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Abstract

We have designed, implemented and eval-
uated an end-to-end system spellcheck-
ing and autocorrection system that does
not require any manually annotated train-
ing data. The World Wide Web is used
as a large noisy corpus from which we
infer knowledge about misspellings and
word usage. This is used to build an er-
ror model and an n-gram language model.
A small secondary set of news texts with
artificially inserted misspellings are used
to tune confidence classifiers. Because
no manual annotation is required, our sys-
tem can easily be instantiated for new lan-
guages. When evaluated on human typed
data with real misspellings in English and
German, our web-based systems outper-
form baselines which use candidate cor-
rections based on hand-curated dictionar-
ies. Our system achieves 3.8% total error
rate in English. We show similar improve-
ments in preliminary results on artificial
data for Russian and Arabic.

1 Introduction

Spellchecking is the task of predicting which
words in a document are misspelled. These pre-
dictions might be presented to a user by under-
lining the misspelled words. Correction is the
task of substituting the well-spelled hypotheses
for misspellings. Spellchecking and autocorrec-
tion are widely applicable for tasks such as word-
processing and postprocessing Optical Character
Recognition. We have designed, implemented
and evaluated an end-to-end system that performs
spellchecking and autocorrection.

The key novelty of our work is that the sys-
tem was developed entirely without the use of
manually annotated resources or any explicitly

compiled dictionaries of well-spelled words. Our
multi-stage system integrates knowledge from sta-
tistical error models and language models (LMs)
with a statistical machine learning classifier. At
each stage, data are required for training models
and determining weights on the classifiers. The
models and classifiers are all automatically trained
from frequency counts derived from the Web and
from news data. System performance has been
validated on a set of human typed data. We have
also shown that the system can be rapidly ported
across languages with very little manual effort.

Most spelling systems today require some hand-
crafted language-specific resources, such as lex-
ica, lists of misspellings, or rule bases. Sys-
tems using statistical models require large anno-
tated corpora of spelling errors for training. Our
statistical models require no annotated data. In-
stead, we rely on the Web as a large noisy corpus
in the following ways. 1) We infer information
about misspellings from term usage observed on
the Web, and use this to build an error model. 2)
The most frequently observed terms are taken as
a noisy list of potential candidate corrections. 3)
Token n-grams are used to build an LM, which
we use to make context-appropriate corrections.
Because our error model is based on scoring sub-
strings, there is no fixed lexicon of well-spelled
words to determine misspellings. Hence, both
novel misspelled or well-spelled words are allow-
able. Moreover, in combination with an n-gram
LM component, our system can detect and correct
real-word substitutions, ie, word usage and gram-
matical errors.

Confidence classifiers determine the thresholds
for spelling error detection and autocorrection,
given error and LM scores. In order to train these
classifiers, we require some textual content with
some misspellings and corresponding well-spelled
words. A small subset of the Web data from news
pages are used because we assume they contain
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relatively few misspellings. We show that con-
fidence classifiers can be adequately trained and
tuned without real-world spelling errors, but rather
with clean news data injected with artificial mis-
spellings.

This paper will proceed as follows. In Section 2,
we survey related prior research. Section 3 de-
scribes our approach, and how we use data at each
stage of the spelling system. In experiments (Sec-
tion 4), we first verify our system on data with ar-
tificial misspellings. Then we report performance
on data with real typing errors in English and Ger-
man. We also show preliminary results from port-
ing our system to Russian and Arabic.

2 Related Work

Spellchecking and correction are among the oldest
text processing problems, and many different so-
lutions have been proposed (Kukich, 1992). Most
approaches are based upon the use of one or more
manually compiled resources. Like most areas
of natural language processing, spelling systems
have been increasingly empirical, a trend that our
system continues.

The most direct approach is to model the
causes of spelling errors directly, and encode them
in an algorithm or an error model. Damerau-
Levenshtein edit distance was introduced as a
way to detect spelling errors (Damerau, 1964).
Phonetic indexing algorithms such as Metaphone,
used by GNU Aspell (Atkinson, 2009), repesent
words by their approximate ‘soundslike’ pronun-
ciation, and allow correction of words that ap-
pear orthographically dissimilar. Metaphone relies
upon data files containing phonetic information.
Linguistic intuition about the different causes of
spelling errors can also be represented explicitly in
the spelling system (Deorowicz and Ciura, 2005).

Almost every spelling system to date makes use
of a lexicon: a list of terms which are treated as
‘well-spelled’. Lexicons are used as a source of
corrections, and also to filter words that should
be ignored by the system. Using lexicons in-
troduces the distinction between ‘non-word’ and
‘real-word’ errors, where the misspelled word is
another word in the lexicon. This has led to
the two sub-tasks being approached separately
(Golding and Schabes, 1996). Lexicon-based ap-
proaches have trouble handling terms that do not
appear in the lexicon, such as proper nouns, for-
eign terms, and neologisms, which can account for

a large proportion of ‘non-dictionary’ terms (Ah-
mad and Kondrak, 2005).

A word’s context provides useful evidence as
to its correctness. Contextual information can be
represented by rules (Mangu and Brill, 1997) or
more commonly in an n-gram LM. Mays et al
(1991) used a trigram LM and a lexicon, which
was shown to be competitive despite only allow-
ing for a single correction per sentence (Wilcox-
O’Hearn et al., 2008). Cucerzan and Brill (2004)
claim that an LM is much more important than
the channel model when correcting Web search
queries. In place of an error-free corpus, the Web
has been successfully used to correct real-word
errors using bigram features (Lapata and Keller,
2004). This work uses pre-defined confusion sets.

The largest step towards an automatically train-
able spelling system was the statistical model for
spelling errors (Brill and Moore, 2000). This re-
places intuition or linguistic knowledge with a
training corpus of misspelling errors, which was
compiled by hand. This approach has also been
extended to incorporate a pronunciation model
(Toutanova and Moore, 2002).

There has been recent attention on using Web
search query data as a source of training data, and
as a target for spelling correction (Yang Zhang and
Li, 2007; Cucerzan and Brill, 2004). While query
data is a rich source of misspelling information in
the form of query-revision pairs, it is not available
for general use, and is not used in our approach.

The dependence upon manual resources has
created a bottleneck in the development of
spelling systems. There have been few language-
independent, multi-lingual systems, or even sys-
tems for languages other than English. Language-
independent systems have been evaluated on Per-
sian (Barari and QasemiZadeh, 2005) and on Ara-
bic and English (Hassan et al., 2008). To our
knowledge, there are no previous evaluations of
a language-independent system across many lan-
guages, for the full spelling correction task, and
indeed, there are no pre-existing standard test sets
for typed data with real errors and language con-
text.

3 Approach

Our spelling system follows a noisy channel
model of spelling errors (Kernighan et al., 1990).
For an observed word w and a candidate correc-
tion s, we compute P (s|w) as P (w|s)× P (s).
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Figure 1: Spelling process, and knowledge sources used.

The text processing workflow and the data used
in building the system are outlined in Figure 1 and
detailed in this section. For each token in the in-
put text, candidate suggestions are drawn from the
term list (Section 3.1), and scored using an error
model (Section 3.2). These candidates are eval-
uated in context using an LM (Section 3.3) and
re-ranked. For each token, we use classifiers (Sec-
tion 3.4) to determine our confidence in whether
a word has been misspelled and if so, whether it
should be autocorrected to the best-scoring sug-
gestion available.

3.1 Term List

We require a list of terms to use as candidate cor-
rections. Rather than attempt to build a lexicon
of words that are well-spelled, we instead take the
most frequent tokens observed on the Web. We
used a large (> 1 billion) sample of Web pages,
tokenized them, and took the most frequently oc-
curring ten million tokens, with very simple filters
for non-words (too much punctuation, too short or
long). This term list is so large that it should con-
tain most well-spelled words, but also a large num-
ber of non-words or misspellings.

3.2 Error Model

We use a substring error model to estimate
P (w|s). To derive the error model, let R be
a partitioning of s into adjacent substrings, and
similarly let T be a partitioning of w, such that
|T | = |R|. The partitions are thus in one-to-one
alignment, and by allowing partitions to be empty,
the alignment models insertions and deletions of

substrings. Brill and Moore estimate P (w|s) as
follows:

P (w|s) ≈ max
R, T s.t. |T |=|R|

|R|∏
i=1

P (Ti|Ri) (1)

Our system restricts partitionings that have sub-
strings of length at most 2.

To train the error model, we require triples of
(intended word, observed word, count), which are
described below. We use maximum likelihood es-
timates of P (Ti|Ri).

3.2.1 Using the Web to Infer Misspellings
To build the error model, we require as train-
ing data a set of (intended word, observed word,
count) triples, which is compiled from the World
Wide Web. Essentially the triples are built by start-
ing with the term list, and a process that auto-
matically discovers, from that list, putative pairs
of spelled and misspelled words, along with their
counts.

We believe the Web is ideal for compiling this
set of triples because with a vast amount of user-
generated content, we believe that the Web con-
tains a representative sample of both well-spelled
and misspelled text. The triples are not used di-
rectly for proposing corrections, and since we have
a substring model, they do not need to be an ex-
haustive list of spelling mistakes.

The procedure for finding and updating counts
for these triples also assumes that 1) misspellings
tend to be orthographically similar to the intended
word; Mays et al (1991) observed that 80% of
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misspellings derived from single instances of in-
sertion, deletion, or substitution; and 2) words are
usually spelled as intended.

For the error model, we use a large corpus (up to
3.7×108 pages) of crawled public Web pages. An
automatic language-identification system is used
to identify and filter pages for the desired lan-
guage. As we only require a small window of con-
text, it would also be possible to use an n-gram
collection such as the Google Web 1T dataset.

Finding Close Words. For each term in the
term list (defined in Section 3.1), we find all
other terms in the list that are “close” to it. We
define closeness using Levenshtein-Damerau edit
distance, with a conservative upper bound that in-
creases with word length (one edit for words of
up to four characters, two edits for up to twelve
characters, and three for longer words). We com-
pile the term list into a trie-based data structure
which allows for efficient searching for all terms
within a maximum edit distance. The computa-
tion is ‘embarassingly parallel’ and hence easily
distributable. In practice, we find that this stage
takes tens to hundreds of CPU-hours.

Filtering Triples. At this stage, for each
term we have a cluster of orthographically similar
terms, which we posit are potential misspellings.
The set of pairs is reflexive and symmetric, e.g. it
contains both (recieve, receive) and (receive, re-
cieve). The pairs will also include e.g. (deceive,
receive). On the assumption that words are spelled
correctly more often than they are misspelled, we
next filter the set such that the first term’s fre-
quency is at least 10 times that of the second term.
This ratio was chosen as a conservative heuristic
filter.

Using Language Context. Finally, we use the
contexts in which a term occurs to gather direc-
tional weightings for misspellings. Consider a
term w; from our source corpus, we collect the
set of contexts {ci} in which w occurs. The defi-
nition of a context is relatively arbitrary; we chose
to use a single word on each side, discarding con-
texts with fewer than a total of ten observed occur-
rences. For each context ci, candidate “intended”
terms arew andw’s close terms (which are at least
10 times as frequent as w). The candidate which
appears in context ci the most number of times is
deemed to be the term intended by the user in that
context.

The resulting dataset consists of triples of the

original observed term, one of the “intended”
terms as determined by the above algorithm, and
the number of times this term was intended. For
a single term, it is possible (and common) to have
multiple possible triples, due to the context-based
assignment.

Inspecting the output of this training process
shows some interesting patterns. Overall, the
dataset is still noisy; there are many instances
where an obviously misspelled word is not as-
signed a correction, or only some of its instances
are. The dataset contains around 100 million
triples, orders of magnitude larger than any man-
ually compiled list of misspellings . The kinds of
errors captured in the dataset include stereotypi-
cal spelling errors, such as acomodation, but also
OCR-style errors. computationaUy was detected
as a misspelling of computationally where the ‘U’
is an OCR error for ‘ll’; similarly, Postmodem was
detected as a misspelling of Postmodern (an exam-
ple of ‘keming’).

The data also includes examples of ‘real-word’
errors. For example, 13% of occurrences of
occidental are considered misspellings of acci-
dental; contrasting with 89% of occurrences of
the non-word accidential. There are many ex-
amples of terms that would not be in a normal
lexicon, including neologisms (mulitplayer for
multiplayer), companies and products (Playsta-
ton for Playstation), proper nouns (Schwarznegger
for Schwarzenegger) and internet domain names
(mysapce.com for myspace.com).

3.3 Language Model
We estimate P (s) using n-gram LMs trained on
data from the Web, using Stupid Backoff (Brants
et al., 2007). We use both forward and back-
ward context, when available. Contrary to Brill
and Moore (2000), we observe that user edits of-
ten have both left and right context, when editing
a document.

When combining the error model scores with
the LM scores, we weight the latter by taking their
λ’th power, that is

P (w|s) ∗ P (s)λ (2)

The parameter λ reflects the relative degrees to
which the LM and the error model should be
trusted. The parameter λ also plays the additional
role of correcting our error model’s misestimation
of the rate at which people make errors. For exam-
ple, if errors are common then by increasing λ we
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can reduce the value of P (w|w) ∗ P (w)λ relative
to

∑
s 6=w P (s|w) ∗ P (s)λ.

We train λ by optimizing the average inverse
rank of the correct word on our training corpus,
where the rank is calculated over all suggestions
that we have for each token.

During initial experimentation, it was noticed
that our system predicted many spurious autocor-
rections at the beginnings and ends of sentences
(or in the case of sentence fragments, the end of
the fragment). We hypothesized that we were
weighting the LM scores too highly in such cases.
We therefore conditioned λ on how much context
was available, obtaining values λi,j where i, j rep-
resent the amount of context available to the LM
to the left and right of the current word. i and j are
capped at n, the order of the LM.

While conditioning λ in this way might at first
appear ad hoc, it has a natural interpretation in
terms of our confidence in the LM. When there is
no context to either side of a word, the LM simply
uses unigram probabilities, and this is a less trust-
worthy signal than when more context is available.

To train λi,j we partition our data into bins cor-
responding to pairs i, j and optimize each λi,j in-
dependently.

Training a constant λ, a value of 5.77 was ob-
tained. The conditioned weights λi,j increased
with the values of i and j, ranging from λ0,0 =
0.82 to λ4,4 = 6.89. This confirmed our hypoth-
esis that the greater the available context the more
confident our system should be in using the LM
scores.

3.4 Confidence Classifiers for Checking and
Correction

Spellchecking and autocorrection were imple-
mented as a three stage process. These em-
ploy confidence classifiers whereby precision-
recall tradeoffs could be tuned to desirable levels
for both spellchecking and autocorrection.

First, all suggestions s for a word w are ranked
according to their P (s|w) scores. Second, a
spellchecking classifier is used to predict whether
w is misspelled. Third, if w is both predicted to be
misspelled and s is non-empty, an autocorrection
classifier is used to predict whether the top-ranked
suggestion is correct.

The spellchecking classifier is implemented us-
ing two embedded classifiers, one of which is used
when s is empty, and the other when it is non-

empty. This design was chosen because the use-
ful signals for predicting whether a word is mis-
spelled might be quite different when there are no
suggestions available, and because certain features
are only applicable when there are suggestions.

Our experiments will compare two classifier
types. Both rely on training data to determine
threshold values and training weights.

A “simple” classifier which compares the value
of log(P (s|w)) − log(P (w|w)), for the original
word w and the top-ranked suggestion s, with a
threshold value. If there are no suggestions other
than w, then the log(P (s|w)) term is ignored.

A logistic regression classifier that uses five
feature sets. The first set is a scores feature
that combines the following scoring information
(i) log(P (s|w)) − log(P (w|w)) for top-ranked
suggestion s. (ii) LM score difference between
the original word w and the top suggestion s.
(iii) log(P (s|w)) − log(P (w|w)) for second top-
ranked suggestion s. (iv) LM score difference be-
tween w and second top-ranked s. The other four
feature sets encode information about case signa-
tures, number of suggestions available, the token
length, and the amount of left and right context.

Certain categories of tokens are blacklisted, and
so never predicted to be misspelled. These are
numbers, punctuation and symbols, and single-
character tokens.

The training process has three stages. (1) The
context score weighting is trained, as described
in Section 3.3. (2) The spellchecking classifier is
trained, and tuned on held-out development data.
(3) The autocorrection classifier is trained on the
instances with suggestions that the spellchecking
classifier predicts to be misspelled, and it too is
tuned on held-out development data.

In the experiments reported in this paper, we
trained classifiers so as to maximize the F1-score
on the development data. We note that the desired
behaviour of the spellchecking and autocorrection
classifiers will differ depending upon the applica-
tion, and that it is a strength of our system that
these can be tuned independently.

3.4.1 Training Using Artificial Data
Training and tuning the confidence classifiers re-
quire supervised data, in the form of pairs of mis-
spelled and well-spelled documents. And indeed
we posit that relatively noiseless data are needed
to train robust classifiers. Since these data are
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Language Sentences
Train Test

English 116k 58k
German 87k 44k
Arabic 8k 4k
Russian 8k 4k

Table 1: Artificial data set sizes. The development
set is approximately the same size as the training
set.

not generally available, we instead use a clean
corpus into which we artificially introduce mis-
spellings. While this data is not ideal, we show
that in practice it is sufficient, and removes the
need for manually-annotated gold-standard data.

We chose data from news pages crawled from
the Web as the original, well-spelled documents.
We chose news pages as an easily identifiable
source of text which we assume is almost entirely
well-spelled. Any source of clean text could be
used. For each language the news data were di-
vided into three non-overlapping data sets: the
training and development sets were used for train-
ing and tuning the confidence classifiers, and a test
set was used to report evaluation results. The data
set sizes, for the languages used in this paper, are
summarized in Table 1.

Misspelled documents were created by artifi-
cially introducing misspelling errors into the well-
spelled text. For all data sets, spelling errors
were randomly inserted at an average rate of 2 per
hundred characters, resulting in an average word
misspelling rate of 9.2%. With equal likelihood,
errors were either character deletions, transposi-
tions, or insertions of randomly selected charac-
ters from within the same document.

4 Experiments

4.1 Typed Data with Real Errors

In the absence of user data from a real application,
we attempted our initial evaluation with typed data
via a data collection process. Typed data with real
errors produced by humans were collected. We
recruited subjects from our coworkers, and asked
them to use an online tool customized for data
collection. Subjects were asked to randomly se-
lect a Wikipedia article, copy and paste several
text-only paragraphs into a form, and retype those
paragraphs into a subsequent form field. The sub-
jects were asked to pick an article about a favorite
city or town. The subjects were asked to type

at a normal pace avoiding the use of backspace
or delete buttons. The data were tokenized, au-
tomatically segmented into sentences, and manu-
ally preprocessed to remove certain gross typing
errors. For instance, if the typist omitted entire
phrases/sentences by mistake, the sentence was re-
moved. We collected data for English from 25
subjects, resulting in a test set of 11.6k tokens, and
495 sentences. There were 1251 misspelled tokens
(10.8% misspelling rate.)

Data were collected for German Wikipedia arti-
cles. We asked 5 coworkers who were German na-
tive speakers to each select a German article about
a favorite city or town, and use the same online
tool to input their typing. For some typists who
used English keyboards, they typed ASCII equiva-
lents to non-ASCII characters in the articles. This
was accounted for in the preprocessing of the ar-
ticles to prevent misalignment. Our German test
set contains 118 sentences, 2306 tokens with 288
misspelled tokens (12.5% misspelling rate.)

4.2 System Configurations

We compare several system configurations to in-
vestigate each component’s contribution.

4.2.1 Baseline Systems Using Aspell

Systems 1 to 4 have been implemented as base-
lines. These use GNU Aspell, an open source spell
checker (Atkinson, 2009), as a suggester compo-
nent plugged into our system instead of our own
Web-based suggester. Thus, with Aspell, the sug-
gestions and error scores proposed by the system
would all derive from Aspell’s handcrafted custom
dictionary and error model. (We report results us-
ing the best combination of Aspell’s parameters
that we found.)

System 1 uses Aspell tuned with the logistic
regression classifier. System 2 adds a context-
weighted LM, as per Section 3.3, and uses the
“simple” classifier described in Section 3.4. Sys-
tem 3 replaces the simple classifier with the logis-
tic regression classifier. System 4 is the same but
does not perform blacklisting.

4.2.2 Systems Using Web-based Suggestions

The Web-based suggester proposes suggestions
and error scores from among the ten million most
frequent terms on the Web. It suggests the 20
terms with the highest values of P (w|s) × f(s)
using the Web-derived error model.
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Systems 5 to 8 correspond with Systems 1 to
4, but use the Web-based suggestions instead of
Aspell.

4.3 Evaluation Metrics
In our evaluation, we aimed to select metrics that
we hypothesize would correlate well with real per-
formance in a word-processing application. In
our intended system, misspelled words are auto-
corrected when confidence is high and misspelled
words are flagged when a highly confident sug-
gestion is absent. This could be cast as a simple
classification or retrieval task (Reynaert, 2008),
where traditional measures of precision, recall and
F metrics are used. However we wanted to fo-
cus on metrics that reflect the quality of end-to-
end behavior, that account for the combined ef-
fects of flagging and automatic correction. Es-
sentially, there are three states: a word could be
unchanged, flagged or corrected to a suggested
word. Hence, we report on error rates that mea-
sure the errors that a user would encounter if the
spellchecking/autocorrection were deployed in a
word-processor. We have identified 5 types of er-
rors that a system could produce:

1. E1: A misspelled word is wrongly corrected.

2. E2: A misspelled word is not corrected but is
flagged.

3. E3: A misspelled word is not corrected or
flagged.

4. E4: A well spelled word is wrongly cor-
rected.

5. E5: A well spelled word is wrongly flagged.

It can be argued that these errors have varying
impact on user experience. For instance, a well
spelled word that is wrongly corrected is more
frustrating than a misspelled word that is not cor-
rected but is flagged. However, in this paper, we
treat each error equally.
E1, E2, E3 and E4 pertain to the correction

task. Hence we can define Correction Error Rate
(CER):

CER =
E1 + E2 + E3 + E4

T

where T is the total number of tokens. E3 and E5

pertain to the nature of flagging. We define Flag-
ging Error Rate (FER) and Total Error Rate (TER):

FER =
E3 + E5

T

TER =
E1 + E2 + E3 + E4 + E5

T

For each system, we computed a No Good Sugges-
tion Rate (NGS) which represents the proportion
of misspelled words for which the suggestions list
did not contain the correct word.

5 Results and Discussion

5.1 Experiments with Artificial Errors

System TER CER FER NGS

1. Aspell, no LM, LR 17.65 6.38 12.35 18.3
2. Aspell, LM, Sim 4.82 2.98 2.86 18.3
3. Aspell, LM, LR 4.83 2.87 2.84 18.3
4. Aspell, LM, LR 22.23 2.79 19.89 16.3
(no blacklist)

5. WS, no LM, LR 9.06 7.64 6.09 10.1
6. WS, LM, Sim 2.62 2.26 1.43 10.1
7. WS, LM, LR 2.55 2.21 1.29 10.1
8. WS, LM, LR 21.48 2.21 19.75 8.9
(no blacklist)

Table 2: Results for English news data on an in-
dependent test set with artificial spelling errors.
Numbers are given in percentages. LM: Language
Model, Sim: Simple, LR: Logistic Regression,
WS: Web-based suggestions. NGS: No good sug-
gestion rate.

Results on English news data with artificial
spelling errors are displayed in Table 2. The sys-
tems which do not employ the LM scores per-
form substantially poorer that the ones with LM
scores. The Aspell system yields a total error rate
of 17.65% and our system with Web-based sug-
gestions yields TER of 9.06%.

When comparing the simple scorer with the lo-
gistic regression classifier, the Aspell Systems 2
and 3 generate similar performances while the
confidence classifier afforded some gains in our
Web-based suggestions system, with total error re-
duced from 2.62% to 2.55%. The ability to tune
each phase during development has so far proven
more useful than the specific features or classifier
used. Blacklisting is crucial as seen by our results
for Systems 4 and 8. When the blacklisting mech-
anism is not used, performance steeply declines.

When comparing overall performance for the
data between the Aspell systems and the Web-
based suggestions systems, our Web-based sug-
gestions fare better across the board for the news
data with artificial misspellings. Performance
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gains are evident for each error metric that was ex-
amined. Total error rate for our best system (Sys-
tem 7) reduces the error of the best Aspell sys-
tem (System 3) by 45.7% (from 4.83% to 2.62%).
In addition, our no good suggestion rate is only
10% compared to 18% in the Aspell system. Even
where no LM scores are used, our Web-based sug-
gestions system outperforms the Aspell system.

The above results suggest that the Web-based
suggestions system performs at least as well as
the Aspell system. However, it must be high-
lighted that results on the test set with artificial
errors does not guarantee similar performance on
real user data. The artificial errors were generated
at a systematically uniform rate, and are not mod-
eled after real human errors made in real word-
processing applications. We attempt to consider
the impact of real human errors on our systems in
the next section.

5.2 Experiments with Human Errors

System TER CER FER NGS

English Aspell 4.58 3.33 2.86 23.0
English WS 3.80 3.41 2.24 17.2

German Aspell 14.09 10.23 5.94 44.4
German WS 9.80 7.89 4.55 32.3

Table 3: Results for Data with Real Errors in En-
glish and German.

Results for our system evaluated on data with
real misspellings in English and in German are
shown in Table 3. We used the systems that per-
formed best on the artificial data (System 3 for As-
pell, and System 7 for Web suggestions). The mis-
spelling error rates of the test sets were 10.8% and
12.5% respectively, higher than those of the arti-
ficial data which were used during development.
For English, the Web-based suggestions resulted
in a 17% improvement (from 4.58% to 3.80%) in
total error rate, but the correction error rate was
slightly (2.4%) higher.

By contrast, in German our system improved to-
tal error by 30%, from 14.09% to 9.80%. Correc-
tion error rate was also much lower in our Ger-
man system, comparing 7.89% with 10.23% for
the Aspell system. The no good suggestion rates
for the real misspelling data are also higher than
that of the news data. Our suggestions are lim-
ited to an edit distance of 2 with the original, and
it was found that in real human errors, the aver-
age edit distance of misspelled words is 1.38 but

for our small data, the maximum edit distance is
4 in English and 7 in German. Nonetheless, our
no good suggestion rates (17.2% and 32.3%) are
much lower than those of the Aspell system (23%
and 44%), highlighting the advantage of not using
a hand-crafted lexicon.

Our results on real typed data were slightly
worse than those for the news data. Several fac-
tors may account for this. (1) While the news data
test set does not overlap with the classifier train-
ing set, the nature of the content is similar to the
train and dev sets in that they are all news articles
from a one week period. This differs substantially
from Wikipedia article topics that were generally
about the history and sights a city. (2) Second,
the method for inserting character errors (random
generation) was the same for the news data sets
while the real typed test set differed from the ar-
tificial errors in the training set. Typed errors are
less consistent and error rates differed across sub-
jects. More in depth study is needed to understand
the nature of real typed errors.
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Figure 2: Effect of corpus size used to train the
error model.

5.3 Effect of Web Corpus Size

To determine the effects of the corpus size on our
automated training, we evaluated System 7 using
error models trained on different corpus sizes. We
used corpora containing 103, 104, . . . , 109 Web
pages. We evaluated on the data set with real er-
rors. On average, about 37% of the pages in our
corpus were in English. So the number of pages
we used ranged from about 370 to about 3.7×108.
As shown in Figure 2, the gains are small after
about 106 documents.
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5.4 Correlation across data sets
We wanted to establish that performance improve-
ment on the news data with artificial errors are
likely to lead to improvement on typed data with
real errors. The seventeen English systems re-
ported in Table 3, Table 2 and Figure 2 were each
evaluated on both English test sets. The rank cor-
relation coefficient between total error rates on the
two data sets was high (τ = 0.92; p < 5× 10−6).
That is, if one system performs better than another
on our artificial spelling errors, then the first sys-
tem is very likely to also perform better on real
typing errors.

5.5 Experiments with More Languages

System TER CER FER NGS

German Aspell 8.64 4.28 5.25 29.4
German WS 4.62 3.35 2.27 16.5

Arabic Aspell 11.67 4.66 8.51 25.3
Arabic WS 4.64 3.97 2.30 15.9

Russian Aspell 16.75 4.40 13.11 40.5
Russian WS 3.53 2.45 1.93 15.2

Table 4: Results for German, Russian, Arabic
news data.

Our system can be trained on many languages
with almost no manual effort. Results for German,
Arabic and Russian news data are shown in Ta-
ble 4. Performance improvements by the Web sug-
gester over Aspell are greater for these languages
than for English. Relative performance improve-
ments in total error rates are 47% in German, 60%
in Arabic and 79% in Russian. Differences in no
good suggestion rates are also very pronounced
between Aspell and the Web suggester.

It cannot be assumed that the Arabic and Rus-
sian systems would perform as well on real data.
However the correlation between data sets re-
ported in Section 5.4 lead us to hypothesize that
a comparison between the Web suggester and As-
pell on real data would be favourable.

6 Conclusions

We have implemented a spellchecking and au-
tocorrection system and evaluated it on typed
data. The main contribution of our work is that
while this system incorporates several knowledge
sources, an error model, LM and confidence clas-
sifiers, it does not require any manually annotated
resources, and infers its linguistic knowledge en-
tirely from the Web. Our approach begins with a

very large term list that is noisy, containing both
spelled and misspelled words, and derived auto-
matically with no human checking for whether
words are valid or not.

We believe this is the first published system
to obviate the need for any hand labeled data.
We have shown that system performance improves
from a system that embeds handcrafted knowl-
edge, yielding a 3.8% total error rate on human
typed data that originally had a 10.8% error rate.
News data with artificially inserted spellings were
sufficient to train confidence classifiers to a sat-
isfactory level. This was shown for both Ger-
man and English. These innovations enable the
rapid development of a spellchecking and correc-
tion system for any language for which tokeniz-
ers exist and string edit distances make sense. We
have done so for Arabic and Russian.

In this paper, our results were obtained without
any optimization of the parameters used in the pro-
cess of gathering data from the Web. We wanted to
minimize manual tweaking particularly if it were
necessary for every language. Thus heuristics such
as the number of terms in the term list, the criteria
for filtering triples, and the edit distance for defin-
ing close words were crude, and could easily be
improved upon. It may be beneficial to perform
more tuning in future. Furthermore, future work
will involve evaluating the performance of the sys-
tem for these language on real typed data.
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