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Abstract. Automatically assigning keywords to images is of great interest as it allows one
to retrieve, index, organize and understand large collections of image data. Many techniques
have been proposed for image annotation in the last decade that give reasonable performance
on standard datasets. However, most of these works fail to compare their methods with simple
baseline techniques to justify the need for complex models and subsequent training. In this
work, we introduce a new and simple baseline technique for image annotation that treats
annotation as a retrieval problem. The proposed technique utilizes global low-level image
features and a simple combination of basic distance measures to find nearest neighbors of a
given image. The keywords are then assigned using a greedy label transfer mechanism. The
proposed baseline method outperforms the current state-of-the-art methods on two standard
and one large Web dataset. We believe that such a baseline measure will provide a strong
platform to compare and better understand future annotation techniques.

1. Introduction

Given an input image, the goal of automatic image annotation is to assign a few
relevant text keywords to the image that reflect its visual content. With rapidly
increasing collections of image data on and off the Web, robust image search and
retrieval is fast becoming a critical requirement. Most current Internet image
search engines efficiently exploit text-based search to retrieve relevant images,
while ignoring image content. Utilizing image content to assign a richer, more
relevant set of keywords would allow one to further exploit the fast indexing
and retrieval architecture of these search engines for improved image search.
This makes the problem of annotating images with relevant text keywords of
immense practical interest.

Image annotation is a difficult task for two main reasons: The first is the well-
known pixel-to-predicate or semantic gap problem, which points to the fact that
it is hard to extract semantically meaningful entities using just low level image
features, e.g. color and texture. The alternative of doing explicit recognition
of thousands of objects or classes reliably is currently an unsolved problem.
The second difficulty arises due to the absence of correspondence between the
keywords and image regions in the training data. For each image, one has access
to the keywords assigned to the entire image and it is not known which regions of
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the image correspond to these keywords. This precludes direct learning of classi-
fiers by assigning each keyword to be a separate class. Only recently, techniques
have emerged to circumvent the correspondence problem under a discriminative
multiple instance learning (Yang et al., 2006) or generative paradigm (Carneiro
et al., 2007).

Image annotation has been a topic of ongoing research for more than a
decade leading to several interesting techniques (Duygulu et al., 2002; Blei et al.,
2003; Jeon et al., 2003; Wang et al., 2004; Lavrenko et al., 2004; Monay and
Gatica-Perez, 2003; Feng et al., 2004; Barnard and Johnson, 2005; Metzler and
Manmatha, 2005; Hare et al., 2006; Yang et al., 2006; Carneiro et al., 2007). Most
of these techniques define a parametric or non-parametric model to capture the
relationship between image features and keywords. Even though some of these
techniques have shown impressive results, one thing that is sorely missing in the
annotation literature is comparison with very simple ‘straw-man’ techniques.

The goal of this work is to create a family of baseline measures against which
new image annotation methods could be compared to better understand the
gains and justify the need for more complex models and training procedures.1

We introduce several simple techniques characterized by a minimal training re-
quirement that can efficiently serve this purpose. Surprisingly, we also show that
these baseline techniques can outperform more complex state-of-the art image
annotation methods on several standard datasets, as well as a large Web dataset.

Arguably, one of the simplest annotation schemes is to treat the problem of
annotation as that of image-retrieval. For instance, given a test image, one can
find its nearest neighbor (defined in some feature space with a pre-specified dis-
tance measure) from the training set, and assign all the keywords of the nearest
image to the input test image. As we show in Section 4, some simple distance
measures defined on even global image features perform similar to or better than
several popular image annotation techniques. One obvious modification of this
scheme would be to use K-nearest neighbors to assign the keywords instead of
relying on just the nearest one. In the multiple neighbors case, as we discuss in
Section 3.3, one can easily assign the appropriate keywords to the input image
using a simple greedy approach, further enhancing the annotation performance.

The K-nearest neighbor approach can be effectively extended to incorporate
multiple distance measures, possibly defined over distinct feature spaces. Re-
cently, combining different distances or kernels has been shown to yield good
performance in object recognition tasks (Frome et al., 2007; Varma and Ray,
2007). In this work, we explore two different ways of combining different distances
to create the baseline measures. The first one simply computes the average of
different distances after scaling each distance appropriately. The second one is
based on selecting relevant distances using a sparse logistic regression method,
Lasso (Tibshirani, 1996). For this, one needs a training set containing simi-

1 An earlier version of this work has appeared in the European Conference on
Computer Vision (ECCV 2008, (Makadia et al., 2008))
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lar and dissimilar images. A typical training set provided for the annotation
task does not contain such information directly. We show that one can train
Lasso by creating a labeled set from the annotation training data. Even such
a weakly trained Lasso outperforms the state-of-the-art methods in most cases.
Surprisingly, however, the averaged distance does better or similar to the noisy
Lasso.

The main contributions of our work are that it: (1) introduces a simple method
to perform image annotation by treating it as a retrieval problem in order to
create a new baseline against which annotation algorithms can be measured, and
(2) provides exhaustive experimental comparisons with several state-of-the-art
annotation methods on three different datasets. These include two standard sets
(Corel and IAPR TC-12) and one web dataset containing about 20K images.

2. Prior work

Text-based image annotation continues to be an important practical as well
as fundamental problem in the computer vision and information retrieval com-
munities. From the practical perspective, current image search solutions fail to
effectively utilize image content for image search. This often leads to search
results of limited applicability.

A number of approaches have been proposed in the past to address the annota-
tion task (Datta et al., 2008). Most of them treat the problem as translation from
image instances to keywords. They approach it either directly, drawing inspira-
tion from language translation models, or indirectly exploiting inferences made
from co-occurrences of textual tags and images. (Mori et al., 1999) was among
the first to consider the co-occurrence view of the translation process where the
annotation of a query image could be inferred from examples of regions-keyword
associations. This concept has been, in different forms, carried through several
works such as (Duygulu et al., 2002; Blei et al., 2003; Jeon et al., 2003; Wang
et al., 2004; Lavrenko et al., 2004; Monay and Gatica-Perez, 2003; Feng et al.,
2004; Barnard and Johnson, 2005; Metzler and Manmatha, 2005; Hare et al.,
2006). Particular approaches differ in their use of image representations and
association models.

For instance, the Translation Model of (Duygulu et al., 2002) directly ap-
proaches the annotation task by estimating the distribution of words used to
describe an image region of a particular kind, from a finite set of possible
region appearances. This initial translation approach that directly models text-
image associations was subsequently extended to models that ascertain them
indirectly, through links established in latent topic/aspect/context spaces. One
such model, the Correspondence Latent Dirichlet Allocation (CorrLDA) of (Blei
et al., 2003) considers associations through a latent topic space in a generatively
learned model. CorrLDA can be described as a generative process in which each
image is considered as a collection of latent topics each of which generates a
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region and possibly a keyword annotation corresponding to that region. Despite
its appealing structure, the model’s performance tends to lag behind that of
other approaches, in part due to the structure of the latent space which may
not accurately reflect the complex topic space dependencies. Furthermore, it is
unclear whether the generative model itself accurately models the image forma-
tion process. Another big problem with these models is the need for simplifying
assumptions to do tractable learning and inference. For instance, the generation
of an image region (specifically its descriptors) given a topic is assumed to be
Gaussian. Even with these simplistic assumptions, exact inference in the overall
generative model is intractable and one has to resort to approximations. The
variational approximation proposed in (Blei et al., 2003) can be quite sensitive
to model initialization due to local minima. Another cause of poor performance
may be the form of objective function that is optimized in CorrLDA. Is maxi-
mum likelihood a good measure to optimize, or will a more direct discriminative
objective give better performance? Finally, CorrLDA uses image segmentation
to obtain regions, which can be quite unpredictable and the segmentation quality
can affect the annotation results significantly.

Cross Media Relevance Models (CMRM) (Jeon et al., 2003), Continuous
Relevance Model (CRM) (Lavrenko et al., 2004), and Multiple Bernoulli Rel-
evance Model (MBRM) (Feng et al., 2004) assume different, nonparametric
density representations of the joint word-image space. In particular, MBRM
achieves remarkable annotation performance by considering a joint word/image
kernel density model estimated from a large set of labeled examples. Its ro-
bust performance comes from the image and text representations it employs:
a mixture density model of image appearance that relies on regions extracted
from a regular grid, thus avoiding potentially noisy arbitrary segmentation, and
the ability to naturally incorporate multi-keyword annotations using multiple
Bernoulli models. However, for MBRM one of the drawbacks is that estimating
the joint probability of an image and its words requires an expectation over all
training images. The complexity of the kernel density representations may hinder
applicability of the model to large data sets. In addition to the computational
challenges, MBRM requires some important parameters to be set manually. For
example, a kernel density estimate is used to approximate the density over
image features. A Gaussian kernel is typically used and the choice of kernel
bandwidth can affect the density estimates significantly. In a practical setting,
the selection of this parameter has significant impact on performance. The same
is true for the smoothing parameter µ used in estimating Bernoulli probability
for each keyword. In our experiments we did extensive cross-validation to select
these parameters. Another practical issue with MBRM models is the use of
a non-overlapping grid for extracting image regions. Although it reduces the
computational complexity in comparison to using overlapping blocks, the overall
performance of the model can be quite sensitive to the block size and shifts in
the image.
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Alternative approaches based on graph-based representation of the word/image
queries (Metzler and Manmatha, 2005), probabilistic latent semantic indexing
(PLSI) (Monay and Gatica-Perez, 2003) and cross-language LSI (Hare et al.,
2006), while proposing appealing venues for linking the occurrences of words
and images, have not resulted in significant performance gains.

More recent research efforts have focused on important extensions of the
translation paradigm that exploits additional structure in both visual and textual
domains. For instance, (Jin et al., 2004) achieved image annotation by utilizing
a coherent language model, and not relying on independence between keywords.
Multi-level annotations in (Gao and Fan, 2006) aim not only to identify specific
objects in an image, but also incorporate concept ontologies to group similar
items and also label a theme for the image. For example, an image of an office
might be annotated not only with the items in the image such as a computer
monitor and mousepad, but also as office and indoors. The added complexity of
such approaches has, unfortunately, restricted their applicability to somewhat
limited settings with small-size dictionaries. Despite improved association mod-
els, computational complexity of resulting annotation rules has often prevented
their applicability to large, real-world datasets.

To address this problem, (Li and Wang, 2003; Li and Wang, 2006) devel-
oped a real-time implementation which uses multiresolution 2D Hidden Markov
Models to model concepts determined by a training set. This method uses
no segmentation to define objects within images, and instead relies on a re-
gion based multiresolution approach implemented in the ALIPR image search
engine (http://alipr.com). While this method may infer higher level seman-
tic concepts based on global features, identification of more specific categories
and objects remains a challenge. In an alternative approach, (Carneiro and
Vasconcelos, 2005a; Carneiro and Vasconcelos, 2005b; Carneiro et al., 2007)
proposed Supervised Multiclass Labeling (SML) technique that aims to learn
class-conditional densities using the training data where each keyword is con-
sidered a class. The basic assumption behind this method is that in a collection
of images annotated with a specific keyword, the background is uniformly dis-
tributed while the keyword-related features follow a specific distribution. Hence,
when individual image densities in the collection are combined, the keyword-
specific density gets reinforced while the background densities get diminished by
the process of averaging. Each image in the collection is modeled as a mixture
of Gaussians. The image densities are further combined hierarchically to yield
class-conditional densities, which are also assumed to be mixture of Gaussians.
Even though SML is computationally efficient and based on sound concepts
of multiple instance learning, its performance is susceptible to lack of enough
training data associated with each keyword. In such a case, it becomes very
hard to separate background density from the concept density. This problem
is further aggravated if a concept has wide variability in its appearance and
each image contains only a subset of the modes. The performance of SML also
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depends on several parameters such as the size of blocks in the overlapping grid,
the number of Gaussians in different mixtures and levels in the hierarchy.

Even though interesting results have been reported by many techniques, one
thing that is common to all the annotation methods mentioned in this section
is the lack of comparison with any simple baseline measure. In the absence
of such a comparison, it is hard to understand the gains and justify the need
for a complex model and training process as required by most of the current
annotation methods. Our work addresses this issue by suggesting a family of
baseline measures, some of which surprisingly do better than the current state-
of-the-art in image annotation on several large real-world datasets.

3. Baseline Methods

We propose a family of baseline methods for image annotation that are built on
the hypothesis that images similar in appearance are likely to share keywords.
To this end we present image annotation as a process of transferring keywords
from nearest neighbors. The neighborhood structure is constructed using image
features, resulting in a rudimentary baseline model. The model intricately de-
pends on the notion of distances between features, and we address the necessary
steps for constructing this model in the following subsections.

3.1. Features and Distances

Color and texture are recognized as two of the most important low-level visual
cues for image representation. The most common color descriptors are based
on coarse histograms of pixel color values. These color features are frequently
utilized within image matching and indexing schemes, primarily due to their
effectiveness and simplicity of computation. Texture is another low-level visual
feature that is a key component of image representation. Image texture is most
frequently captured with Wavelet features, and in particular Gabor and Haar
wavelets have been shown to be quite effective in creating sparse yet discrimi-
native image features. To limit the influence and biases of individual features,
and to maximize the amount of information extracted, we choose to employ a
number of simple and easy to compute color and texture features.

3.1.1. Color
We generate features from images in three different color spaces: RGB, HSV,
and LAB. While RGB is the default color space for image capturing and display,
both HSV and LAB isolate important appearance characteristics not captured by
RGB. For example, the HSV (Hue, Saturation, and Value) colorspace encodes
the amount of light illuminating a color in the Value channel, and the Lumi-
nance channel of LAB is intended to reflect the human perception of brightness.
We compute the RGB feature as a normalized 3D histogram of RGB pixel
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values, with 16 bins in each channel. Similarly, the HSV and LAB features
are 16-bin-per-channel histograms in their respective colorspaces. We evaluated
three distance measures commonly used for histograms and distributions (KL-
divergence, L1-distance, and L2-distance) on the human-labeled training data
from the Corel5K dataset. L1 performed the best for RGB and HSV, while KL-
divergence was found suitable for LAB distances. Throughout the remainder of
the paper, RGB and HSV distances imply the L1 (Manhattan) measure, and the
LAB distance implies KL-divergence.

3.1.2. Texture
We represent the texture of an image with Gabor and Haar Wavelets. Each image
is filtered with Gabor wavelets at three scales and four orientations, resulting in
twelve response images (i.e. a single response image is the result of the original
image filtered with a Gabor wavelet at a particular scale and orientation). Each of
these response images are divided into rectangular blocks (non-overlapping). The
mean filter response magnitudes from each block over all twelve response images
are concatenated into a feature vector (throughout the text this feature is referred
to as ‘Gabor’). In a similar process our second feature captures the quantized
Gabor phase. In each of the twelve response images, the Gabor response phase
angle is averaged over non-overlapping 16× 16 blocks. These mean phase angles
in [0, 2π) are quantized to eight values (which requires only 3 bits of storage). The
quantized values over all blocks and over all response images are concatenated
into a feature vector (referred to throughout the text as ‘GaborQ’). We use L1

distance for the Gabor and GaborQ features.
The Haar filter is a very simple 2 × 2 edge filter. Haar Wavelet responses are

generated by block-convolution of an image with Haar filters at three different
orientations (horizontal, diagonal, and vertical). Responses at different scales
were obtained by performing the convolution with a suitably subsampled image.
After rescaling an image to size 64x64 pixels, a Haar feature is generated by
concatenating the Haar response magnitudes (this feature is referred to as just
‘Haar’). As with the Gabor features, we also consider a quantized version, where
the sign of the Haar responses are quantized to three values (either 0, 1, or -1
if the response is zero, positive, or negative, respectively). Throughout the text
this quantized feature is referred to as ‘HaarQ.’ We use L1 distance for the Haar
and HaarQ features, as with the Gabor features.

3.2. Combining basic distances

As explained in the previous section, each image is represented with seven fea-
tures (3 color histograms, and 4 texture features). Although one can compute
basic distances, i.e. distances between corresponding features in different images,
we wish to define a composite distance measure between images that incorporates
all seven features. As the goal of this work was to develop simple baseline
methods, we focused on linear combinations of basic distances to yield the
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composite distance measure. The simplest linear combination would allow each
basic distance to contribute equally to the total combined distance. We introduce
such a method below as Joint Equal Contribution (JEC). A natural extension of
this will be to combine basic distances non-uniformly, giving preference to those
features which are more relevant for capturing image similarity. We present a
second method that learns the weights for combining basic distances using a
sparse logistic regression technique, Lasso (see (Tibshirani, 1996)). Although
more aggressive methods based on max-margin approaches, recently used in
training object classifiers (see (Frome et al., 2007; Varma and Ray, 2007)), can
be adapted for this task, for simplicity we do not explore these options here.
Also, as we show later on, learning weights with more complex methods using
the training data available for the annotation task does not necessarily yield
better solutions.

3.2.1. Joint Equal Contribution (JEC)
If labeled training data is unavailable, or if the labels are extremely noisy, the
simplest possible way to combine distances from different features is to allow
each individual basic distance to contribute equally to the total combined cost or
distance. Let Ii be the i-th image, from which we have extracted N features Fi =
f 1

i , . . . , fN
i (in our case N = 7). Suppose we can compute the basic distance, dk

(i,j),

between corresponding features fk
i and fk

j in two images Ii and Ij . We would

like to combine the N individual basic distances dk
(i,j), k = 1, . . . , N to provide

a comprehensive distance between image Ii and Ij . In JEC, where each basic
distance is scaled to fall between 0 and 1, each scaled basic distance contributes
equally. The scaling terms can be determined empirically from the training data.
For example, the scaling term for the LAB feature (with KL-divergence as the
distance measure) can be taken as the maximum LAB feature distance between

all pairs of images in the training set. If we denote d̃k
(i,j) as the distance that

has been appropriately scaled, we can define the comprehensive image distance
between images Ii and Ij as 1

N

∑N
k=1 d̃k

(i,j). We call this distance the Joint Equal
Contribution or simply JEC.

3.2.2. L1-Penalized Logistic Regression (Lasso)
Another approach to combining feature distances would be to identify those fea-
tures that are more relevant for capturing image similarity. This is the well-known
problem of feature selection. Since we are using different color (and texture)
features that are not completely independent, it is important to determine which
of these color (or texture) features are redundant. Logistic regression with L1

penalty, also known as Lasso (Tibshirani, 1996), provides a simple way to answer
this question.

To apply logistic regression for feature selection, one needs to cast the image
annotation scenario into something that can be used for Lasso training. To this
end, we define a new set X, and each data point xl ∈ X is a pair of images
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(Ii, Ij). The training set is given by X = {xl = (Ii, Ij)|Ii, Ij ∈ S, i 6= j}, where S

is the input set of all training images. Let yl ∈ {+1,−1} be the label attached
to each training point xl. If a pair (Ii, Ij) contains ‘similar’ images, then xl is
assigned the label yl = 1, otherwise yl = −1. In Lasso, the optimal weights (ω̂)
are obtained by minimizing the following penalized, negative log-likelihood:

ω̂ = argmin
ω

L
∑

l=1

log
(

1 + exp
(

−ω
T
dxl

yl

))

+ λ |ω|1 (1)

Here L is the number of image pairs used for training, |·|1 is the L1 norm, dxl
is

the vector containing the individual basic distances for the image pair xl, and λ

is a positive weighting parameter tuned via cross-validation. Given the training
data {(xl, yl)} one can easily solve (1) by converting this into a constrained
optimization problem as described in (Tibshirani, 1996). Note that a linear
combination of basic distances using the weights computed in (1) will provide a
measure of image similarity, so the result is negated to yield the corresponding
distance.

The main challenge in applying this simple learning scheme to image anno-
tation lies in creating a training set containing pairs of similar and dissimilar
images. Clearly, the typical image annotation datasets do not have this informa-
tion since each image contains just a few text keywords, and there is no notion
of similarity (or dissimilarity) between images. In this setting, we consider any
pair of images that share enough keywords to be a positive training example,
and any pair with no keywords in common to be a negative example. Clearly, the
quality of such a training set will depend on the number of keywords required
to match before an image pair can be called ‘similar.’ A higher threshold will
ensure a cleaner training set but reduce the number of positive pairs. On the
contrary, a lower threshold will generate enough positive pairs for training at the
cost of the quality of these pairs. In this work, we obtained training samples from
the designated training set of the Corel5K benchmark (see Section 4). Images
that had at least four keywords in common were treated as positive samples
for training. Figure 1 shows ten images pairs that had at least 4 keywords in
common, and Figure 2 displays ten pairs that had zero keywords in common.
Note that a larger overlap in keywords does not always translate into better
image similarity, implying that the training set is inherently noisy.

Combining basic distances using JEC or Lasso gives us a simple way to com-
pute distances between images. Using such composite distances, one can find
the K nearest neighbors of an image from the test set in the training set. But
how should one assign keywords to the test image given its nearest neighbors?
In the next section, we present our algorithm for transferring keywords from an
image’s nearest neighbors.
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Figure 1. Ten pairs of images from the Corel5K training set that were used as positive training
examples for Lasso. In each pair the two images shared at least 4 keywords.

Figure 2. Ten pairs of images from the Corel5K training set that were used as negative training
examples for Lasso. In each pair the two images had no keywords in common.

3.3. Label transfer

We propose a simple method to transfer n keywords to an input image Ĩ from
the input’s K nearest neighbors in the training set. Let Ii, i ∈ 1, . . . , K be
the K nearest neighbors of Ĩ in the training set, ordered according to increasing
distance (i.e. I1 is the most similar image). Let |Ii| denote the number of keywords
associated with Ii. We then annotate the input image using the following greedy
label transfer algorithm.
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1. Rank each keyword of I1 according to its frequency in the training set (where
the frequency is just the number of training images in which the keyword
appears).

2. Transfer the n highest ranked keywords of I1 to the input image Ĩ. If |I1| < n,
we still need to transfer more keywords, so proceed to step 3, otherwise
terminate.

3. Rank each keyword of neighbors I2 through IK based on the product of
two factors: 1) their co-occurrence in the training set with the keywords
transferred in step 2, and 2) their local frequency (how often they appear as
keywords of images I2 through IK). Co-occurrence is defined as the number of
training images in which a keyword appears alongside keywords transferred
in step 2, normalized by the sum of co-occurrences of all candidate key-
words. Local frequency is the number of neighborhood images in which the
keyword appears, normalized by the sum of local frequencies of all candidate
keywords. Based on this keyword ranking, select the best n − |I1| keywords
to transfer to the input image Ĩ.

Essentially, this label transfer scheme first selects keywords from the nearest
neighbor. If more keywords are needed, they are selected from neighbors 2
through N , based on co-occurrence and frequency.

This transfer algorithm differs from other obvious choices. One can imagine
simpler algorithms where keywords are selected simultaneously from the entire
neighborhood (i.e., all the neighbors are treated equally), or where the neighbors
are weighted according to their distance from the test image. However, an initial
evaluation showed that these simple approaches underperform in comparison to
our two-stage transfer algorithm (see Section 4).

In summary, our baseline annotation methods are composed of two steps.
First, a composite image distance (computed with JEC or Lasso as discussed
in Section 3.2) is used to identify nearest neighbors. Next, the desired number
of keywords are transferred from the nearest neighbors as described above. Is
there any hope to achieve reasonable results for image annotation using such
simplistic methods? To answer this question, we evaluate our baseline methods
on three different datasets as described in the following section.

4. Experiments and Discussion

Our experiments examined the behavior and compared the performance of the
proposed baselines for image annotation on three different image datasets.

− The Corel5K set (Duygulu et al., 2002), (illustrated in Figure 3) has become
the de facto evaluation benchmark in the image annotation community
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Figure 3. Sample data from the Corel5K benchmark. On the left are 25 randomly selected
images from the dataset. On the right are two sample images and their associated annotations.

(Lavrenko et al., 2004; Metzler and Manmatha, 2005; Yavlinsky et al.,
2005; Feng et al., 2004; Carneiro et al., 2007). The set contains 5,000 images
collected from the larger Corel CD set, split into 4,500 training and 500 test
examples. The set is annotated from a dictionary of 374 keywords, with each
image having been annotated by an average of 3.5 keywords. Out of the 374
keywords, only 260 appear in both the train and test sets.

− IAPR TC-12 is a collection of 20,000 images of natural scenes that include
different sports and actions, photographs of people, animals, cities, land-
scapes and many other aspects of contemporary life2. Unlike other similar
databases, images in IAPR TC-12 are accompanied by free-flowing text
captions in three languages (English, Spanish and German). While this set
is typically used for cross-language retrieval, we have concentrated on the
English captions and extracted keywords (nouns) using the TreeTagger part-
of-speech tagger3. From this initial corpus, grayscale images were discarded
as well as those keywords that appeared too infrequently (along with their
associated images). The final set contains 19,805 images and 291 keywords,
with each image having an average of 4.7 keywords. 17,825 images were used
for training and 1,980 images for testing, keeping the test-train ratio similar
to that of Corel5K. Example images and captions from IAPR are depicted
in Figure 4.

2 http://eureka.vu.edu.au/~grubinger/IAPR/TC12_Benchmark.html
3 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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Figure 4. Sample IAPR data. On the left are 25 randomly selected images from the dataset.
On the right is a single image and the associated text. Noun extraction from the caption
provides keywords for annotation.

− The ESP set consists of images collected from the ESP collaborative image
labeling game4 (von Ahn and Dabbish, 2004)). In the ESP game, two players
assign labels to the same image without communicating. Only common la-
bels are accepted. As an image is shown to more teams, a list of taboo words
is accumulated, increasing the difficulty for future players and resulting in
a challenging dataset for annotation. The set we obtained5 contains 67,796
images. After discarding images associated with infrequent keywords, we
were left with 21,844 images annotated by a dictionary of 269 keywords.
On average each image is annotated with 4.6 keywords, and the image set
is split into 19,659 training and 2,185 test images. Examples are shown in
Figure 5.

For both the IAPR TC-12 and ESP datasets, we have made available the dic-
tionaries and test-train partitions used in our evaluations6. For all three datasets,
we evaluated the performance of a number of baseline methods. For comparisons
on Corel5K, we summarized published results of several approaches, including
the most popular topic model (i.e. CorrLDA (Blei and Jordan, 2003)), as well as
MBRM (Feng et al., 2004) and SML (Carneiro et al., 2007), which have shown
state-of-the-art performance on the Corel5K set. On the two new datasets used
in this study (IAPR TC-12 and ESP), we compared the performance of our
baseline methods against MBRM (Feng et al., 2004)7.

When comparing the performance of different image annotation methods, we
focused on three different types of baseline measures: 1) performance of basic

4 http://www.espgame.org
5 http://hunch.net/~jl/
6 http://www.cis.upenn.edu/~makadia/annotation/
7 No implementation of SML (Carneiro et al., 2007) was publicly available.
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Figure 5. Sample ESP data. On the left are 25 randomly selected images from the dataset,
while on the right are two images and their associated keywords. These images are quite
different in appearance and content, but share many of the same keywords.

Table I. Weights for the seven different features learned with Lasso (see
equation 1). Note that the RGB weight is very close to zero, which indi-
cates that the RGB basic distance contributes very little to the composite
image distance. While these weights were learned using the Corel5K training
images as described in Section 3.2.2, they were applied to all three datasets:
Corel5K, IAPR, and ESP.

RGB HSV LAB Haar HaarQ Gabor GaborQ

Weights (ω̂) 0.03 -0.39 -0.61 -0.19 -0.42 -0.65 -0.17

distance measures, 2) performance of the trained weighted distance model using
Lasso, and 3) performance of the Joint Equal Contribution (JEC) model, where
all basic distances contribute equally to the global distance measure. For Lasso,
the weights learned for combining basic distances (as described in Section 3.2.2)
are shown in Table I. Other than evaluating their comparative performance,
to understand the effects of individual basic distances, we also examined the
impact of leaving out one basic distance measure at a time in the JEC model.
Furthermore, experiments were conducted to understand the contribution of
color and texture features separately.

The performance of each model was evaluated using five measures, following
the methodology used in (Carneiro et al., 2007; Feng et al., 2004). We report
average precision and recall rates obtained by different models, as well as the
number of total keywords recalled. Precision and recall are defined in the stan-
dard way: the annotation precision for a keyword is defined as the number of
images assigned the keyword correctly divided by the total number of images
predicted to have the keyword. The annotation recall is defined as the number of
images assigned the keyword correctly, divided by the number of images assigned
the keyword in the ground-truth annotation. The results shown in the following
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Predicted
keywords

sky, jet,
plane, smoke,

formation

grass, rocks,
sand, valley,

canyon

sun, water,
sea, waves,

birds

water, tree,
grass, deer,
white-tailed

bear, snow,
wood, deer,
white-tailed

Human
annotation

sky, jet,
plane, smoke

rocks,sand,
valley, canyon

sun, water,
clouds, birds

tree, forest,
deer,

white-tailed

tree, snow,
wood, fox

Figure 6. Predicted keywords using JEC versus the human annotations for a few example
images in the Corel5K dataset (using all 260 keywords).

sections are the average precision and recall over all keywords. The number of
individual keywords with positive recall is also reported.

Similar to other approaches, we assign exactly 5 keywords to each image using
label transfer. In addition to annotation, we report two retrieval performance
measures: retrieval precision averaged over all keywords and retrieval precision
averaged over the recalled keywords (Carneiro et al., 2007). The images predicted
to have a particular keyword are ranked according to the ‘strength’ of this assign-
ment, where the strength is determined by the frequency in which the keyword
appears in the 5 nearest neighbors (ties are broken by random selection). The
retrieval precision is then defined as the fraction of the ten highest ranked images
which contain the keyword in the true annotation.

4.1. Corel

The label transfer method defined in the previous section explains how we can
assign keywords to any input image. Using the JEC scheme with our proposed
label transfer algorithm, we assign five keywords to each test image in Corel5K.
Figure 6 compares the five predicted keywords against the ground-truth (i.e.
human-assigned) keywords for a number of sample images. Since the human-
annotations often contain less than five keywords, in some cases JEC predicts
keywords that are not in the ground-truth set but correctly describe the image
content nonetheless. For example, the first image in the figure is predicted to
have the keyword formation. Arguably this is a correct description of the planes
in the image even though it is not one of the human-assigned keywords.

The quantitative results from experiments on the Corel5K set are summa-
rized in Table II. The top portion of the table displays published results from
several top-performing methods that approach the annotation problem from
different perspectives, using different image representations: CRM (Lavrenko
et al., 2004), InfNet (Metzler and Manmatha, 2005), NPDE (Yavlinsky et al.,
2005), MBRM (Feng et al., 2004) and SML (Carneiro et al., 2007). The middle
part of the table shows results from using only the basic distances computed
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Table II. Results for all 260 keywords in Corel5K for different annotation algorithms. The second
and third column show the mean precision and mean recall, respectively, over all keywords. Note
the published results for CRM, InfNet, and NPDE did not include the retrieval results. The average
distance (JEC) performs the best in all categories.

Method Precision Recall
# words

with
rec> 0

Retrieval
precision

Retrieval for
words with
recall > 0

CRM (Lavrenko et al., 2004) 0.16 0.19 107 - -

InfNet (Metzler and Manmatha, 2005) 0.17 0.24 112 - -

NPDE (Yavlinsky et al., 2005) 0.18 0.21 114 - -

MBRM (Feng et al., 2004) 0.24 0.25 122 0.30 0.35

SML (Carneiro et al., 2007) 0.23 0.29 137 0.31 0.49

RGB 0.20 0.23 110 0.24 0.49

HSV 0.18 0.21 110 0.23 0.45

LAB 0.20 0.25 118 0.25 0.47

Haar 0.06 0.08 53 0.12 0.33

HaarQ 0.11 0.13 87 0.16 0.35

Gabor 0.08 0.10 72 0.11 0.31

GaborQ 0.05 0.06 52 0.07 0.26

Lasso 0.24 0.29 127 0.30 0.51

JEC 0.27 0.32 139 0.33 0.52

over individual features (RGB through GaborQ). Finally, the last two rows list
results from the baseline methods that rely on combinations of basic distances
from multiple features.

Individual basic distances show a wide spread in performance scores, ranging
from high-scoring LAB and RGB color measures to the potentially less effective
quantized Gabor phase (GaborQ). It is interesting to note that some of the
individual basic distances perform on par or better than several more complex
published methods. For instance, the LAB color feature alone outperforms CRM
(Lavrenko et al., 2004), InfNet (Metzler and Manmatha, 2005), and NPDE
(Yavlinsky et al., 2005). More surprising, however, is the fact that the measures
which arise from combinations of individual distances (Lasso and JEC) perform
better than most other published methods. In particular, JEC, which emphasizes
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Table III. Results for 168 keywords in Corel5K. The evaluation is
the same as performed in Table II except that it is on a subset of
168 keywords to match the dictionary used for CorrLDA in (Blei and
Jordan, 2003).

Method Precision Recall
# words

with
rec> 0

Retrieval
precision

Retrieval for
words with
recall > 0

CorrLDA 0.06 0.09 59 0.27 0.37

RGB 0.27 0.31 95 0.27 0.44

HSV 0.21 0.27 90 0.24 0.40

LAB 0.25 0.32 99 0.28 0.43

Haar 0.09 0.12 51 0.13 0.31

HaarQ 0.15 0.18 81 0.19 0.34

Gabor 0.10 0.14 60 0.11 0.29

GaborQ 0.08 0.11 46 0.08 0.27

Lasso 0.27 0.36 101 0.30 0.46

JEC 0.32 0.40 113 0.35 0.48

equal contribution of all the feature distances, shows domination in all five
performance measures. One reason for its strong performance may be due to
the use of a wide spectrum of different features. Such features contribute along
different “orthogonal” dimensions to the final distance measure, enhancing the
annotation performance.

It should be noted that most top-performing methods in the literature rely
on instance-based representations (such as MBRM, CRM, InfNet, and NPDE)
which are closely related to our baseline approach. While generative parametric
models such as CorrLDA (Blei et al., 2003) have significant modeling appeal due
to the interpretability of the learned models, they fail to match the nonparamet-
ric representations on this difficult task. Table III confirms that the gap between
the two paradigms remains large. Note that the evaluation in Table III is over
a dictionary of 168 keywords rather than the larger set of 260 keywords. This is
because the CorrLDA (Blei et al., 2003) used this smaller set of 168 keywords.

Another interesting result is revealed by comparing the JEC baseline with
Lasso. One may expect that the selection ability of Lasso should result in
increased levels of performance compared to the equal contributions in JEC.
However, this is not the case in part because of the different requirements posed
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Table IV. All-but-one testing of JEC scheme. In each row, a different
feature was left out of JEC. It is clear from these results that all seven
features make some positive contribution to the combined distances.
The last row shows the JEC results for the full set of features for
reference.

Feature
left out Precision Recall

# words
with

rec> 0
Retrieval
precision

Retrieval for
words with
recall > 0

RGB 0.27 0.31 134 0.32 0.53

HSV 0.27 0.31 137 0.32 0.52

LAB 0.27 0.32 134 0.33 0.53

Haar 0.26 0.31 133 0.32 0.54

HaarQ 0.26 0.30 130 0.31 0.53

Gabor 0.25 0.29 128 0.30 0.53

GaborQ 0.26 0.31 134 0.33 0.53

None 0.27 0.32 139 0.33 0.52

by underlying techniques of the two models. Lasso relies on the existence of the
sets of positive (similar) and negative (dissimilar) pairs of images, while JEC
requires no learning. Since the Lasso training set was created artificially from
the annotation training set, the effect of noisy labels undoubtedly reflects on
the model’s performance. Thus, in the presence of label noise, it is not clear if
using more aggressive objective functions (e.g., those based on maximizing the
margin) will do any better than simple Lasso.

We further contrast the role of individual features and examine their contri-
bution to the combined baseline models in experiments summarized in Tables IV
and V. The performance of individual features discussed above may tempt one to
leave out the low-performing features, such as the texture-based Haar and Gabor
descriptors. However, Table IV suggests that this is not necessarily the right
thing to do. Correlated features, such as HSV and LAB may contribute little
jointly and could potentially be left out. While the texture-based descriptors
individually lead to inferior annotation performance, Table IV offers evidence
that they complement the color features. A similar conclusion may be reached
when considering the joint performance of all color and all texture features,
depicted in Table V: either of the two groups alone results in performance inferior
to the JEC combined model.

As mentioned earlier, the greedy label transfer algorithm utilized in JEC is
not immediately obvious. One straightforward alternative is to transfer all key-
words simultaneously from the entire neighborhood while optionally weighting
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Table V. Results for all 260 keywords in Corel5K. The first row of results,
‘Texture’, evaluates the JEC distance-combination scheme using only the
four texture basic distances (Gabor, GaborQ, Haar, and HaarQ). Similarly,
the second row, ‘Color’, evaluates only the three color basic distances (RGB,
HSV, and LAB). The third row shows the full JEC results combining all the
texture and color distances.

Feature
Class Precision Recall

# words
with

rec> 0
Retrieval
precision

Retrieval for
words with
recall > 0

Texture 0.16 0.19 101 0.24 0.45

Color 0.23 0.26 120 0.27 0.51

Texture + Color 0.27 0.32 139 0.33 0.52

Table VI. Evaluation of alternative label transfer schemes on Corel5K. On the left, we assess two simple
methods. All neighbors equal simultaneously selects keywords from all 5 nearest neighbors. Keywords are
ranked by their frequency in the neighborhood. All neighbors weighted applies an additional weighting
relative to the distance of the neighbor from the test image. On the right, we evaluate the individual
neighbors in isolation (i.e. all keywords transferred from a single neighbor).

P% R% N+ rP% rP+%

All neighbors
equal 23 24 113 39 56

All neighbors
weighted 25 31 135 32 50

Proposed method
(Section 3.3) 27 32 139 33 52
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the neighbors according to their distance from the test image. Additionally, by
evaluating the labels transferred from a single neighbor, we can estimate the
average “quality” of neighbors in isolation. These results are summarized in Ta-
ble VI. The simple alternative of selecting all keywords simultaneously from the
entire neighborhood (with and without weighting the neighbors) underperforms
our proposed label transfer algorithm. In the case of weighted neighbors, the
weight assigned to a neighbor’s keywords is inversely related to the distance
(exp−dist). Regarding individual neighbors, the difference in performance be-
tween the first two neighbors is greater than the difference between the second
and fifth neighbor. This observation led us to treat the first neighbor specially.

4.1.1. Discussion
Looking back at the results above, the relative performance of techniques such
as CorrLDA, MBRM, and SML against the proposed JEC baseline on multiple
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datasets indicate possible limitations of some of the established techniques. Cor-
rLDA’s poor performance on the Corel5K set indicate the suggested generative
model for image formation and annotation may not be suited for this task. The
need for image segmentation (e.g., using N-cuts (Shi and Malik, 2000)), sim-
plistic distribution assumptions (e.g., image features are distributed as Gaussian
given a topic) and inexact inference using variational methods can all lead to
poor performance of CorrLDA. As a generative model, MBRM’s performance
is better than that of CorrLDA but it comes with a strong computational
disadvantage. At the run-time, one needs all the training images to estimate
kernel densities. Moreover, the kernel density estimates can differ substantially
for different choices of block size and small shifts in the data due to lack of
overlap in blocks. As discussed earlier, SML’s limitations lie in the fact that it
tries to learn densities for each keyword from weakly labeled data. When only
few observations are available for a keyword, there is a higher chance that the
learned densities will not distinguish between foreground and background. For
instance, in Corel5K there are 13 keywords which appear in fewer than 5 training
images. The lack of training data becomes even a more acute problem if image
appearance corresponding to certain keywords varies significantly (e.g. see the
different sky appearances in Figure 12). Moreover, various parameters such as
the size of blocks in the grid, number of components in mixture models and
number of hierarchies also affect the results.

In contrast to methods discussed above, our simple baseline approach of JEC
does not need any segmentation or blocking of images. Furthermore, even if
a few images are available per concept, the nearest neighbor based approach
works fine since no density learning is involved. Finally, since no generative as-
sumptions are imposed, no modeling or optimization approximations are needed.
Computationally, however, run-time annotation does require visiting all training
images to determine nearest neighbors. However, the run-time complexity can
be significantly reduced by using any of the fast approximate nearest neighbor
methods such as Locality Sensitive Hashing (LSH (Gionis et al., 1999)).

4.2. IAPR TC-12

The Corel set of (Duygulu et al., 2002) has served as the de facto standard for
evaluating many annotation methods. Nevertheless, this set if often criticized
for its bias due to insufficiently varying appearance and contrived annotations.
We therefore measure the performance of our baseline models, as well as that of
individual basic distances, on a more challenging IAPR set which contains 20,000
images (of which we used 19,805) having varying appearance and where the
keywords are extracted from free-flowing text captions. Table VII summarizes the
quantitative performance of numerous annotation methods on this set. Figure 7
shows some examples of annotated images using the JEC baseline. The annotated
images show how inconsistent and challenging the IAPR dataset can be. For
example, the JEC baseline correctly predicted the keyword sky in both images
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Table VII. Results for 291 keywords in the IAPR set. As with the re-
sults shown for Corel5K, JEC and Lasso-weighted distances outperform
MBRM significantly.

Method Precision Recall
# words

with
recall > 0

Retrieval
precision

Retrieval for
words with
recall > 0

MBRM 0.21 0.14 186 0.23 0.36

RGB 0.20 0.13 189 0.23 0.35

HSV 0.18 0.12 190 0.21 0.31

LAB 0.22 0.14 194 0.25 0.37

Haar 0.17 0.08 161 0.12 0.22

HaarQ 0.16 0.10 173 0.16 0.27

Gabor 0.14 0.09 169 0.15 0.27

GaborQ 0.08 0.06 137 0.08 0.16

Lasso 0.26 0.16 199 0.27 0.39

JEC 0.25 0.16 196 0.27 0.41

Predicted
keywords

clothes, jean,
man,

shop, square

edge, front,
glacier, life,

tourist

court, player,
sky, stadium,

tennis

brick, grave,
mummy, stone,

wall

desert, grass,
mountain, sky,

slope

Human
annotation

clothes, jean,
man, pavement,

shop, square

glacier, jacket,
life, rock,
sky, water,

woman

court, player,
sky, stadium,
man, tennis

brick, grave,
mummy, wall

desert, grey
mountain, round,

stone

Figure 7. Predicted keywords using JEC versus the human annotations for a sampling
of images in the IAPR dataset

where the sky appears: the tennis court (image 3) and the desert (image 5).
However, since the “ground truth” annotations are extracted from text captions,
sky does not appear as a keyword for the desert image.

Trends similar to those observed on the Corel set carry over to the IAPR
setting as well. The baseline methods show performance superior to that of
the MBRM. While color features contribute consistently more than the texture
descriptors, we observe improved individual performance of Gabor and Haar
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Predicted
keywords

bikini, girl
grass, hair,

woman

bear, black,
brown, nose,

white

band, light,
man, music,

play

man, old,
picture, red,

wall

cloud, grass
green, hill, red

Human
annotation

bed, girl
woman

animal, bear
black, brown,
head, nose

band, light,
man, music,
red, wheel

black, man,
old, red,

sit

cloud, gray,
green, mountain,

picture, rock
sky, stone

Figure 8. Predicted keywords using JEC versus the human annotations for a sampling of
images in the ESP dataset.

measures. This can be due to the presence of a larger number of images exhibiting
textured patterns in IAPR compared to the Corel set. It is also interesting to
note that the selection of relevant features using Lasso exhibits performance on
par with JEC in two out of the five measures. This is a potential indicator that
the criterion for determining the similar pairs in the Lasso training set is more
reflective of the true image similarities in IAPR than in Corel.

4.3. ESP

As explained earlier, the ESP game set has arisen from an experiment in col-
laborative human computing—annotation of images in this case (von Ahn and
Dabbish, 2004). The set contains a wide variety of images and annotations, of
which we used a small part (21,844 images) for our evaluations. An advantage of
this set, compared to Corel and IAPR, lies in the fact that its human annotation
reflects a collective semantic agreement among annotators, leading to annota-
tions with less individual bias. Table VIII depicts results of MBRM and our
baseline methods on this set. Figure 8 shows some annotation examples using
the JEC baseline. Although the predicted keywords using the JEC baseline do
not overlap perfectly with the human annotation, in many cases the “incorrect”
predicted keywords correctly describe the image. For example, in the fourth
image showing a man sitting on couch in front of a wall full of framed pictures,
the JEC-assigned keywords arguably describe the image as (or more) accurately
than those generated through the ESP game.

In comparison with the results on the Corel5K and IAPR sets, texture features
play a much more critical role in the annotation process for the ESP set. For
instance, both Haar and Gabor induced-distances fall not far behind the color
features. As we speculated with the IAPR dataset, the large ESP image set
contains a larger variety of image content and thus there is probably a larger
ratio of images that is more suitably represented by their texture.
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Table VIII. Results for 268 keywords in ESP. Compared to MBRM,
both JEC and Lasso perform much better.

Method Precision Recall
# words

with
rec> 0

Retrieval
precision

Retrieval for
words with
recall > 0

MBRM 0.21 0.17 218 0.14 0.17

RGB 0.21 0.17 221 0.14 0.17

HSV 0.18 0.15 217 0.11 0.14

LAB 0.20 0.17 221 0.14 0.17

Haar 0.21 0.14 210 0.12 0.15

HaarQ 0.19 0.14 210 0.12 0.15

Gabor 0.16 0.12 199 0.10 0.13

GaborQ 0.14 0.11 205 0.10 0.12

Lasso 0.22 0.18 225 0.15 0.18

JEC 0.23 0.19 227 0.16 0.19

In the last few sections, we provided a thorough evaluation of our baseline
methods for annotation. Our label transfer algorithm, a key component of the
proposed baselines, utilizes an image’s neighborhood structure to select the ap-
propriate keywords for transfer. In all our experiments so far, the label transfer
algorithm used five nearest neighbors. In the following section, we study the
sensitivity of our label transfer algorithm by varying the number of neighbors
used for keyword transfer.

4.4. Varying the neighborhood size for label transfer

How does the change in number of nearest neighbors influence the annotation
results obtained from our greedy label transfer algorithm? Clearly, the number of
nearest neighbors changes the number of available keywords that can be utilized
for annotation. In Figures 9 and 10, we see the effect of varying the number of
nearest neighbors between 1 and 5 for all three image datasets using the JEC and
Lasso baseline methods for annotation. One would expect the recall to increase as
the neighborhood size increases, since the likelihood of seeing the true keywords
in the candidate set increases as more images are included. One may also expect
a reverse effect with precision. The figures show that the recall does indeed jump
from using just one neighbor to using two neighbors. From two to five neighbors,
we observe a much smaller improvement in recall, especially in the IAPR and
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Figure 9. Precision and recall for JEC on all three datasets as the number of nearest neighbors
used for label transfer is varied between 1 and 5.
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Figure 10. Precision and recall for Lasso on all three datasets as the number of nearest
neighbors used for label transfer is varied between 1 and 5.

ESP datasets. This can be attributed to our fixed assignment of 5 keywords. In
many cases, the first nearest neighbor has 5 or more keywords, which means the
additional neighbors will have no effect on the transfer algorithm. In general,
the stability of the recall values over neighborhood sizes is due to the fact that
many of the 5 keywords are usually transferred from the first neighbor.

Figures 9 and 10 allow us to see how precision and recall change as the number
of nearest neighbors is varied. We would like to go further and thoroughly
evaluate the relationship between annotation precision and recall. One simple
way to change recall is to vary the number of keywords assigned during the
label transfer stage of our baseline annotation methods. Intuitively, assigning
more keywords to an image increases the chance that the true keywords will be
selected, thus increasing recall. However, by controlling recall with the number of
keywords assigned to an image, we would expect an inverse relationship between
recall and precision. Until now, we have assigned exactly 5 keywords to each
input image in order to stay consistent with the other state-of-the-art methods
proposed in the literature. However, in the next section we vary the number
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Figure 11. Precision-versus-recall plots generated by varying the number of keywords assigned
to an image. On the left is the evaluation on Corel5K, in the middle is the evaluation for the
IAPR dataset, and on the right is the evaluation for the ESP set.

of keywords assigned to an image to understand the full relationship between
precision and recall for our baseline methods.

4.5. Tradeoff between precision and recall

One of the key challenges in the image annotation task is knowing just how
many keywords are necessary to describe the content of an image. For instance,
in the ESP dataset, the images have on average 4.6 keywords, but some images
have as many as 15 keywords in their ground-truth annotation. Similarly, in
the IAPR dataset the average is 4.7 keywords but some images have as many
as 23 keywords in their ground-truth annotation. Obviously, for these datasets
assigning only 5 keywords during the label transfer stage artificially limits the
number keywords that can be recalled correctly for many of the images. Although
increasing the number of keywords assigned to an image can help increase the
recall (e.g. in the extreme case, if we assigned all 291 keywords to each image
in the IAPR test set, we could ensure 100% recall for all keywords), it will lead
to a drop-off in the precision. We study this classic tradeoff between precision
and recall for all three datasets and show the results in Figure 11. The precision-
versus-recall plots are generated by increasing the number of keywords assigned
to an image from 5 up to the total number of keywords in each dataset. In order
to assign more than 5 keywords to an image using our baseline methods, we
ensure that the number of nearest neighbors used during the label transfer stage
is the minimum required to see enough unique keywords. The results are shown
for both the JEC and Lasso baseline methods. As expected, we see an inverse
relationship between precision and recall for both JEC and Lasso on all three
datasets. The convexity in the precision-recall relationship can be explained by
the fact that we are using the nearest neighbors for label transfer. As expected,
the quality of the neighborhood decreases quickly as its size increases, which is
necessary for assigning many keywords.

Although the experimental evaluation of our baseline methods in this and
previous sections has focused mostly on annotation precision and recall, another
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method of evaluation is to study the performance on applications that can easily
integrate automatic annotation techniques. The most important of such appli-
cations is probably text-based image retrieval, and in the following section we
explore some results of our annotation baselines applied to the task of image
retrieval.

4.6. Retrieval

The task of automatic image annotation is of great interest because it can play a
crucial role in building an effective engine for image retrieval. Assigning descrip-
tive keywords to images allows users to search for images using only text-based
queries. Evaluating the performance of an image retrieval engine is different
than that of an annotation engine because in retrieval we are only interested in
the quality of the first few images associated with a given keyword. Following
(Carneiro et al., 2007), we have reported the average retrieval precision over
all keywords, as well as just the recalled keywords, for the first 10 retrieved
images (see the fifth and sixth columns of Tables II, III, IV, V, VII, and VIII).
In addition to these results, here we show some visual examples of the first
few images retrieved for a number of different keywords using the JEC scheme.
Figures 12, 13, and 14 show the first seven retrieved images for several keywords
in the Corel5K, IAPR, and ESP datasets, respectively.

Even for particularly challenging keywords (e.g. cyclist and skull in IAPR,
diagram and tie in ESP), many of the top retrieved images are correct. Also,
many keywords have multiple meanings, commonly referred to as “word sense”.
In some such cases we see that the retrieved images span numerous meanings of
the word (for example, the keyword ring in ESP).

4.7. Conclusion

It is widely acknowledged that image annotation is an open and very difficult
problem in computer vision. Solving this problem at the human level may, per-
haps, require that the problem of scene understanding be solved first. However,
identifying objects, events, and activities in a scene is still a topic of intense
research with limited success. In the absence of such information, most of the
image annotation methods have suggested modeling the joint distribution of
keywords and images to learn the association of keywords and low-level image
features such as color and texture. Most of these state-of-the-art techniques
require elaborate modeling and training efforts. The goal of our work was not
to develop a new annotation method but create a family of very simple and
intuitive baseline methods for image annotation, which together create a useful
annotation evaluation platform. Comparing existing annotation techniques with
the proposed baseline methods helps us better understand the utility of the
elaborate modeling and training steps employed by the existing techniques.
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Figure 12. Retrieval results using JEC on Corel5K. Each row shows the first 7 images retrieved
for a particular keyword which is shown in the leftmost column.
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Figure 13. Retrieval results on the IAPR dataset for a number of challenging keywords. Each
row shows the first 7 images retrieved for a particular keyword. The images have been scaled
independently to have the same aspect ratio for display purposes.
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Figure 14. Retrieval results on the ESP dataset for a number of challenging keywords. Each
row shows the first 7 images retrieved for a particular keyword. The images have been scaled
independently to have the same aspect ratio for display purposes.

Our proposed baseline methods combine basic distance measures over very
simple global color and texture features. K-Nearest Neighbors computed using
these combined distances form the basis of our simple greedy label transfer al-
gorithm. Our thorough experimental evaluation reveals that nearest neighbors,
even when using the individual basic distances, can outperform a number of
existing annotation methods. Furthermore, a simple combination of the basic
distances (JEC), or a combination trained on noisy labeled data (Lasso), outper-
forms the best state-of-the-art methods on three different datasets. These some-
what surprising results make a case for revisiting the state-of-the-art methods
and carefully analyzing their different modeling and training steps to understand
why they fail to achieve performance at the level of these simplistic baseline
methods.

Given the general performance level of current annotation methods as well
as our proposed baselines, it is clear there is much room for improvement in
the state-of-the-art. Our hope is that the existence of such baseline methods as
proposed in this work will spur the development of more powerful annotation
techniques in the future by providing an effective evaluation platform.
Acknowledgments: Our thanks to Ni Wang for the Lasso training code and
Henry Rowley for helpful discussions on feature extraction.
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