. For example, our data shows that a simple flick-

ing of a list widget often does not generate a straight path

(see the leftmost screenshot in Figure 6). This is especially

true when a user uses a single hand to operate a phone, e.g.,
flicking on the touch screen with the thumb while holding

the device with the same hand. Scrolling and panning can

also result in complex trajectories. For example, a user

might scroll a list up and down while looking for an item

(see the middle example in Figure 6).

However, by examining the touch input data that we col-

lected, we found that although GUI touch input may also

result in complex trajectories, most of them had a narrower

bounding box than gestures did (see Figure 6). To formal-

ize this observation, we use the squareness as the measure

of how narrow a bounding box is. We define the squareness
as the minimum ratio of two adjacent edges of the bound-

ing box of a touch trajectory. This quantity is between 0

and 1. The larger the squareness of a touch trajectory is, the

more its bounding box looks like a square. To precisely

capture the squareness of a trajectory, we use its minimum

bounding box instead of its orthogonal bounding box.

The squareness distributions of the collected data are illus-

trated in Figure 7. Note that taps are not included, and
flicking, scrolling and panning are analyzed together as

they had a similar distribution. User-defined gestures (4800

samples) were analyzed in the same probability space as

Figure 6. From the left to the right are three example traces

for flicking down, scrolling down and then up, and alpha-

bet gesture e. A minimum bounding box for each trace is

shown. The dot attached to each trace represents the start-

ing point of the trace.

90

alphabet gestures (14,269 samples) but have a significantly

smaller sample size. To avoid the effect of user-defined

gestures being washed out, we give each sample of user-

defined gestures more weight than alphabet gestures to

balance their different sample sizes.

Based on these two empirical probability density functions,

we can choose the squareness threshold, 0.275, to minimize

the false positive (1%) and negative (4%) rates. This means

when the squareness of a trajectory is larger than this

threshold, we consider it to be a gesture. Based on this

threshold in Figure 7, over half of the gesture samples were

determined when one-tenth of the gesture was drawn (took

roughly less than 250ms), and over 80% of gesture samples

were detected when half of a gesture was drawn.

Figure 7. The red, flatter curve shows the empirical probabil-

ity density function of gesture touch input. The blue, nar-

rower curve shows that of GUI input, including scrolling,

flicking and panning.

However, not all of the gestures were discernable with the

squareness measure. For example, the lowercase letter l

may have a small squareness measure. We had to use other

heuristics (e.g., if the touch input triggers a valid scrolling

action for the list given the direction of its trajectory); oth-

erwise, a user would have to write the letter more cursively.

A longitudinal study on Gesture Search indicated that users

had no trouble in inputting gestures and manipulating the
list. Although the starting of a gesture may be temporarily

treated as GUI interaction, the misinterpretation rarely

bothered our users since the ambiguity was often resolved

fairly quickly (e.g., within 250ms).

Searching with A Gesture Query
In Gesture Search, a query is a gesture sequence that con-
sists of one or more character gestures or spaces. The

search process involves several steps. First, a handwriting

recognizer recognizes each character gesture in a query,

which generates a probabilistic distribution of all of the

possible character sequences of the gesture query. Then the

sequence distribution is used to match against each of in-

dexed data items. Multiple sequences in the distribution

might match an item. A data item is scored based on the

matched sequence that has the largest probability. Data

items are then ranked based on the match scores and only

top N results are shown in the search result list.

The search performance of Gesture Search is boosted by its

ability to deal with misrecognition of the recognizer and

potential misspelling of the user. As Gesture Search uses

all of the possible interpretations of a gesture, an intended
character does not have to be the best guess of the recog-

nizer. However, Gesture Search constrains the number of

low probability interpretations allowed in a match to ex-

clude irrelevant data items from the search result and re-

duce the search space. The relationship between true and

false positive rates was analyzed to determine an optimal

threshold below which an interpretation is considered less

probable for a gesture. By allowing a certain number of low

probability interpretations, Gesture Search can tolerate mis-

spellings in a query.

Our implementation of the search process is extremely op-

timized so that a search can be completed in real time on a
mobile device, even when the sequence distribution is large

(e.g., for a long query) and when there are hundreds of data

items to match against. As a result, users can search as they

draw.

Learning from Search History
Gesture Search optimizes search performance by learning

from the user’s search history. The optimization accelerates

data access in several ways. First, the system can better

tolerate the ambiguity of gesture shapes and the inaccuracy

of handwriting recognition, so a user does not need to draw

gestures as precisely. Second, fewer gestures are needed

from the user since the system can better predict target

items based on short queries.

Gesture Search updates the search history every time a user

clicks on a data item in the search result list (see Table 1).

Each row in the search history represents a unique mapping
from a recognized query to a target item. A row also main-

tains when the mapping most recently occurred and the

number of occurrences. The query field in a row is the

string recognized from the gesture query for matching the

selected item.

Last Occurrence Query Selected Item Frequency

8/6/09 4:00pm A Andy 2

8/6/09 2:30pm Sc Scott 1

8/5/09 9:00pm Ba Barcode Scanner 1

8/5/09 6:00pm N Y New York Times 2

8/4/09 11:00am Bar Barcode Scanner 1

8/3/09 3:00pm An Anne 1

8/2/09 2:00pm Br Browser 1

8/2/09 10:00am Sc Barcode Scanner 1

Table 1: An example of the user’s search history.

To address the ambiguity of both handwriting recognition

and the mapping from a partially completely query to a data

item, Gesture Search dynamically constructs a probabilistic

91

model from the search history table (see Figure 8), based

on a high-order Hidden Markov Model (HMM) [11]. In the

graphical model, Ci represents the intended character at

position i in the gesture query while Gi represents the ges-

ture input at the position.

Figure 8. Gesture Search uses an HMM-based approach to

predicate a data item given a partially completed gesture

query. In this figure, one gesture, , has been inputted.

The model effectively captures both the ambiguity of

handwriting recognition, e.g., p (C1=H | G1=) = 0.6 and

p (C1 =A | G1=) = 0.4, and the ambiguity of the intended

query, e.g., the probability that “a” leads to “Andy” is 0.67

and that to “Anne” is 0.33 (see Figure 9).

Figure 9. The state transition diagram represents the transi-

tion probability distribution manifested in the search history

tablet shown in Table 1. Selected data items in the search

history table are shown as dashed elliptical nodes.

Given a sequence of k gestures drawn by a user, g1,…,gk,

Gesture Search suggests data item t as the top result in the

search result list if its probability given the gesture se-

quence is larger than a threshold. The inference process can

be formalized in Equations 1 and 2. T denotes all of the

selected (or visited) data items in the search history table.

 t = argmax
ti T

P ti g1, gk() (1)

 (2)

Essentially, the inference process looks at all of the paths

from the start node to the target nodes in the transition dia-

gram. Each path is scored by combining the recognition

probabilities of the handwriting recognizer and the transi-

tion probabilities that are shown in Figure 9.

represents the probability of data item ti given the prefix

sequence c1,…,ck. Graphically, this is calculated by com-

bining the probabilities of all of the paths in the diagram

that are prefixed by c1,…,ck and lead to data item ti.

To make the learning more tractable, we can discard old

entries in the search history, e.g., if the last occurrence of
an entry was three months ago. We can also let the fre-

quency of an entry gradually decay based on its last occur-

rence time to give old occurrences less weight.

IMPLEMENTATION
Gesture Search was implemented in Java using Android
SDK 2.0 and is compatible with Android 1.6. It has been

tested on various Android-powered devices such as the T-

Mobile G1, Motorola Droid and Google Nexus One.

LONGITUDINAL USER STUDIES
To understand how Gesture Search performs in users’ day-
to-day lives for accessing mobile data and to explore the

characteristics of gesture-based search queries, we con-

ducted a longitudinal study of Gesture Search with over a

hundred of mobile phone users.

Hypotheses
We hypothesized that Gesture Search provides a quick and

less stressful way for users to access mobile data. In par-

ticular, we intended to find out whether gesture queries

with a short length could be used to retrieve a reasonable

amount of data items. We also wanted to analyze how well

Gesture Search optimized search performance by learning

from the search history over time, and how the gesture que-

ries that people use to access the same data items varied

depending the complexity of their datasets.

These issues needed to be investigated based on users’

search behaviors over an extended period of time. In addi-

tion, since Gesture Search helps users access their personal
data such as contacts, it would have been unrealistic if we

had asked users to search against the same set of data items

in a laboratory setting. Thus, we chose to conduct a longi-

tudinal, realistic user study instead of a controlled labora-

tory study.

Participants
We made Gesture Search downloadable through a com-

pany’s internal website and asked Android phone users in

the company, via recruiting emails, to test out Gesture

Search. User participants who opted-in to the study had

various backgrounds such as software engineering, human

resource and product management. Participants could in-

stall and start to use Gesture Search or stop anytime they

wanted. As a result, individual users used it for varying

amount of time.

92

Study Design & Logging Infrastructures
In contrast to a controlled laboratory study, we did not in-

struct users to do a set of predefined tasks. Instead, partici-

pants used Gesture Search in their daily life for regular

mobile data accesses. At the end, we asked participants to

answer an online survey to solicit qualitative feedback.

To collect quantitative data for the usage of Gesture Search,

we instrumented an interaction logger in Gesture Search
and a web server for receiving and storing the log data. The

logs included the size of the dataset that users searched in

using Gesture Search (e.g., the number of contacts or appli-

cations), users’ gesture input, the data items they clicked

on, and actions such as deleting gestures or scrolling the

list. These logs are automatically collected and periodically

uploaded to the remote log server.

Log Analyses
From participants who used Gesture Search, we randomly

selected 125 users based on the criteria that a user must

have 1) used Gesture Search for at least one month and 2)

used Gesture Search at least once per week. The first crite-

rion excluded users who just started to use Gesture Search

or dropped out early. Data from short usage users is not

effective for investigating our hypotheses. The second cri-

terion filtered out those who only occasionally used Ges-
ture Search, but it included those who used Gesture Search

regularly, whether they were mobile phone power users or

not.

From 125 users, we collected 5,497 search sessions in

which a user drew a gesture query and selected a search

result. The percentages of the types of data that users ac-

cessed are shown in Figure 10. We found our participants

primarily used Gesture Search to access contacts and appli-

cations2.

Figure 10. The types of data that participants accessed on

their phones using Gesture Search.

We found that the usage of Gesture Search per day varies

in users, ranging from less than once to five times per day.

In 74% of these sessions, users did not do deletion at all,

which indicated that most of the time while using Gesture

2 The kinds of data accessed are not necessarily representative of

typical mobile search traffic.

Search, users accessed their target results only by drawing

gestures.

From the log data, we found users were often able to access

their data items using a short query (see Figure 11). In par-

ticular, 61% of 5,497 queries used a single gesture and 82%

of them used two gestures or less.

Figure 11. The empirical cumulative distribution function of

the lengths of gesture queries based on 5,497 sessions. 82% of

queries used two gestures or less.

In 46% of the 5,497 sessions, users picked the top results

that were inferred by learning from users’ search histories

(as the example shown in Figure 5). Within these inferred

top-result sessions, 84% of queries issued had a single ges-

ture and 98% had two gestures or less. Without these in-

ferred results, target items in 16% of these sessions would

have not been shown in the search result list, given the

short query. Target items in 15% of these sessions would
have not been shown on the first screen of the search result

list, and a user would have had to scroll the list to find

them. These false negatives could have been due to misrec-

ognition or the essential ambiguity of a short query — the

queries of 90% of these sessions had only a single gesture.

So our learning feature greatly improved the search quality

of gesture queries and accelerated the access to mobile

data.

To study the characteristics of gesture-based search behav-

iors, we hypothesized that the average length of gesture

queries for individual users would vary depending on the

complexity of the personal dataset that they search in. To
investigate this hypothesis, we looked at two aspects of

query length variation. First, we looked at how the query

length of each user differed based on the size of the target

dataset, i.e., the number of data items that are available on

the user’s device (see Figure 12a). Second, we looked at

whether the lengths varied based on the number of items

that a user actually accessed (see Figure 12b). In these two

scatter graphs, each circle represents the mean query length

of a user given the user’s entire dataset size or the number

of visited items. Since the query length distribution is heav-

ily negatively skewed, i.e., most queries had a short length,
we calculated the mean query length of each user by first

calculating the mean of log-transformed query lengths

93

(which is a normal distribution) and then converted the log

mean back to the original space.

Figure 12a. The mean length of gesture queries of each indi-

vidual user versus the dataset size of the user.

Figure 12b. The mean length of gesture queries of each indi-

vidual user versus the number of data items that the user

actually accessed.

From Figure 12a, we see most of the 125 users had less

than 1,000 unique data items to access and the lengths of

their queries primarily scattered between 1 and 3. From

Figure 12b, we found the number of unique data items that

users actually accessed was much smaller than the dataset

that was available, although the number of accessed items

might have increased if we continued collecting user logs.
Pearson correlation tests conducted on both relationships

indicated that neither of them was correlated with R2<0.08.

The results showed that the complexity of gesture queries

did not vary given the users’ datasets. This implies that

gesture search queries were expressive enough to access a

reasonable amount of data items and they have the capacity

to deal with datasets more complex than what were logged

in the study. In theory, two or single-gesture sequences

(letters and/or numbers) can form 1,332 = 36 36 + 36

unique queries, although not every instance of them may

apply to a user’s data.

To better understand how gesture queries were mapped to
data items, we further analyzed the relationship between

the number of unique queries and the number of unique

targets that were accessed by each user. The ratio of the

number of unique queries over the number of unique tar-

gets reflects the diversity and ambiguity of gesture queries

give a target data set size (see Figure 13). A ratio of 1.0

indicates that each unique query leads to a unique target.
When the ratio is larger than 1.0, it reflects the diversity of

using different queries to access the same target, and when

the ratio is smaller than 1.0, it implies ambiguity that a

query might be used to access different targets. From Fig-

ure 13, we see the ratios obey a normal distribution, falling

in a range between 0.8 and 1.4 with an 80% confidence

interval and a mean of 1.1. The result implies that users

implicitly used a unique gesture query to access a specific

data item, although the set of mappings might form gradu-

ally over the time. A Pearson correlation test indicated that

there is a strong positive correlation between the number of

unique queries and the number of unique targets accessed,
R

2=0.88. The number of unique queries being slightly more

than the number of unique targets indicates that users might

happen to use different queries to access the same data

item.

Figure 13. The distribution of the query/target ratio for all

users. The graph indicates that with an 80% confidence inter-

val, the ratio falls in the range between 0.8 and 1.4.

As mentioned earlier, the log analysis was to understand

users’ long-term search behaviors and did not include users

who dropped out early. However, the feedback of some of

these users is discussed in the next section. Two typical

reasons that users dropped out were that they had few items

to access and the current way to activate Gesture Search

(using a home screen shortcut) is less optimal.

User Feedback
We asked participants to answer a survey after they used

Gesture Search. 59 people answered the survey, including

some of those who did not participate in the log analysis

due to early dropout or insufficient use of Gesture Search.

A 5-point Likert scale was used to solicit user feedback on

the usefulness and usability of Gesture Search, with 1 for
“strongly disagree” and 5 for “strongly agree”. The major-

ity of users agreed that Gesture Search is useful and usable

(Median=4). Since the answers for these questions in our

94

Likert Scale are categorical, we calculate medians instead

of means and standard deviations.

In terms of the usefulness in accessing each type of data,

participants agreed that Gesture Search was useful in ac-

cessing contacts (Median=4). This is consistent with what

we found in the log analysis, i.e., 66% of search sessions
were contact access (see Figure 10). However, participants

were less enthusiastic in accessing applications through

Gesture Search (Median=3). By analyzing participants’

detailed comments, we found 35% of survey participants

needed to use only a small number of applications (e.g.,

less than 5), which they could just activate using home

screen shortcuts with a single touch. However, there were

still a significant number of participants (17 out of 59) who

appreciated the value of Gesture Search in accessing appli-

cations, as they used more applications than could fit in the

home screen. As more and more applications become

available for mobile phones, we can imagine Gesture
Search will be more useful for accessing them.

To understand how Gesture Search fit into people’s every-

day mobile usage, we asked participants to comment on

situations where they did not want to use Gesture Search.

78% of users commented that they did not use Gesture

Search when they saw the target items on the home screen.

For the top reasons to use Gesture Search, 44% of partici-

pants commented that Gesture Search saved them time to

find an item. Based on the log analysis, 53% of the ac-

cesses took less than three seconds to complete. However,

an even bigger advantage of using Gesture Search seems to
be the low cognitive load required of users. 59% of partici-

pants commented that they liked Gesture Search because it

does not require them to type or navigate in user interfaces.

As users commented that they could find an item without

even looking at the screen.

The major criticism from our users is that the current way

of invoking Gesture Search, which is done using a home

screen shortcut, can be inconvenient. Our users adopted

various ways to make Gesture Search more accessible on

Android phones, including adding Gesture Search perma-

nently to the notification bar using a third-party tool so that

it can be invoked more easily. Better integration with spe-
cific mobile phone platforms will be addressed in our fu-

ture work.

RELATED WORK
The contribution of Gesture Search lies at the intersection

of mobile search UIs interfaces and gesture-based interac-
tion. Thus, we discuss the relationship of Gesture Search

with prior work in these areas.

Mobile Search User Interfaces
As mobile devices can store a large amount of data, tools

have been developed for searching mobile devices. For
example, both Android phones [1] and the iPhone [4] have

a phone search feature that allows a user to type in a search

query to retrieve various kinds of data items, such as con-

tacts and bookmarks. Similarly, Gesture Search also allows

users to access various types of data in a single place and

alleviates the effort of navigating the UI.

In contrast to existing search tools, Gesture Search uses

hand-drawn gesture strokes as the input modality. From

users’ feedback, we found drawing strokes to search has a
great advantage over typing in a search query using a key-

pad on the phone. Typing on a keypad requires a user to

locate each key, and a user’s finger often occludes the tiny

keys on the keypad, which makes typing difficult and error-

prone. A user also has to switch modes for inputting num-

bers or characters, since only a limited number of keys can

be shown at a time.

Alternative modalities such as voice or handwriting have

also been made available for existing search tools. Voice-

based search has a great advantage in mobile situations.

However, it has two shortcomings. First, speaking to search

is not always appropriate, such as in a quiet, public room or
in a noisy environment. Second, voice-based interaction

can be slow and intractable when interactive correction or

revision is needed, e.g., when voice recognition goes

wrong.

Handwriting recognition technology has been integrated in

mobile phones (e.g., iPhone [4]) as a generic technique for

text entry. Obviously, handwriting recognition can also be

used to input a search query in existing search tools. How-

ever, the existing integration of handwriting technology is

limited in several ways. First, the user typically has to write

in a dedicated area on the screen, which occupies precious
screen real estate. Second, the handwriting must be cor-

rectly recognized before being used as a search query. Con-

sequently, a user has to confirm and possibly correct the

recognition results. If the recognition is not perfect, the

search results might be incorrect.

In contrast, although Gesture Search relies on handwriting

recognition technology, it employs a close coupling be-

tween handwriting recognition and search. It leverages the

entire screen for drawing gestures and seamlessly handles

any ambiguity due to misrecognition by the system, imper-

fect writing or misspelling by the user, or both. This inno-

vation is reflected both in the gesture-based search user
interfaces and in the underlying algorithms of Gesture

Search. As discussed earlier, 74% of analyzed sessions did

not involve rewriting, so there is little need for recognition

correction in Gesture Search.

Gesture-Based Interaction
Gesture-based interaction has a long tradition in HCI re-

search as it promises a new modality for interaction. Previ-

ously, gesture strokes have been employed as shortcuts for

invoking commands, e.g., [3, 7-10, 14]. Gesture shortcuts

allow a user to easily articulate a command by drawing

strokes, without having to find the command within a menu

hierarchy. Gesture shortcuts are particularly valuable in pen

or touch-based user interfaces, where keyboards are either

inconvenient or not an option at all.

95

As with other types of shortcuts, gesture shortcuts face sev-

eral major challenges such as learnability, memorability

and scalability. Samsung Sunburst [12] enables program-

mable alphabet gesture shortcuts, allowing the user to asso-

ciate an alphabet gesture with a specific task, such as “U”

for unlocking the phone or “b” for starting the browser.
These shortcuts can be convenient once a user learns them.

However, a mobile user is often less motivated to spend the

effort to manually associate shortcuts with targets or to

learn built-in shortcuts. Even if they are willing to learn, the

number of shortcuts that can be grasped and successfully

recalled can be very limited, without much practice. In con-

trast, Gesture Search requires a user to neither create nor

learn the mappings from gestures to data items and can

easily scale up for accessing a large dataset.

To address these challenges, prior work employed three

kinds of strategies to design the mappings from gesture

strokes to commands: spatial (e.g., [7, 9, 14]), iconic (e.g.,
[10]), and mnemonic [8], as well as a combination of these

[8]. For example, marking menus [9] nicely support gradual

learning of the mapping of angular pen strokes to com-

mands, by arranging commands in a hierarchical pie menu.

For iconic gesture shortcuts (e.g., some of the gestures in

[10]), the shape of a gesture is often semantically related to

the associated action, e.g., drawing a rectangle to create a

page or drawing left for panning left.

The prior work most closely related to Gesture Search is

Command Strokes [8]. Kristensson and Zhai investigated

using gesture strokes to input the name or prefix of a com-
mand to invoke the command. In addition to mnemonic

mappings, Command Strokes also uses spatial mappings

because it employs ShapeWriter, a gesture-enhanced on-

screen keypad [14]. ShapeWriter maps the trajectories of

strokes to individual words by arranging keys on the key-

pad optimally.

Similar to Command Strokes, Gesture Search leverages the

mnemonic association from gestures to data items. How-

ever, there are several key distinctions. 1) Gesture Search

does not use a keypad. This design is important because

mobile phones have a small form factor and the screen real

estate is limited. 2) Command Strokes requires users to
learn to use ShapeWriter [14] stroke shortcuts. Before users

grasp these shortcuts, they have to look for each key on the

keypad. ShapeWriter’s approach has advantages for enter-

ing a large amount of full-word text, e.g., writing an email.

But for search, a user rarely needs to input the entire name

of an item in Gesture Search, as shown in our study. 3)

Gesture Search allows more flexible matching of a gesture

query with data items. A query can match each term of an

item’s name, rather than having to prefix the entire name.

Gesture Search also allows multiple search terms and toler-

ates misspellings. Lastly, Gesture Search shortens required
query lengths by continuously learning from a user’s search

history.

CONCLUSIONS
We present Gesture Search, a tool for users to quickly ac-

cess mobile phone data, such as applications and contacts,

by drawing gestures. Gesture Search seamlessly integrates

gesture-based interaction and search for fast mobile data

access. It demonstrates a novel way for coupling gestures

with standard GUI interaction. A longitudinal study with

mobile phone users showed that Gesture Search enabled a
quick and easy way for accessing mobile data. A user could

access a variety of data items using short gesture queries,

usually two gestures or less. The study also showed the

majority of users reacted positively to the usefulness and

usability of Gesture Search. Gesture Search has been re-

leased to public and is in use by hundreds of thousands of

mobile users. The mean of over 5000 user ratings within

the first three months of its public release was 4.5 , where 5

is the most positive. As a user enthusiastically commented:

“I gesture it, I find it.”

REFERENCES
1. Android. http://www.android.com/.

2. Quick Search Box. http://android-

developers.blogspot.com/2009/09/introducing-quick-

search-box-for.html.

3. Appert, C. and Zhai, S., Using strokes as command
shortcuts: cognitive benefits and toolkit support, in

CHI'09. p. 2289-2298.

4. Apple iPhone. http://www.apple.com/iphone/.

5. Mac Spotlight. http://support.apple.com/kb/HT2531.

6. Desktop Search. http://desktop.google.com/.

7. Guimbretière, F. and Winogra, T., FlowMenu:

Combining Command, Text and Parameter Entry, in

UIST'00. p. 213-216.

8. Kristensson, P.O. and Zhai, S., Command strokes with

and without preview: using pen gestures on keyboard

for command selection, in CHI'07. p. 1137-1146.

9. Kurtenbach, G. and Buxton, W. The limits of expert
performance using hierarchical marking menus. in

CHI'93. p. 482-487.

10. Newman, M.W., et al., DENIM: An Informal Web Site

Design Tool Inspired by Observations of Practice.

Human-Computer Interaction, 2003. 18(3): p. 259-324.

11. Russell, S. and Norvig, P., Probabilistic Reasoning

over Time. 2 ed. Artificial Intelligence: A Modern

Approach. 2003: Prentice Hall. 537-583.

12. Sunburst™.http://www.samsung.com/us/consumer/mo

bile/mobile-phones/at-t-phones/SGH-

A697ZKAATT/index.idx?pagetype=prd_detail.

13. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures

without libraries, toolkits or training: a $1 recognizer

for user interface prototypes. in UIST'07. p. 159-168.

14. Zhai, S. and Kristensson, P.-O. Shorthand writing on

stylus keyboard. in CHI'03. p. 97-104.

96

