
Scalable I/O Event Handling for GHC

Bryan O’Sullivan
Serpentine

bos@serpentine.com

Johan Tibell
Google

johan.tibell@gmail.com

Abstract
We have developed a new, portable I/O event manager for the Glas-
gow Haskell Compiler (GHC) that scales to the needs of modern
server applications. Our new code is transparently available to ex-
isting Haskell applications. Performance at lower concurrency lev-
els is comparable with the existing implementation. We support
millions of concurrent network connections, with millions of ac-
tive timeouts, from a single multithreaded program, levels far be-
yond those achievable with the current I/O manager. In addition, we
provide a public API to developers who need to create event-driven
network applications.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.2 [Programming Languages]: Language Classifi-
cations—Concurrent, distributed and parallel languages; D.3.3
[Programming Languages]: Language Constructs and Features—
Concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors—Runtime-environments

General Terms Algorithms, Languages, Performance

1. Introduction
The concurrent computing model used by most Haskell programs
has been largely stable for almost 15 years [10]. Despite the lan-
guage’s many innovations in other areas, networked software is
written in Haskell using a programming model that will be famil-
iar to most programmers: a thread of control synchronously sends
and receives data over a network connection. By synchronous, we
mean that when a thread attempts to send data over a network con-
nection, its continued execution will be blocked if the data cannot
immediately be either sent or buffered by the underlying operating
system.

The Glasgow Haskell Compiler (GHC) provides an environ-
ment with a number of attractive features for the development
of networked applications. It provides composable synchroniza-
tion primitives that are easy to use [3]; lightweight threads; and
multicore support [2]. However, the increasing demands of large-
scale networked software have outstripped the capabilities of cru-
cial components of GHC’s runtime system.

We have rewritten GHC’s event and timeout handling subsys-
tems to be dramatically more efficient. With our changes, a mod-
estly configured server can easily cope with networking workloads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

that are several orders of magnitude more demanding than before.
Our new code is designed to accommodate both the thread-based
programming model of Concurrent Haskell (with no changes to ex-
isting application code) and the needs of event-driven applications.

2. Background
2.1 The GHC concurrent runtime
GHC provides a multicore runtime system that uses a small number
of operating system (OS) threads to manage the execution of a
potentially much larger number of lightweight Haskell threads [6].
The number of operating system threads to use may be chosen at
program startup time, with typical values ranging up to the number
of CPU cores available1.

From the programmer’s perspective, programming in Concur-
rent Haskell is appealing due to the simplicity of the synchronous
model. The fact that Haskell threads are lightweight, and do not
have a one-to-one mapping to OS threads, complicates the im-
plementation of the runtime system. When a Haskell thread must
block, this cannot lead to an OS-level thread also being blocked,
so the runtime system uses a single OS-level I/O event manager
thread (which is allowed to block) to provide an event notification
mechanism.

The standard Haskell file and network I/O libraries are written
to cooperate with the I/O event manager thread. When one of these
libraries acquires a resource such as a file or a network socket, it
immediately tells the OS to access the resource in a non-blocking
fashion. When a client attempts to access (e.g. read or write, send or
receive) such a resource, the library performs the following actions:

1. Attempt to perform the operation. If it succeeds, resume imme-
diately.

2. If the operation would need to block, the OS will instead cause
it to fail and indicate (via EAGAIN or EWOULDBLOCK in Unix
parlance) that it must be retried later.

3. The thread registers with the I/O event manager to be awoken
when the operation can be completed without blocking. The
sleeping and waking are performed using the lightweight MVar
synchronization mechanism of Concurrent Haskell.

4. Once the I/O event manager wakes the thread, return to step 1.
(The operation may fail repeatedly with a would-block error,
e.g. due to a lost race against another thread for resources, or
an OS buffer filling up.)

As this sketch indicates, GHC provides a synchronous program-
ming model using a lower-level event-oriented mechanism. It does
so via a semi-public API that clients (e.g. the file and networking
libraries) can use to provide blocking semantics.

1 GHC also provides an “unthreaded” runtime, which does not support
multiple CPU cores. We are concerned only with the threaded runtime.

−− Block the current thread unt i l data i s available
−− on the given f i l e descriptor .
threadWaitRead, threadWaitWrite :: Fd → IO ()

2.2 Timeout management and robust networking
Well designed network applications make careful use of timeouts
to provide robustness in the face of a number of challenges. At in-
ternet scale, broken and malicious clients are widespread. As an ex-
ample, a defensively written application will, if a newly connected
client doesn’t send any data within a typically brief time window,
unilaterally close the connection and clean up its resources.

To support this style of programming, the System.Timeout

module provides a timeout function:

timeout :: Int → IO a → IO (Maybe a)

It initiates an IO action, and if the action completes within the
specified time limit, returns Just its result, otherwise it aborts the
action and returns Nothing.

Concurrent Haskell also provides a threadDelay function that
blocks the execution of a thread for a specified amount of time.

Behind the scenes, the I/O event manager thread maintains a
queue of pending timeouts. When a timeout fires, it wakes the
appropriate application thread.

3. Related work
Li and Zdancewic [9] began the push for higher concurrency in
Haskell server applications with an application-level library that
provides both event- and thread-based interfaces. We followed their
lead in supporting both event-based and thread-based concurrency,
but unlike their work, ours transparently benefits existing Haskell
applications.

In the context of the Java Virtual Machine, Haller and Odersky
unify event- and thread-based concurrency via a Scala implemen-
tation of the actor concurrency model [1]. Much of their work is
concerned with safely implementing lightweight threads via con-
tinuations on top of Java’s platform-level threads, resulting in an
environment similar to the two-level threading of GHC’s runtime,
with comparable concurrency management facilities.

For several years, C programmers concerned with client con-
currency have enjoyed the libev and libevent libraries. These
enable an event- and callback-driven style of development that can
achieve high levels of both performance and concurrency. Simi-
lar frameworks are available in other languages, e.g. Twisted for
Python and Node.js for Javascript.

4. Shortcomings of the traditional I/O manager
Although the I/O manager in versions of GHC up to 6.12 is
portable, stable, and performs well for low-concurrency applica-
tions, its imperfections make it inapplicable to the scale of opera-
tions required by modern networked applications.

The I/O manager uses the venerable select system call for
two purposes. It informs the OS of the resources it wishes to track
for events, and the time until the next pending timeout should be
triggered, and blocks until either an event occurs or the timeout
fires.

The select system call has well-known problems. Most obvi-
ous is the distressingly small fixed limit on the number of resources
it can handle even under modern operating systems, e.g. 1,024 on
Linux. In addition, the programming style enforced by select can
be inefficient. The sizes of its programmer-visible data structures
are linear in the number of resources to watch. They must be filled
out, copied twice across the user/kernel address space boundary,
and checked afresh for every invocation. Since the common case

for server-side applications on the public Internet is for most con-
nections to be idle, the amount of useful work performed per call
to select dwindles as the number of open connections increases.
This repetitious book-keeping rapidly becomes a noticeable source
of overhead.

The I/O manager incurs further inefficiency by using ordinary
Haskell lists to manage both events and timeouts. It has to walk
the list of timeouts once per iteration of its main loop, to figure
out whether any threads must be woken and when the next timeout
expires. It must walk the the list of events twice per iteration: once
to fill out the data structures to pass to select, and again after
select has returned to see which threads to wake.

Since select imposes such a small limit on the number of
resources it can manage, we cannot easily illustrate the cost of
using lists to manage events, but in section 9.2, we will demonstrate
the clear importance of using a more efficient data structure for
managing timeouts.

5. Our approach
When we set out to improve the performance of GHC’s I/O man-
ager, our primary goal was to increase the number of files, net-
work connections, and timeouts GHC could manage by several or-
ders of magnitude. We wanted to achieve this in the framework of
the existing Concurrent Haskell model, retaining complete source-
level compatibility with existing Haskell code, and in a manner that
could be integrated into the main GHC distribution with minimal
effort.

Secondarily, we wanted to sidestep the long dispute over
whether events or threads make a better programming model for
high-concurrency servers [11]. Since we needed to implement an
event-driven I/O event manager in order to provide synchronous
semantics to application programmers, we might as well design
the event API cleanly and expose it publicly to those programmers
who wish to use events2.

We desired to implement as much as possible of the new I/O
event manager in Haskell, rather than delegating to a lower-level
language. This wish was partly borne out of pragmatism: we ini-
tially thought that it might be more efficient to build on a portable
event handling library such as libev or libevent2, but experi-
mentation convinced us that the overhead involved was too high.
With performance and aesthetics pushing us in the same direction,
we were happy to forge ahead in Haskell.

Architecturally, our new I/O event manager consists of two
components. Our event notification library provides a clean and
portable API, and abstracts the system-level mechanisms used to
provide efficient event notifications (kqueue, epoll, and poll).
We have also written a shim that implements the semi-public
threadWaitRead and threadWaitWrite interfaces. This means that
neither the core file or networking libraries, nor other low-level I/O
libraries, require any changes to work with our new code, and they
transparently benefit from its performance improvements.

6. Interface to the I/O event manager
Our I/O event manager is divided into a portable front end and a
platform-specific back end. The interface to the back end is simple,
and is only visible to the front end; it is abstract in the public
interface.

2 In our experience, even in a language with first-class closures and contin-
uations, writing applications of anything beyond modest size in an event-
driven style is painful.

data Backend = forall a. Backend {
−− State specif ic to th i s platform .
_beState :: !a,

−− Poll the back end for new events . The callback
−− provided is invoked once per f i l e descriptor with
−− new events .
_bePoll :: a

→ Timeout −− in milliseconds
→ (Fd → Events → IO ()) −− I/O callback
→ IO (),

−− Register , modify , or unregister in te res t in the
−− given events on the specified f i l e descriptor .
_beModifyFd :: a

→ Fd −− f i l e descriptor
→ Events −− old events to watch for
→ Events −− new events to watch for
→ IO (),

−− Clean up platform−specif ic s ta te upon destruction .
_beDestroy :: a → IO ()
}

A particular back end will provide a new action that fills out a
Backend structure. For instance, the Mac OS X back end starts out
as follows:

module System.Event.KQueue (new) where
new :: IO Backend

On a Unix-influenced platform, typically more than one back
end will be available. For instance, on Linux, epoll is the most ef-
ficient back end, but select and poll are available. On Mac OS X,
kqueue is usually preferred, but again select and poll are also
available.

Our public API thus provides a default back end, but allows a
specific back end to be used (e.g. for testing).

−− Construct the fas t e s t back end for th i s platform .
newDefaultBackend :: IO Backend

newWith :: Backend → IO EventManager

new :: IO EventManager
new = newWith =<< newDefaultBackend

For low-level event-driven applications, a typical event loop
involves running a single step through the I/O event manager to
check for new events, handling them, doing some other work, and
repeating. Our interface to the I/O event manager supports this
approach.

init :: EventManager → IO ()

−− Returns an indication of whether the I/O event manager
−− should continue , and a modified timeout queue .
step :: EventManager

→ TimeoutQueue −− current pending timeouts
→ IO (Bool, TimeoutQueue)

To register for notification of events on a file descriptor, clients
use the registerFd function.

−− Cookie describing an event reg is t ra t ion .
data FdKey

−− A set of events to wait for .
newtype Events
instance Monoid Events
evtRead, evtWrite :: Events

−− A synchronous callback into the application .
type IOCallback = FdKey → Events → IO ()

registerFd :: EventManager
→ IOCallback −− callback to invoke
→ Fd −− f i l e descriptor of in te res t
→ Events −− events to l i s t en for
→ IO FdKey

Because the I/O event manager has to accommodate being invoked
from other threads as well as from the same thread in which it is
running, registerFd wakes the I/O manager thread when invoked.

A client remains registered for notifications until it explicitly
drops its registration, and is thus called back on every step into
the I/O event manager as long as an event remains pending. We
find this level-triggered approach to event notification to be easier
than edge triggering for client applications to use.

unregisterFd :: EventManager → FdKey → IO ()

7. Implementation
By and large, the story of our efforts revolves around appropri-
ate choices of data structure, with a few extra dashes of context-
sensitive and profile-driven optimization thrown in.

7.1 Economical I/O event management
GHC’s original I/O manager has to walk the entire list of blocked
clients once per loop before calling select, and mutate the list
afterwards to wake and filter out any clients that have pending
events. A step through the I/O manager’s loop thus involves O(n)
of traversal and mutation, where n is the number of clients.

Our new I/O event manager registers file descriptors persistently
with the operating system, using epoll on Linux and kqueue on
Mac OS X, so the I/O event manager no longer needs to walk
through all clients on each step through the list. Instead, we main-
tain a finite map from file descriptor to client, which we can look up
for each triggered event. This map is based on Leijen’s implemen-
tation of Okasaki and Gill’s purely functional Patricia tree [7]. The
new I/O event manager’s loop thus involves O(m log n) traversal,
and negligible mutation, where m is the number of clients with
events pending. This works well in the typical case where m � n.

7.2 Cheap timeouts
In the original I/O manager, GHC maintains pending timeouts in an
ordered list, which it partly walks and mutates on every iteration.
Inserting a new timeout thus has O(n) cost per operation, as does
each step through the I/O manager’s loop.

The I/O event manager needs to perform two operations effi-
ciently during every step: remove all timeouts that have expired,
and find the next timeout to wait for. Since we need both efficient
update by key and efficient access to the minimum value, we use a
priority search queue. Ours is based on that of Hinze [4], so inser-
tion and deletion have O(log n) cost. A step through our new loop
has O(m log n) cost, where m is the number of expired timeouts
(typically m � n, so we win on performance).

8. War stories, lessons learned, and scars earned
Writing fast networking code is tricky business. We have variously
encountered:

• Tunable kernel variables (15 at the last count) that regulate ob-
scure aspects of the networking stack in ways that are important
at scale;
• Abstruse kernel infelicities (e.g. Mac OS X lacking the NOTE_EOF

argument to kqueue, even though it has been present in
other BSD variants since 2003);

• Performance bottlenecks in GHC that required expert diagnosis
(section 8.2);
• An inability to stress the software enough, due to lack of 10-

gigabit Ethernet hardware (gigabit Ethernet is easily saturated,
even with obsolete hardware).

In spite of these difficulties, we are satisfied with the perfor-
mance we have achieved to date. To give a more nuanced flavour
of the sorts of problems we encountered, we have chosen to share
a few in more detail.

8.1 Efficiently waking the I/O event manager
In a concurrent application with many threads, the I/O event man-
ager thread spends much of its time blocked, waiting for the oper-
ating system to notify it of pending events. A thread that needs
to block until it can perform I/O has no way to tell how long
the I/O event manager thread may sleep for, so it must wake the I/O
event manager in order to ensure that its I/O request can be queued
promptly.

The original implementation of event manager wakeup in GHC
uses a Unix pipe, which clients use to transmit one of several kinds
of single-byte control message to the I/O event manager thread. The
delivery of a control message has the side effect of waking the I/O
event manager if it is blocked. Because a variety of control message
types exist, the original event manager reads and inspects a single
byte from the pipe at a time. If several clients attempt to wake the
event manager thread before it can service any of their requests, it
acts as if it has been woken several times in succession, potentially
performing unneeded work.

More damagingly, this design is vulnerable to the control pipe
filling up, since a Unix pipe has a fixed-size buffer. If control mes-
sages are lost due to a pipe overflow, an application may deadlock3.
As a result, we invested some effort in ameliorating the problem.
Our principal observation was that by far the most common control
message is a simple “wake up.” We have accordingly special-cased
the handling of this message.

On Linux, when possible, we use the kernel’s eventfd facility
to provide fast wakeups. No matter how many clients send wakeup
requests in between checks by the I/O event manager, it will receive
only one notification.

While other operating systems do not provide a comparably fast
facility, we still have a trick up our sleeves. We dedicate a pipe
to delivering only wakeup messages. To issue a wakeup request,
a client writes of a single byte to this pipe. When the I/O event
manager is notified that data is available on this pipe, it issues a
single read system call to gather all currently buffered wakeups. It
does not need to inspect any of the data it has read, since they must
all be wakeups, and the fixed size of the pipe buffer guarantees
that it will not be subject to unnecessary wakeups, regardless of the
number of clients requesting. This means that we no longer need
to worry about wakeup messages that cannot be written for want
of buffer space, so the thread doing the waking can safely use a
non-blocking write.

8.2 The great black hole pileup
Our use of an IORef to manage the timeout queue yielded a prob-
lem that was especially difficult to diagnose, with a symptom of
programs unpredictably running thousands of times slower.

In our threadDelay benchmark, thousands of threads compete
to update the single timeout management IORef atomically. If one
of these threads was pre-empted while evaluating the thunk left in
the IORef by atomicModifyIORef, then the thunk would become a

3 Indeed, one of our microbenchmarks inadvertantly provided a demonstra-
tion of how easy it was to provoke a deadlock under heavy load!

“black hole,” i.e. a closure that is being evaluated. From that point
on, all the other threads would become blocked on black holes:
as one thread called atomicModifyIORef and found a black hole
inside, it would deposit a new black hole inside that depended on its
predecessor. A black hole is a special kind of thunk that is invisible
to applications, so we could not play any of the usual seq tricks to
jolly evaluation along.

When we encountered this problem, the black hole queue was
implemented as a global linear list, which was scanned during
every GC. Most of the time, this choice of data structure was not a
problem, but it became painful with thousands of threads.

In response, Simon Marlow performed a wholesale replacement
of GHC’s black hole mechanism. Instead of a single global black
hole queue, GHC now queues a blocked thread against the closure
upon which it is blocking. His work has fixed our problem.

8.3 Bunfight at the GC corral
When a client application registers a new timeout, we must update
the data structure that we use to manage timeouts. Originally, we
stored the priority search queue inside an IORef, and each client
manipulated the queue using atomicModifyIORef. Alas, this led to
a bad interaction with GHC’s generational garbage collector.

Since our client-side use of atomicModifyIORef did not force
the evaluation of the data inside the IORef, the IORef would accu-
mulate a chain of thunks. If the I/O event manager thread did not
evaluate those thunks promptly enough, they would be promoted
to the old generation and become roots for all subsequent minor
garbage collections (GCs).

When the thunks eventually got evaluated, they would each
create a new intermediate queue that immediately became garbage.
Since the thunks served as roots until the next major GC, these
intermediate queues would get copied unnecesarily in the next
minor GC, increasing GC time. We had created a classic instance
of the generational “floating garbage” problem.

The effect on performance of the floating garbage problem was
substantial. For example, with 20,000 threads sleeping, we saw
variations in our threadDelay microbenchmark performance of
up to 34%, depending on how we tuned the GC and whether we
simply got lucky.

We addressed this issue by having clients store a list of edits to
the queue, instead of manipulating it directly.

type TimeoutEdit = TimeoutQueue → TimeoutQueue

While maintaining a list of edits doesn’t eliminate the creation
of floating garbage, it reduces the amount of copying at each mi-
nor GC enough that these substantial slowdowns no longer occur.

9. Empirical results
We gathered Linux results on commodity quad-core server-class
hardware with 4GB of RAM, and 2.66GHz Intel R© Xeon R© X3230
CPUs running 64-bit Debian 4.0. We used version 6.12.1 of GHC
for all measurements, running server applications on three cores
with GHC’s parallel garbage collector disabled4. When measuring
network application performance, we used an idle gigabit Ethernet
network.

9.1 Performance of event notification
To evaluate the raw performance of event notification, we wrote
two HTTP servers. Each uses the usual Haskell networking li-
braries, and we compiled each against both the original I/O man-
ager (labeled “(old)” in graphs) and our rewrite (labeled “(new)”).

4 The first release of the parallel GC performed poorly on loosely coupled
concurrent applications. This problem has since been fixed.

0

5000

10000

15000

20000

1 10 100 1000 10000

R
eq

ue
st

s
pe

rs
ec

on
d

Concurrent active clients

pong (new)
pong (old)
file (new)
file (old)

0.1

1

10

100

1000

10000

1 10 100 1000 10000

R
eq

ue
st

la
te

nc
y

(m
s)

Figure 1. Requests served per second (top) and latency per request
(bottom) for two HTTP server benchmarks, with all clients busy,
under old and new I/O managers.

The first, pong, simply responds immediately to any HTTP request
with a response of “Pong!”. The second, file, opens and serves
the contents of a 4,332-byte file. We used the ApacheBench tool to
measure performance while varying client concurrency.

In figure 1, all client connections are active simultaneously;
none are idle. Under these conditions of peak load, the epoll back
end exhibits throughput and latency comparable to the original I/O
manager. Notably, the new I/O event manager handles far more
concurrent connections than the 1,016 or so that the original I/O
manager is capable of.

To create a workload that corresponds more closely to condi-
tions for real applications, we open a variable number of idle con-
nections to the server, then measure the performance of a series of
requests where we always use 64 concurrently active clients. Fig-
ure 2 illustrates the effects on throughput and latency of the pong
microbenchmark when we vary the number of idle clients.

For completeness, we measured the performance of both the
epoll and poll back ends. The original and epoll managers
show similar performance up to the 1,024 limit that select can
handle, but while the performance of poll is erratic, the epoll
back end is solid until we have 50,000 idle connections open5.

In general, the small limit that select imposes on the number
of concurrently managed resources prevents us from seeing any
interesting changes in the behaviour of the original I/O manager,
because applications fall over long before any curves have an op-
portunity to change shape. We find this disappointing, as we were
looking forward to a fair fight.

5 We have tested the new event manager with as many as 300,000 idle client
connections.

0

5000

10000

15000

20000

1 10 100 1000 10000

R
eq

ue
st

s
pe

rs
ec

on
d

Concurrent idle clients

pong (new, epoll)
pong (new, poll)
pong (old)

1

10

100

1000

1 10 100 1000 10000
R

eq
ue

st
la

te
nc

y
(m

s)

Figure 2. Requests served per second (top) and latency per request
(bottom), with 64 active connections and varying numbers of idle
connections.

9.2 Performance of timeout management
We developed a simple microbenchmark to measure the perfor-
mance of the threadDelay function, and hence the efficiency of the
timeout management code. We measured its execution time, with
the runtime system set to use two OS-level threads.

As the upper graph of figure 3 indicates, GHC’s traditional I/O
manager exhibits O(n2) behaviour when managing numerous
timeouts.

In comparison, the lower graph of figure 3 shows that the new
timeout managament code has no problem coping with millions
of simultaneously active timeouts. The performance of our mi-
crobenchmark did not begin to degrade until we had three million
threads and timeouts active on a system with 4GB of RAM.

Even for smaller numbers of threads, the new timeout manage-
ment code is far more efficient than the old, as figure 4 shows.

10. Future work
We have integrated our event management code into GHC, and it
will be available to all applications as of GHC 6.14. Our future ef-
forts will revolve around Windows support and further performance
improvements.

10.1 Windows support
As we are primarily Unix developers, our work to date leaves GHC’s
event management on Windows unchanged. We believe that our
design can accommodate the Windows model of scalable event
notification via I/O completion ports.

10.2 Lower overhead
We were a little surprised that epoll is consistently slightly slower
than select. This might be in part because we currently issue

0
5

10
15
20
25
30
35

0 5 10 15 20 25

E
xe

cu
tio

n
tim

e
(s

ec
s)

Thousands of running threads

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
(s

ec
s)

Figure 3. Performance of the threadDelay benchmark, run under
the existing I/O event manager (top) and our rewritten manager
(bottom).

0.01

0.1

1

10

100

0 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(s

ec
s)

Thousands of running threads

old
new

Figure 4. Comparative performance of old and new I/O managers
on the threadDelay microbenchmark. Note the logarithmic scale
on the y-axis, needed to make the numbers for the new manager
distinguishable from zero.

two epoll ctl system calls per event notification: one to queue it
with the kernel, and one to dequeue it. In contrast, the original I/O
manager performs none. If we used epoll in edge-triggered mode,
we could eliminate one call to epoll ctl to dequeue an event6.

10.3 Improved scaling to multiple cores
In theory, an application should be able to improve both through-
put and latency by distributing its event management load across
multiple cores. We already support running many instances of the
low-level I/O event manager at once, with each instance managing
a disjoint set of files or network connections.

6 As a side note, the BSD kqueue mechanism is cleaner than epoll in this
one respect, combining queueing, dequeueing, and checking for multiple
events into a single system call. However, the smaller number of trips across
the user/kernel address space boundary does not appear to result in better
performance, and the kqueue mechanism is otherwise more cluttered and
difficult to use than epoll.

We hope to create a benchmark that stresses the I/O event
manager in such a way that we can either find bottlenecks in, or
demonstrate a performance improvement via, multicore scaling.

10.4 Better performance tools
When we were diagnosing performance problems with the I/O
event manager, we made heavy use of existing tools, such as
the Criterion benchmarking library [8], GHC’s profiling tools, and
the ThreadScope event tracing and visualisation tool [5].

As useful as those tools are, when we made our brief foray into
multicore event dispatching, we lacked data that could help us to
pin down any performance bottleneck. If we could integrate the
new Linux perf analysis tools with ThreadScope, we might gain a
broader systemic perspective on where performance problems are
occurring.

A. Additional materials
The source code of the original, standalone version of our event
management library and our benchmarks are available at
http://github.com/tibbe/event .

Acknowledgments
We owe especial gratitude to Simon Marlow for his numerous
detailed conversations about performance, and for his heroic fixes
to GHC borne of the tricky problems we encountered.

We would also like to thank Brian Lewis and Gregory Collins
for their early contributions to the new event code base.

References
[1] P. Haller and M. Odersky. Actors that unify threads and events. In

Proceedings of the International Conference on Coordination Models
and Languages, 2007.

[2] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a shared-
memory multiprocessor. In Haskell ’05: Proceedings of the 2005 ACM
SIGPLAN workshop on Haskell, pages 49–61.

[3] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and Practice of Parallel Program-
ming, pages 48–60.

[4] R. Hinze. A simple implementation technique for priority search
queues. In Proceedings of the 2001 International Conference on
Functional Programming, pages 110–121.

[5] D. Jones Jr., S. Marlow, and S. Singh. Parallel performance tuning for
Haskell. In Proceedings of the 2009 Haskell Symposium.

[6] S. Marlow, S. Peyton Jones, and W. Thaller. Extending the Haskell for-
eign function interface with concurrency. In Haskell ’04: Proceedings
of the ACM SIGPLAN workshop on Haskell, pages 57–68. URL http:
//www.haskell.org/~simonmar/papers/conc-ffi.pdf.

[7] C. Okasaki and A. Gill. Fast mergeable integer maps. In Workshop on
ML, pages 77–86, 1998.

[8] B. O’Sullivan. Criterion, a new benchmarking library for Haskell.
http://bit.ly/rUuAa, 2009.

[9] L. Peng and S. Zdancewic. Combining events and threads for scal-
able network services. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 189–199.

[10] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
POPL ’96: Proceedings of the 1996 Annual Symposium on Principles
of Programming Languages, pages 295–308.

[11] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea
(for high-concurrency servers). In HotOS IX: 9th Workshop on Hot
Topics in Operating Systems, 2003.

http://github.com/tibbe/event
http://www.haskell.org/~simonmar/papers/conc-ffi.pdf
http://www.haskell.org/~simonmar/papers/conc-ffi.pdf
http://bit.ly/rUuAa

	Introduction
	Background
	The GHC concurrent runtime
	Timeout management and robust networking

	Related work
	Shortcomings of the traditional I/O manager
	Our approach
	Interface to the I/O event manager
	Implementation
	Economical I/O event management
	Cheap timeouts

	War stories, lessons learned, and scars earned
	Efficiently waking the I/O event manager
	The great black hole pileup
	Bunfight at the GC corral

	Empirical results
	Performance of event notification
	Performance of timeout management

	Future work
	Windows support
	Lower overhead
	Improved scaling to multiple cores
	Better performance tools

	Additional materials

