
Moving Beyond End-to-End Path Information to Optimize
CDN Performance

Rupa Krishnan§ Harsha V. Madhyastha‡ Sridhar Srinivasan§ Sushant Jain§

Arvind Krishnamurthy£ Thomas Anderson£ Jie Gao†
§ Google Inc. ‡ University of California San Diego £ University of Washington † Stony Brook University

ABSTRACT
Replicating content across a geographically distributed set of servers
and redirecting clients to the closest server in terms of latency has
emerged as a common paradigm for improving client performance.
In this paper, we analyze latencies measured from servers in Google’s
content distribution network (CDN) to clients all across the Inter-
net to study the effectiveness of latency-based server selection. Our
main result is that redirecting every client to the server with least
latency does not suffice to optimize client latencies. First, even
though most clients are served by a geographically nearby CDN
node, a sizeable fraction of clients experience latencies several tens
of milliseconds higher than other clients in the same region. Sec-
ond, we find that queueing delays often override the benefits of a
client interacting with a nearby server.

To help the administrators of Google’s CDN cope with these
problems, we have built a system called WhyHigh. First, WhyHigh
measures client latencies across all nodes in the CDN and correlates
measurements to identify the prefixes affected by inflated latencies.
Second, since clients in several thousand prefixes have poor laten-
cies, WhyHigh prioritizes problems based on the impact that solv-
ing them would have, e.g., by identifying either an AS path com-
mon to several inflated prefixes or a CDN node where path inflation
is widespread. Finally, WhyHigh diagnoses the causes for inflated
latencies using active measurements such as traceroutes and pings,
in combination with datasets such as BGP paths and flow records.
Typical causes discovered include lack of peering, routing miscon-
figurations, and side-effects of traffic engineering. We have used
WhyHigh to diagnose several instances of inflated latencies, and
our efforts over the course of a year have significantly helped im-
prove the performance offered to clients by Google’s CDN.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network Opera-
tions, Network Management

General Terms
Algorithms, Measurements, Management, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’09, November 4–6, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-770-7/09/11 ...$10.00.

Keywords
Network Measurements, Content Distribution Networks

1. INTRODUCTION
The use of content distribution networks (CDNs) has emerged as

a popular technique to improve client performance in client-server
applications. Instead of hosting all content on a server (or a clus-
ter of servers) at a single location, content providers today repli-
cate their content across a collection of geographically distributed
servers or nodes. Different clients are redirected to different servers
both for load balancing and to reduce client-perceived response
times. The most common redirection method is based on latency,
i.e., each client is redirected to the server to which it has the low-
est latency in order to reduce the download time to fetch the hosted
content. For example, several CDNs that run on PlanetLab use OA-
SIS [7] to redirect clients to the node with least estimated latency.

Google’s CDN similarly employs latency-based redirection. Com-
mon knowledge to optimize client latencies in such a setting is to
establish more CDN nodes [9, 19] so as to have a CDN node in the
proximity of every client. However, we found that this does not suf-
fice. For example, to reduce the latencies for clients in Japan when
fetching content from Google, a new node in Japan was added to
the Google CDN. While this decreased the minimum round trip
times (RTTs) for clients in that region, the worst-case RTTs re-
mained unchanged. This case showed that rather than investing in
setting up new CDN nodes, we need to first understand whether the
existing nodes yield the best performance possible.

In this paper, we use measurements gathered at Google’s nodes
to study the effectiveness of latency-based redirection in optimizing
CDN performance. We analyze RTTs measured to clients spanning
approximately 170K prefixes spread across the world by monitor-
ing the traffic Google exchanges with these clients. Our analysis of
this data shows that even though latency-based redirection results
in most clients being served by a geographically proximate node,
the improvement in client-perceived RTTs falls short of what one
would expect in return for the investment in setting up the CDN.
We find two primary causes for poor latencies.

First, we find that geographically nearby clients often see widely
different latencies even though they are served by the same CDN
node. In our data, we find that clients in more than 20% of pre-
fixes are served by paths on which RTTs are 50ms more than that
observed to other clients in the same geographic region. Such dis-
crepancies in latencies are because some clients have circuitous
routes to or back from the CDN node serving them. To detect
and diagnose these cases, we move beyond using end-to-end la-
tency information and delve into the Internet’s routing to optimize
client performance. Second, we observe that connections to most
clients are impacted by significant queueing delays. In this paper,

we characterize the extent of such queueing related overhead on
client RTTs.

Given these problems, it is important that administrators be able
to quantify the performance gains from the significant expense and
effort that goes into deploying nodes in a CDN. Based on the anal-
ysis of our dataset and discussions with the network administrators,
we have built a system called WhyHigh to aid administrators in this
task.

WhyHigh first identifies clients with poor latencies as ones which
experience latencies much higher than that along the best path to
the same region. In a CDN that has several distributed nodes with
each node serving clients in thousands of prefixes, identifying clients
with poor performance is itself a significant challenge. Since clients
in thousands of prefixes are determined to have inflated latencies,
an administrator cannot investigate all of these simultaneously. To
help the admins prioritize their efforts at troubleshooting, WhyHigh
attempts to group together all prefixes likely affected by the same
underlying cause. For example, we find that when a prefix suffers
from inflated latencies, other prefixes served by the same AS path
are also likely affected. WhyHigh also computes metrics that help
compare different nodes in the CDN so that problems at the worst
nodes can be investigated first to have higher impact.

WhyHigh then attempts to pinpoint the causes for the instances
of latency inflation seen at each node. To infer these causes, Why-
High combines several different data sources such as BGP tables
from routers, mapping of routers to geographic locations, RTT logs
for connections from clients, and traffic volume information. In ad-
dition, the system also performs active probes such as traceroutes
and pings when necessary. Typical causes inferred by WhyHigh in-
clude lack of peering, routing misconfigurations, and side-effects
of traffic engineering.

We have employed WhyHigh over the course of almost a year in
troubleshooting latency inflation observed on paths between Google’s
nodes and clients. This has helped us identify and resolve several
instances of inefficient routing, resulting in reduced latencies to a
large number of prefixes. The metrics of CDN performance pro-
vided by WhyHigh have also allowed network administrators to
monitor the results of their efforts by providing a global picture
of how different nodes in the CDN are performing relative to each
other.

The organization of the rest of the paper is as follows. Section 2
provides an overview of Google’s CDN architecture, the dataset
gathered from the CDN that we use in this paper, and our goals
in analyzing this dataset. Section 3 describes the poor latencies ob-
tained with latency-based redirection and demonstrates that routing
inefficiencies and queueing delays are the primary limiting factors.
In Section 4, we describe the WhyHigh system that we developed to
diagnose instances of latency inflation. We then present a few rep-
resentative case studies of troubleshooting inflated paths and sum-
marize the impact of using WhyHigh in Section 5. In Section 6, we
draw from our experiences and discuss some limitations of Why-
High. We conclude with a look at related and future work in Sec-
tions 7 and 8.

2. OVERVIEW
In this section, we first provide a high-level overview of the ar-

chitecture of Google’s CDN deployment. Next, we present the
goals of our work, while also clarifying what are non-goals. Fi-
nally, we describe the RTT dataset we gathered from Google’s
servers and present the preprocessing we performed on the data
before using it for our analysis in the rest of the paper.

2.1 CDN Architecture

CDN Node
Client

Figure 1: Architecture of Google CDN. Dotted lines indicate paths
used primarily for measuring RTT. Bold line indicates path on which
traffic is primarily served.

Figure 1 presents a simplified view of the architecture of the con-
tent distribution network operated by Google. Google’s CDN com-
prises several nodes that are spread across the globe. To reduce the
response times perceived by clients in fetching Google’s content,
the CDN aims to redirect each client to the node to which it has
the least latency. For this, all clients in the same routable prefix are
grouped together. Grouping of clients into prefixes is naturally per-
formed as part of Internet routing, and the current set of routable
prefixes are discovered from BGP updates received at Google.

To gather a map of latencies from CDN nodes to prefixes, ev-
ery so often, a client is redirected to a random node and the RTT
along the path between the client and the node is measured by pas-
sively monitoring the TCP transfer at the node. Since routing in
the Internet is largely identical to all addresses within a prefix, the
RTT measured to a client is taken to be representative of the client’s
prefix. Such RTT measurements gathered over time, and refreshed
periodically, are used to determine the CDN node that is closest in
terms of latency to each prefix. Thereafter, whenever a client at-
tempts to fetch content hosted on the CDN, the client is redirected
to the node determined to have the least latency to its prefix. This
redirection however is based on the prefix corresponding to the IP
address of the DNS nameserver that resolves the URL of the con-
tent on the client’s behalf, which is typically co-located with the
client.

2.2 Goals
In analyzing the performance offered by the CDN architecture

described above, we have three primary goals.
• Understand the efficacy of latency-based redirection in enabling

a CDN to deliver the best RTTs possible to its clients.
• Identify the broad categories of causes for poor RTTs experi-

enced by clients.
• Implement a system to detect instances of poor RTTs and diag-

nose the root causes underlying them.

2.3 Non-goals
Apart from latency, TCP transfer times can also be dictated by

path properties such as loss rate and bandwidth capacity. However,
in this paper, we restrict our focus to optimizing end-to-end path
latency, which is the dominant factor for short TCP transfers [3].
Further, our focus is on the component of end-to-end latency in-
curred through the network. In practice, response times perceived
by clients can also depend on application-level overheads, e.g., de-
lays incurred in rendering the content in a Web browser.

Latency-based redirection as described in the CDN architecture
above can be rendered ineffective in a couple of scenarios. Clients
which use a distant DNS nameserver may be redirected to a dis-
tant node, since the CDN will redirect the client to a node close to
the nameserver. Redirection decisions made at the granularity of
prefixes can be sub-optimal for prefixes in which clients are signifi-
cantly geographically distributed. In this paper, we focus on causes
for poor client latencies even when the client’s prefix is localized
and the client is co-located with its nameserver.

2.4 Measurement Dataset
The dataset we use for most of the analysis in this paper consists

of RTT data measured by all of Google’s nodes to the 170K net-
work prefixes they serve over the period of one day. The median
number of RTT samples per prefix is approximately 2000. For each
TCP connection at a node, the node logs the time between the ex-
change of the SYN-ACK and SYN-ACK-ACK packets during con-
nection setup. The RTT thus measured includes only the propaga-
tion and queueing delays on the forward and reverse paths traversed
by the connection; transmission delay dependent on the client’s ac-
cess link bandwidth is not a factor because typically SYN-ACK and
SYN-ACK-ACK packets are small. Though it is possible for the
size of a SYN-ACK-ACK packet to be inflated by having a HTTP
request piggy-backed on it, we found less than 1% of connections
with such piggy-backed packets in a sample tcpdump.

Our analysis is based on RTT logs, BGP tables, and Netflow
records obtained on 2 days—one in May 2008 and one in August
2008. We first use data from May to demonstrate the problems that
clients face even after they have been redirected to the closest node
in terms of latency. We later use data from August in Section 5
to illustrate the performance gains achieved through our efforts in
troubleshooting poor client latencies.

2.4.1 Data Pre-Processing
We perform a couple stages of processing on our measurements

before using them for analysis. First, we use BGP snapshots from
different routers within the Google network to map every client to
the routable prefix to which it belongs. Second, we tag prefixes
with geographic information obtained from a commercial geoloca-
tion database. The location of each prefix was determined at the
granularity of a region, which roughly corresponds to a province
within a country. We applied three stages of processing to prune out
prefixes with incorrect geographical information from our dataset.

First, we identify and eliminate any prefix such that the minimum
RTT measured to it is impossible based on its estimated geographic
location, i.e., RTT is much lesser than the time taken if a straight
cable were laid between the node and the prefix. Prior work [10]
on the geolocation of Internet hosts observed that the expected RTT
through the Internet is that obtained when bits travel at 4

9

th the
speed of light in vacuum. We refer to the RTT computed based
on this assumption to be the Geo-RTT of a prefix. We eliminated
all prefixes whose minimum RTT to any of the Google nodes was
significantly lower than the Geo-RTT estimate to that node. This
step prunes out 21K of the 173K prefixes in our dataset.

Second, we use the “confidence" information tagged along with
data obtained from our geolocation database to discard information
that is probably incorrect. Our geolocation product returns three at-
tributes for every location—one each for country, region, and city.
Each of these three attributes takes an integer value from 0 to 5,
indicating the probability of the corresponding attribute being cor-
rect. The 0-to-5 scale equally divides up the confidence scale; a
value of 5 indicates that the probability of the location being cor-
rect varies from 83% to 100%, a value of 4 for the range 67% to

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RTT (msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
on

ne
ct

io
ns

Empirical CDF

Figure 2: Distribution of measured RTTs.

83%, and so on. Since all of our analysis in this paper uses geoloca-
tion information at the granularity of region, we discard all prefixes
whose location has a country confidence less than 5 and a region
confidence less than 4. This prunes out a further 42K prefixes. In
our sample of IP addresses with known locations used for valida-
tion, we find the 90th percentile error in location to be approxi-
mately 200 miles when restricting ourselves to locations associated
with a country confidence of 5 and a region confidence greater than
or equal to 4.

Third, some prefixes may span a large geographical region. For
such prefixes, variation in RTT across clients could be because of
their varying distance to the Google node serving that prefix. Since
our focus in this paper is on studying poor RTTs even when pre-
fixes are geographically localized, we eliminate these distributed
prefixes from consideration. To identify such prefixes, we compute
the width of each prefix in the dataset by choosing a few hundred
IP addresses at random from the prefix, determining the locations
for these addresses, and computing the maximum distance between
pairs of chosen addresses. We discard all prefixes with a width
greater than 100 miles. This eliminates an additional 5K prefixes.

3. UNDERSTANDING PATH LATENCY
In this section, we analyze our dataset to understand the RTTs

seen by clients of Google’s CDN infrastructure. First, we study
the efficacy of latency-based redirection. Then, we investigate each
potential cause for poor performance.

The motivation for this paper lies in the poor latencies seen by
clients. Figure 2 plots the distribution of RTTs measured across all
connections in our dataset. Even though each client is served by
the CDN node measured to have the lowest latency to the client’s
prefix, RTTs greater than 400ms are measured on 40% of the con-
nections served. We would expect to see significantly lower RTTs
given the spread of Google’s CDN; roughly 75% of prefixes have
a node within 1000 miles (Geo-RTT less than 20ms) and roughly
50% of prefixes have a node within 500 miles (Geo-RTT less than
10ms). Moreover, 400ms is more than the typical RTT obtained on
a path all the way around the globe, e.g., the RTT between Planet-
Lab nodes on the US west coast and in India is roughly 300ms. This
shows that in spite of replicating content across several CDN nodes
to ensure that every client has a server nearby, which requires sig-
nificant investment in infrastructure, the latencies experienced by
clients are poor.

To understand the cause for these high RTTs, we break down
each measured connection RTT into its components. RTTs mea-

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Main Node Geo RTT − Closest Node Geo RTT (msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

Figure 3: CDF across prefixes of the difference between Geo-RTTs
from a prefix to the main node serving it and to its closest node. Most
prefixes are served by geographically nearby nodes.

sured at the TCP layer have three main components—transmission
delay (time to put a packet on to the wire), propagation delay (time
spent from one end of the wire to the other end), and queueing delay
(time spent by a packet waiting to be forwarded). Since our mea-
surements are based on control packets typically of size 50 bytes,
transmission delay is less than 1ms even on a dialup link. There-
fore, a high RTT is the result of inflation in either propagation delay
or queueing delay. Inflation in propagation delay could be the out-
come of two factors. On the one hand, it could be that even though
clients are redirected to the node with lowest latency, that node is
typically far away from the client. Or, on the other hand, clients
could have high RTTs even to the nearby node to which they are
redirected. Beyond propagation delay, high RTTs could also be the
result of packets getting queued up somewhere along the path be-
tween the clients and the nodes serving them. We next examine
each of these potential causes for poor latencies in detail.

3.1 Effectiveness of Client Redirection
We first evaluate whether the cause for high RTTs is because

clients are being redirected to nodes distant from them. For every
prefix, we identify the main node serving it, i.e., the node from
which most of the connections to this prefix were observed. We
also identify for every prefix, the node geographically closest to
it. Based on the CDN architecture described previously, the main
node for each prefix should be the node to which it has the lowest
RTT. However, there are a few cases where this property is vio-
lated. Clients can be redirected elsewhere if the lowest RTT node
is under high load, the nameserver used by the client is not co-
located with it, or network conditions change between when the
RTT to the client’s prefix was measured and when that information
is used to make redirection decisions. Since our goal is to evaluate
the performance of the CDN when clients are served by the node to
which they have the least RTT, we drop all prefixes from our dataset
where that property is not true. This prunes out an additional 14K
prefixes.

Figure 3 plots the difference between the Geo-RTT, as previously
defined, from a prefix to its main node and the Geo-RTT from that
prefix to its geographically closest node. Clients in 80% of prefixes
are served by their geographically closest node. Further, 92% of
the prefixes are redirected to a node that is within 10ms of Geo-
RTT from their closest node, which corresponds to a distance of
400 miles. This shows that latency-based redirection does result in
most prefixes being served by nearby nodes, albeit we show later

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Prefix RTT − Region Minimum RTT(msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

Minimum

Median

Figure 4: Distribution of the inflation in latency observed in the mini-
mum and median RTT to a prefix as compared to the minimum RTT to
any prefix in the same region. Inflation seen in a prefix’s minimum RTT
is predominantly due to routing inefficiencies, and additional inflation
seen in the median is due to packet queueing.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Prefix Minimum RTT − Region Minimum RTT(msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

served at closest node
not served at closest node

Figure 5: Latency inflation w.r.t other prefixes in the region for (i)
prefixes redirected to the closest node, and (ii) prefixes served by nodes
farther away.

in Section 4 that this is not true for new nodes added to the CDN.

3.2 Characterizing Latency Inflation
We next investigate large propagation delay to nearby nodes as

the potential cause for the high measured RTTs. For this, we com-
pare the minimum RTT seen across connections originating at a
prefix with the minimum RTT measured across all prefixes in the
same region, both measured at the prefix’s main node; given the
large number of RTT samples in each prefix, the minimum RTT
to a prefix is unlikely to have a queueing delay component. The
solid line in Figure 4 makes this comparison. We see that more
than 20% of prefixes experience minimum RTTs that are more than
50ms greater than the minimum RTT measured to other prefixes
in the same region. This problem is even worse when considering
prefixes served by new nodes, i.e., nodes active for less than 1 year;
45% of prefixes served at new nodes have minimum RTTs that are
50ms greater than other RTTs measured to the region (not shown
in figure). This shows that although most prefixes are served by
a node that is geographically close, and there exist good paths to
the regions of these prefixes, routing inefficiencies result in inflated
RTTs. Though our methodology will miss instances of inflation

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Median RTT − Minimum RTT(msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

Unchanged paths
Changed paths

Figure 6: Comparing latency inflation between sets of prefixes parti-
tioned based on whether the path to them changes across consecutive
days.

when all prefixes in a region are affected, we find that cases where
the best RTT to a region is poor are rare.

These numbers show that the problem of inflated latencies due
to inefficient routing is significantly worse than previously con-
sidered. Prior work [17] that looked at inflation between pairs of
cities had found less than 5% of paths to have an inflation greater
than 25ms. Our analysis of a much more extensive RTT dataset
measured to several tens of thousands of prefixes across the Inter-
net shows that more than 20% of paths have an inflation greater
than 50ms, even though most paths are between clients and nearby
nodes.

To further examine the inflation observed in the minimum RTT
to a prefix, we partition prefixes in our dataset into two sets—1)
prefixes that are redirected to the node geographically closest to
them, and 2) all other prefixes (which are not redirected to their
geographically closest node). Figure 3 shows that 80% of prefixes
belong to the first partition and 20% belong to the second.

A prefix would be redirected to a node other than the geograph-
ically closest one only when there exists another node with lower
latency to the prefix. Therefore, one would expect prefixes in the
first set to have lower inflation, on average. To examine this hypoth-
esis, Figure 5 plots the inflation observed in the minimum RTTs
for prefixes in both sets. We see that even prefixes redirected to
their closest node suffer from significant latency inflation—20%
of prefixes have inflation greater than 50ms—and this is even more
pronounced for prefixes redirected to farther servers. When consid-
ering only the prefixes served by new nodes (not shown in figure),
this problem is even worse—in either set, 45% of prefixes suffer
greater than 50ms inflation.

3.3 Characterizing Queueing Delays
Next, we analyze the other potential cause for high RTTs—packet

queueing. Going back to Figure 4, we plot the inflation observed
in the median RTT measured to a prefix compared to the minimum
RTT to its region. We see that the additional latency overhead ob-
served is significant; 40% of the prefixes incur an inflation greater
than 50ms when considering the median. The variance in RTTs
across different clients in a prefix because of geographic diversity
is limited by the fact that our dataset only contains prefixes whose
geographic width is at most 100 miles, which accounts for less than
5ms of RTT in the worst case. Also, variance in access link band-
widths across clients in a prefix cannot explain a difference of tens

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of clients with

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

(client median RTT − prefix minimum RTT) > 50ms

Figure 7: Fraction of clients affected by significant queueing delays in
inflated prefixes. In most inflated prefixes, most clients experience high
latency overhead owing to queueing.

of milliseconds as our measurements are made over TCP control
packets whose sizes are typically in the order of 50 bytes.

Therefore, the significant variance within RTTs measured across
connections to the same prefix can be due to two reasons—1) the
route between the prefix and its main node could vary over the
course of a day, which is the duration of our dataset, or 2) pack-
ets could be getting queued along the route. To investigate the
former, we ranked the prefixes based on the overhead measured
in the median RTT to that prefix as compared to the minimum to
the prefix. We considered the top 10K prefixes based on this rank-
ing and issued traceroutes to them from their main nodes over the
course of a day. We then re-issued these traceroutes the next day
and partitioned the prefixes based on whether the routes measured
were identical across the two days. To determine whether the two
routes to a prefix across successive days were identical, we first
performed the comparison at the granularity of router interfaces as
measured by traceroute. If deemed non-identical, we mapped the
routes to the granularity of Points-of-Presence (PoPs) using data
from iPlane [12] and compared the PoP-level routes. 4K prefixes
had routes unchanged across the two days whereas 6K prefixes had
routes that we deemed to be non-identical.

Figure 6 plots the overhead seen in comparing the median and
minimum RTTs to a prefix for prefixes in the two partitions. The
distribution of latency overhead is pretty much identical irrespec-
tive of whether the route to the prefix is stationary or not. In this
experiment, our determination of whether routing to a prefix is sta-
tionary was based only on the routes we measured from the CDN
nodes to these prefixes and measured once per day. Therefore, we
might have missed out on changes in routing on the path back from
the prefix to the node or at finer timescales. However, the fact that
accounting for even the limited degree of stationarity that we detect
does not make a difference implies that queueing of packets, and
not flux in routing, is the predominant cause for the huge variance
observed in RTTs within a prefix. While our data does not enable
us to determine whether packets are being queued in routers, in ac-
cess links, or within the operating system of clients, large queueing
delays have previously been measured [4] on the access links of
end-hosts.

To determine if packet queueing is restricted to a few clients
within each prefix and not to others, we conducted the following
experiment. We considered the top 25K prefixes in the ranking
computed above based on the difference between the median and

minimum RTTs to the prefix. In each of these prefixes, we com-
puted for every client the difference between the median RTT mea-
sured to the client and the minimum RTT to the prefix, i.e., the
median RTT inflation experienced by the client due to queueing.
Figure 7 plots the fraction of clients in each prefix for which this
difference is greater than 50ms. We see that in roughly half of
the prefixes, more than half the clients have an overhead greater
than 50ms in the median RTT as compared to the minimum to the
same prefix. This shows that latency overheads caused by packet
queueing are widespread, not restricted to a few clients within each
prefix.

3.4 Summary
The results in this section demonstrate that although redirection

of clients is essential to reduce client latency, that alone does not
suffice. Redirection based on end-to-end RTTs results in most
clients being served from a geographically nearby node. However,
two factors result in significant latency inflation. First, a significant
fraction of prefixes have inefficient routes to their nearby nodes, a
problem which is even more pronounced when considering prefixes
served by CDN nodes active for less than a year. Second, clients in
most prefixes incur significant latency overheads due to queueing
of packets. Isolating the cause or fixing the overheads caused by
packet queueing is beyond the scope of this paper. We focus on
diagnosing and fixing routing inefficiencies that lead to poor client
RTTs.

4. WhyHigh: A SYSTEM FOR DIAGNOSING
LATENCY INFLATION

In this section, we describe the design and implementation of
WhyHigh, a system that we have built to detect and diagnose cases
of inefficient routing from nodes in Google’s CDN to clients. We
follow up in the next section with a few representative cases of path
inflation diagnosed by WhyHigh and provide an overview of the
progress we have made in our efforts towards fixing the problems
presented in Section 3.

In building WhyHigh to diagnose poor RTTs experienced by clients,
we follow a three-staged approach—1) identify prefixes affected by
inefficient routing, 2) prioritize these prefixes for investigation by
administrators, and 3) diagnose causes for the identified problems.
We now describe the techniques used by WhyHigh in each of these
subcomponents in detail.

4.1 Identifying Inflated Prefixes
At each CDN node, we measure the RTT over every connection.

We then identify prefixes with inflated RTTs, which we refer to as
inflated prefixes. To identify inflated prefixes at a node, we compare
the minimum RTT measured at the node across all connections to
the prefix with the minimum RTT measured at the same node across
all connections to clients within the prefix’s region. We declare
a prefix to be inflated if this difference is greater than 50ms. As
we argued previously in Section 3, inflation in latency observed
in the minimum RTT to a prefix is because of inefficient routing.
Thus, we use all inflated prefixes identified using this process as
candidates for further troubleshooting.

4.2 Identifying Causes of Latency Inflation
The latency to a prefix can be inflated because of a problem ei-

ther on the forward path from the CDN node to the prefix or on the
reverse path back. To isolate the cause for inflation on either the
forward path to or reverse path from an inflated prefix, WhyHigh
uses data from BGP. Snapshots of the BGP routing table provide

information on the AS path being used to route packets to all pre-
fixes. A log of all the BGP updates tells us the other alternative
paths available to each prefix. In addition, to obtain routing infor-
mation at a finer granularity than an AS and to obtain visibility into
the reverse path back from prefixes, WhyHigh also performs two
kinds of active measurements—a traceroute 1 from the node to a
destination in the prefix, and pings to intermediate routers seen on
the traceroute. WhyHigh then uses these datasets to isolate whether
the cause of inflation for an inflated prefix is on the forward or the
reverse path.

To identify circuitousness along the forward path from a CDN
node to a prefix, WhyHigh uses the sequence of locations traversed
along the traceroute to the prefix. To identify circuitousness along
the reverse path, WhyHigh uses three different techniques. First, it
uses a significant RTT increase on a single hop of the traceroute
to be an indicator of reverse path inflation. A packet that traverses
any single link usually experiences a one-way latency of at most
40ms. We observed one-way link latencies to be less than 40ms on
various long distance links that span thousands of miles (e.g., from
coast to coast in the US, trans-Pacific, trans-Atlantic, and across
Asia). Hence, an increase of 100ms or more in the RTT measured
on successive hops of a traceroute likely indicates that the reverse
path back from the latter hop is asymmetric. Second, the return
TTL on the response from a probed interface provides an estimate
of the length of the reverse path back from the interface. Therefore,
a significant drop in the return TTL on pings to two successive
interfaces on the traceroute implies that the reverse path back from
at least one of the hops is asymmetric; comparison with forward
TTLs tells us which one.

However, changes in RTT and return TTL across hops only pro-
vide hints about inflation on the reverse path. These do not suffice
to identify the exact path taken by packets from the client to the
node. To gain partial visibility into the reverse path, WhyHigh uses
flow records gathered at border routers in Google’s network; flow
records are summaries of traffic forwarded by the router. When-
ever records for flows to a client are available at a specific router,
we can confirm that the reverse paths from that client pass through
this router. We use this to compute the entry point of client traffic
into the Google network. Therefore, if the path from a prefix to a
node enters the Google network at a distant location from the node,
we can infer circuitousness along the reverse path. In some cases,
these techniques do not suffice for enabling WhyHigh to character-
ize the cause for inflation to a prefix to be either along the forward
or reverse path. We, however, show later in Section 5 that such
cases account for a small fraction of inflated prefixes.

4.3 Identifying Path Inflation Granularity
As seen previously in Figure 4, more than 20% of all prefixes are

inflated, i.e., tens of thousands of prefixes are inflated. From the
perspective of the CDN administrators, troubleshooting all of these
prefixes individually is an intractable task. To make the administra-
tor’s task easier, WhyHigh leverages information from BGP paths to
group prefixes potentially affected by a common underlying cause.
For example, if a routing misconfiguration on a particular router is
responsible for inflation on the path to a prefix, similar inflation is
likely to be seen for other prefixes that have to traverse the same
router.

Hence, WhyHigh merges prefixes into the largest set possible
where all the prefixes in the set suffer from inflated latencies. The
various granularities at which it attempts to group prefixes are: (i)
prefixes sharing the same PoP-level path measured by traceroute,
1Traceroutes are performed with limited max TTL to ensure no
probes reach the destination.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Prefixes that are inflated

C
u

m
u

la
ti

ve
 fr

ac
ti

o
n

 o
f A

S
Pa

th
s

Figure 8: Fraction of prefixes served by an AS path that have inflated
latencies. For most paths, either all prefixes have inflated latency or
none of them do.

(ii) prefixes sharing the same AS path and the same exit and entry
PoPs out of and into Google’s network, (iii) prefixes sharing the
same AS path, and (iv) prefixes belonging to the same AS, in that
order.

Figure 8 demonstrates the utility of grouping together prefixes
by using data from one CDN node. For each AS path along which
traffic is forwarded from this node, the figure plots the fraction of
prefixes served by that AS path that are inflated. As seen in the fig-
ure, path inflation typically affects either all prefixes served by an
AS path or none of the prefixes served by it. Hence, most instances
of path inflation can be addressed at a higher granularity than pre-
fixes, such as at the level of an AS path or an AS. This significantly
reduces the problem space to be tackled by an administrator and
lets her focus first on AS paths or ASes that account for a large
number of inflated prefixes.

Grouping prefixes as above also helps WhyHigh isolate causes
for inflation by providing information on what are possibly not the
causes. For example, from a particular node, if the paths to all
prefixes served by the AS path path1 are inflated, and none of the
paths to prefixes served by the AS path path2 are, then one of the
ASes on path1 that is not on path2 is likely to be responsible for
the inflation.

4.4 Ranking Nodes
Another means by which WhyHigh helps administrators prior-

itize problems is by ranking the nodes in the CDN. At nodes af-
flicted by more widespread latency inflation, a single problem is
typically the cause for inflation to several prefixes. Hence, follow-
ing through with a single troubleshooting effort can have significant
impact.

WhyHigh can rank order nodes in the CDN based on several
metrics. A couple of example metrics quantifying a node’s per-
formance are—1) the fraction of nearby prefixes (which ought to
be served at the node) that have inflated latencies, and 2) the frac-
tion of nearby prefixes that are served elsewhere. A high value for
either metric indicates a poorly performing node. Figure 9 plots
both metrics for a subset of nodes in Google’s CDN. The nodes
are ordered in decreasing order of their age from left to right. This
graph shows that new nodes are much more likely to have more
widespread latency inflation issues, and unlike previously seen in
Figure 3, a large fraction of prefixes near new nodes get redirected
elsewhere. Therefore, the resources of an administrator are bet-

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

Nodes in decreasing order of age

F
ra

ct
io

n
of

 n
ea

rb
y

pr
ef

ix
es

Inflated

Redirected elsewhere

Figure 9: Of the prefixes geographically closest to a node, fraction
that are inflated and fraction that are served elsewhere, i.e., not at the
prefix’s closest node.

ter spent troubleshooting problems diagnosed by WhyHigh at these
nodes.

4.5 Identifying Root Causes of Inflation
After having gathered all relevant information for every inflated

prefix, WhyHigh attempts to pinpoint the set of causes for these
problems. An administrator then goes over this list of causes, pri-
oritizing them based on their impact, to verify them and to follow
through on the proposed corrective actions.

The plausible causes that WhyHigh attributes to instances of la-
tency inflation can largely be binned into four classes.
• Lack of peering 2: When all available AS paths from a node

to an inflated prefix are long even though the prefix’s AS has
presence in the same region as the node, having Google peer
with the prefix’s AS could fix the problem.

• Limited bandwidth capacity: In cases where the inflated prefix
is in an AS that peers with Google and yet a circuitous path is
being used to forward traffic from the node to the prefix, limited
bandwidth capacity on the peering link between Google and the
prefix’s AS is the likely cause. To fix the latency inflation, more
bandwidth needs to be provisioned to carry traffic from the node
to all prefixes in the AS.

• Routing misconfiguration: WhyHigh attributes an instance of
latency inflation to an error in routing configuration when the
inflated prefix is in an AS which peers with Google, and though
the direct path to the peering AS is being used, the reverse path
back from the prefix is circuitous. The peering AS then needs to
be contacted to correct its routing configuration.

• Traffic engineering: When an inflated prefix is not in an AS
with whom Google peers, if a long AS path is being used from
the node to the prefix even though alternate shorter paths ex-
ist, the latency inflation is likely due to traffic engineering. The
network administrators who put in place the traffic engineering
policies may not be aware of this side-effect, and hence, alerting
them about the resulting latency inflation may help find a fix.

4.6 System Architecture
Figure 10 summarizes the steps involved in the WhyHigh pipeline.

WhyHigh first gathers relevant logs from different data sources. It
then associates each routable prefix with a host of diagnostic infor-

2We use the term peering loosely to refer to any kind of connection
between two ASes.

BGP Tables
Netflow Records

Path Level
Aggregator

ISP Peering
Database

Per ISP
Report

Stats
Tagged Prefixes

Prefix
Tagger

Geo Database

Logs
Collector

Connection RTT

Measurement
Module

Inflated
Prefixes

Tagged Traceroutes

undns Traceroute
Machines

Figure 10: System architecture of WhyHigh.

AS Info
AS Name, Country Peering Locations
Statistics: (a) Number of inflated prefixes

(b) Number of affected connections
(c) Expected improvement

Un-affected Paths
Path: (AS path1, Entry PoP1, Exit PoP1)
Prefixes: P1, P2, . . .
Affected Paths
Path: (AS path2, Entry PoP2, Exit PoP2)
Prefixes: P3, P4, . . .
Diagnostic Info (a) Forward path inflation cases

(b) Reverse path inflation cases
(c) Culprit ASes
(d) Sample traceroutes

Figure 11: Format of report produced at every Google node by Why-
High for each AS to which inflated latency paths are observed.

mation based on data from these logs. This information includes
1) the RTT distribution observed by clients within a prefix, 2) the
AS path to this prefix observed from all CDN nodes, 3) the geo-
graphic location of the prefix, and 4) the set of border routers within
Google’s network that have observed traffic to or from this prefix.

Once all prefixes have been tagged with relevant information,
the WhyHigh system identifies prefixes having abnormally high la-
tencies and performs active measurements from different nodes to
these prefixes. This ensures that we only actively probe potential
problem cases. The system then tags prefixes as having circuitous
forward or reverse paths based on techniques described above.

WhyHigh outputs two kinds of information. First, it generates
general statistics which help administrators monitor the performance
of different nodes in the CDN. Second, it generates a per AS report
as shown in Figure 11, which identifies inflated latency AS paths to
prefixes in the AS and identifies the potential causes of inflation. In
addition, to help in troubleshooting, WhyHigh also identifies good
paths to the AS for comparison.

5. RESULTS
In this section, we present some results from our experience with

running the WhyHigh system over the period of several months.
First, we present a few representative instances of inflated latencies
that were diagnosed using WhyHigh. We then present some re-
sults summarizing WhyHigh’s classification of detected problems
and the improvement in client latencies as a result of following
through on WhyHigh’s diagnosis.

5.1 Illustrative Example Cases
We employed WhyHigh to diagnose the causes for several in-

stances of path inflation. Here, we present a few illustrative ex-
amples that are representative of the different types of causes we

ANC–Sprint–PhilISP1
ANC–Tiscalli–PhilISP1
ANC–Level3–NTT–PhilISP1
ANC–Level3–Teleglobe–PhilISP1
ANC–Level3–MCI Verizon–PhilISP1
Flag–PhilISP1
BTN–PhilISP1

Figure 12: AS paths used in troubleshooting Case 1. All paths go
through the US en route to the destination in Philippines.

1. 1.1.1.1 0.116 ms
2. 1.1.1.2 0.381 ms
3. japan1.nrt.google.com 145.280 ms

(nrt → Narita, Japan)
4. exchangepoint.jp 146.327 ms
5. router.lax.apacisp.com 262.749 ms

(lax → Los Angeles, USA)
6. address1 509.779 ms

(a)

Prefix Length Peering Point AS path
/16 India IndISP2–IndISP1
/18 SE Asia ApacISP–Reliance–IndISP1
/18 Japan ApacISP–Reliance–IndISP1

(b)

Figure 13: Data used in troubleshooting Case 2: (a) Extract of tracer-
oute, and (b) AS paths received by Google.

encountered for path inflation.

Case 1: No peering, and all AS paths are long

WhyHigh reported that a node in southeast Asia consistently ob-
served RTTs of more than 300ms to prefixes in PhilISP1 3, an ISP
in the Philippines. This was 200ms greater than the minimum RTT
measured for that region. Given the distance between this node
and the Philippines, such high RTTs are unexpected, even though
Google does not directly connect with PhilISP1.

We examined the AS paths received at Google for PhilISP1’s
prefixes (shown in Figure 12). PhilISP1 splits its address space
into several more specific prefixes and distributes these across its
providers; we believe PhilISP1 is doing so to load-balance the traf-
fic it receives across all of its peerings. PhilISP1’s neighboring
ASes on these AS paths have links with Google’s providers only
in the US. So, all the AS paths received by Google for reaching
PhilISP1 traverse the US. The resultant circuitous routes on both
the forward and reverse paths lead to RTTs greater than 300ms
from the node in SE Asia to destinations in PhilISP1. Based on
this information, WhyHigh diagnosed the cause for this case as the
lack of peering between Google and PhilISP1.

Case 2: No peering, and shorter path on less specific prefix

A node in India measured RTTs above 400ms to destinations
in IndISP1, an ISP in India. Though Google and IndISP1 do not
directly peer, such high RTTs within a country are unreasonable.

WhyHigh revealed the following. As shown in Figure 13(a) 4,
the traceroute from the Indian node to a destination in IndISP1
shows the forward path going through ApacISP, an ISP in the Asia-
Pacific region, via Japan. ApacISP further worsens the inflation by
forwarding the traffic through Los Angeles. This circuitous route

3Some of the AS names have been anonymized.
4Hostnames have been anonymized in all traceroutes.

1. 1.1.1.3 0.339 ms
2. 1.1.1.4 0.523 ms
3. 1.1.1.5 0.670 ms
4. japan2.nrt.google.com 0.888 ms
5. exchangepoint.jp 1.538 ms
6. router.japanisp.jp 117.391 ms

(a)

PING exchangepoint.jp
64 bytes from address2: ttl=252 time=1.814 msec
Estimated reverse path length = 4 hops

PING router.japanisp.jp
64 bytes from address3: ttl=248 time=102.234 msec
Estimated reverse path length = 8 hops

(b)

Figure 14: Data used in troubleshooting Case 4: (a) Extract of tracer-
oute, and (b) Pings to routers at peering link.

causes path inflation for this case. WhyHigh reported better alter-
nate paths for IndISP1’s prefixes. In fact, as seen in Figure 13(b),
we found that other than the path through ApacISP that was be-
ing used to carry the traffic, an AS path via IndISP2 was also re-
ceived by Google in India. Since IndISP2 is an Indian ISP too, it
surely connects with IndISP1 at some location in India. So, if this
alternate AS path had been chosen instead to forward the traffic,
we would observe much smaller latencies to end-hosts in IndISP1.
However, this path is not an option since the prefixes associated
with the AS paths through ApacISP are more specific than that as-
sociated with the AS path via IndISP2. On further investigation,
this turned out to be due to the lack of capacity on the peering be-
tween IndISP2 and IndISP1.

Case 3: Peering, but longer paths on more specific prefixes
WhyHigh reported that connections served from the node in south-
east Asia also experienced RTTs over 300ms to prefixes in PhilISP2,
another ISP in the Phillipines. Unlike the previous two cases, in
this instance RTTs are inflated even though Google connects with
PhilISP2 in the region.

We analyzed the diagnosis information provided by WhyHigh
for this case. Google receives a direct AS path to PhilISP2 for the
prefixes that encompass all of PhilISP2’s globally advertised ad-
dress space. However, Google does not use this AS path for any
traffic since PhilISP2 splits its address space into several smaller
prefixes and announces these more specific prefixes to ASes other
than Google. All of the AS paths through these other neighbors of
PhilISP2 go through some AS in the US, such as AT&T or Level3.
A router determines the route on which to forward traffic by per-
forming a longest prefix match of the destination against the list of
prefixes for which it received routes. Hence, the direct path from
Google to PhilISP2 is never used. Routers forward all traffic to
PhilISP2’s prefixes over these AS paths that go through the US,
resulting in extremely high end-to-end latencies.

Case 4: Peering, but inflated reverse path

In our final representative example, we look at a case reported
by WhyHigh for JapanISP, an ISP in Japan that directly connects
with Google. The RTT from the node in Japan to a set of prefixes
in Japan hosted by JapanISPwas over 100ms. Again, this problem
is worse than it first appears since Google connects with JapanISP
in Japan.

To diagnose this problem, we looked at the traceroute, shown in
Figure 14(a), from the node in Japan to an address in one of the

#Prefixes #AS Paths #ASes
Total 97852 23871 18754
Inflated 11862 1891 1510
Circuitous Fwd. Path 3865 1215 1038
Circuitous Rev. Path 4784 1579 1248
Misconfiguration 876 76 65
Limited Bandwidth 439 82 47
Lack of Peering 3776 710 456
Traffic Engineering 7410 1121 644

Table 1: WhyHigh’s classification of inflated paths.

problematic prefixes. The RTT increased from around 1ms to over
100ms across the hops at either end of the peering link between
Google and JapanISP, indicating inflation on the reverse path back
from JapanISP. An increase of 4 hops in the reverse path length
estimated by pings to either end of the peering link further substan-
tiates the reverse path asymmetry (see Figure 14(b)). Since Google
also connects with JapanISP on the US west coast, we suspected
that JapanISP was handing packets back to Google there. This was
confirmed by analysis of router flow records. We believe this situ-
ation is a legacy of the fact that Google’s presence was originally
limited to California, and that many Asian ISPs consider Google to
be only present in the US and prefer to send traffic to all Google
nodes via their PoPs in the US.

5.2 Resolution of Cases
We presented the diagnostic information from WhyHigh for these

and other similar instances of path inflation to the network opera-
tions staff at Google.

To solve the reverse path inflation back from JapanISP, Google’s
network admins restricted the routing announcement for the Google
node in question to be available only in Japan by advertising more
specific prefixes at the the PoP in Japan where Google peers with
JapanISP. This change reduced the RTT from over 100 millisec-
onds to a few milliseconds on the paths to JapanISP we were trou-
bleshooting. Also, WhyHigh reported that the entry and exit points
for paths from JapanISP were both now in Japan. Another option to
address this case would have been to influence JapanISP to perform
early-exit routing at their PoP in Japan, instead of having a higher
preference to route traffic to Google via the US.

The network admins informed us that PhilISP2 advertises a less
specific prefix to Google than to its other neighbors because of the
limited capacity on the peering link between Google and PhilISP2.
Once this link was upgraded, WhyHigh no longer detected inflated
paths to PhilISP2.

5.3 Summarizing use of WhyHigh
Table 1 presents a breakdown of the various causes into which

WhyHigh classified the latency inflation problems observed in our
RTT dataset. The number of cases to be investigated reduced by al-
most an order of magnitude when considering the set of affected AS
paths and ASes, rather than prefixes. While most of the cases were
diagnosed as being due to lack of peering or traffic engineering,
there were also a significant number of cases affected by routing
misconfigurations and limited bandwidth on peering links.

We analyze one of the causes—lack of peering—in more detail.
Given a node with inflated paths, we seek to understand what frac-
tion of these instances of inflation are in ISPs reached via transit
ASes versus those in ISPs with whom Google peers. This is impor-
tant because peering relations with ISPs are expensive to establish
and should be utilized efficiently. Also, if an ISP with significant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Inflated Paths traversing a Transit AS

C
u

m
u

la
ti

ve
 fr

ac
ti

o
n

 o
f I

SP
s

w
it

h
 in

fla
te

d
 p

at
h

s

Figure 15: Fraction of inflated AS paths to an AS that goes via a
transit AS. At this particular node, around 70% of ISPs experiencing
path inflation have all paths going over transit, indicating that peering
could be a potential solution.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Prefix minimum RTT − Region minimum RTT(msec)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
re

fix
es

Aug 2008

May 2008

Figure 16: Improvement in latencies for prefixes served by a node in
South America from May 2008 to August 2008.

traffic has inflated latencies because of lack of peering, i.e., the path
traverses multiple transit providers, it maybe worthwhile to estab-
lish new peering relations.

Figure 15 plots the fraction of inflated latency AS paths to an
ISP that traverse a transit provider. A path is considered to have
inflated latency if all the prefixes served by that path experience
latency inflation. We see that for this particular node, around 70%
of ISPs experiencing path inflation have all their inflated AS Paths
via transit providers. Lack of peering relations is the likely reason
for inflation on paths to ISPs in this set. We also see that around
22% of the ISPs with inflated paths are so even though all paths
utilize the direct peering with Google. These cases are important to
debug because significant time and effort is involved in establishing
peering relations. Also, it is easier for administrators to contact
peer ISPs to fix misconfigurations in their network.

Similar to the example cases outlined above, several other in-
stances of inflation have been fixed, and the resolution of many
instances we diagnosed is in progress. Since several thousand pre-
fixes are affected by inflation, we have been prioritizing cases in the
order in which Google receives traffic corresponding to them. To
provide an example of the utility of WhyHigh, Figure 16 presents

1. 1.1.1.6 0.186 ms
2. 1.1.1.7 0.428 ms
3. node.seasia.google.com 1.727 ms
4. router1.nrt.asianisp.net 35.600 ms
5. router2.nrt.asianisp.net 35.644 ms
6. router.tpe.taiwanisp.net 513.077 ms

Figure 17: Extract of traceroute from an inconclusive case of infla-
tion observed from a Google node in Southeast Asia to a destination in
Taiwan.

the improvement in path latencies for prefixes served by a Google
node in South America—a node where we have focused a lot of our
efforts at troubleshooting since the extent of the problems here were
significantly worse compared to elsewhere. In May 2008, as many
as 40% of prefixes that were being redirected to this node were
experiencing latencies more than 50ms in excess of other prefixes
in the region. The information provided by WhyHigh has helped
Google’s network operations staff to work with ISPs in the region
and significantly improve path latencies. More recent data from
August 2008 shows that the fraction of prefixes being served by
this South American node that suffer over 50ms of inflation is now
reduced to 22%.

6. LIMITATIONS
After having looked at examples in Section 5 of cases that Why-

High was successfully able to diagnose, we now consider an exam-
ple where WhyHigh was inconclusive. We observed RTTs in ex-
cess of 500ms from a node in Southeast Asia to a bunch of prefixes
hosted by an ISP in Taiwan, which does not peer with Google. The
traceroute to an address in one of the problematic prefixes (shown
in Figure 17) revealed that the path traversed another ISP in Asia
enroute to the destination ISP in Taiwan. Note that RTT from the
5th hop in Narita, Japan to the 6th hop in Taipei jumps from 35ms
to 513ms. The distance from Narita to Taipei does not account
for such a steep rise in RTTs. Therefore, we expected inflation to
be on the reverse path back from the destination ISP in Taiwan.
However, we observed no significant jump in return TTL values in
pings to successive hops on the traceroute, and we found no flow
records to confirm a circuitous reverse path. As a result, we lacked
sufficient evidence to confirm our suspicion of inflation along the
reverse path.

We present this example to illustrate that though WhyHigh helps
in diagnosing the cause of several instances of path inflation, it
is not perfect. This is a consequence of WhyHigh’s partial view
of Internet routing. A predominant reason is the significant pres-
ence of asymmetric paths in the Internet [15, 8]. Though we were
able to partially tackle route asymmetry by using flow records from
routers, in order to more precisely troubleshoot problems, WhyHigh
needs the ability to gather information about the reverse path back
from clients to Google’s nodes. An option is to own a measurement
node within the client network which, if possible, is an expensive
alternative.

WhyHigh’s incomplete view of the network also stems from the
fact that the finest granularity of information it uses is from tracer-
oute. Traceroutes yield path information only at the IP routing
layer, i.e., layer 3 of the networking stack. However, path infla-
tion could occur below layer 3, e.g., in MPLS tunnels, and hence
may not be explainable by the geographic locations of traceroute
hops, as seen in the example presented in Figure 17.

7. RELATED WORK
Content Distribution Networks (CDNs) have emerged as a com-

monly used platform to serve static content from the Web. Pop-
ular examples include Akamai [1] and Coral [6]. In these sys-
tems, different clients are redirected to different servers in an at-
tempt to provide load balancing and to improve client performance.
The common approach [7] employed to improve performance is
to redirect a client to the server to which it has the least latency.
The underlying assumption is that in the presence of a geographi-
cally distributed set of servers, latency-based redirection will direct
the client to a nearby server to which the client has a low RTT.
Our large scale measurement dataset from Google’s CDN nodes to
clients all across the Internet shows that this is not necessarily true
for all clients. Routing inefficiencies and queueing of packets both
lead to significant inflation of path latencies.

Recently the performance of two large-scale CDNs—Akamai
and Limelight—has been evaluated in [9]. The authors are able
to chart different nodes in these networks from outside the CDNs.
They also compare the delay performance of the two CDNs and es-
tablish that Akamai yields better median delay. In addition, based
on the computed location of Akamai servers, they suggest alterna-
tive locations for Limelight servers to improve performance. On the
other hand, WISE [19] aims to answer how changes to the CDN’s
deployment would impact the performance it offers to clients. Our
work is complementary to both. Rather than studying how to aug-
ment a CDN’s deployment or understanding the impact of a change
in node configuration, we detect the problems that hinder an exist-
ing CDN deployment from offering the best performance possible.
Before undertaking the significant effort and investment required
to setup new nodes, WhyHigh enables the administrator to charac-
terize the performance of an existing deployment and to diagnose
routing inefficiencies that hinder the CDN from delivering the best
performance possible to clients.

Path inflation in the Internet has been studied [17] previously,
and its causes have been traced predominantly to inter-domain rout-
ing policies. Extensions to BGP have been proposed [13] to provide
ISPs the ability to cooperatively choose globally optimal routes
without revealing their local routing policies. We find path infla-
tion to be much more pronounced than observed previously. Even
when considering RTTs from prefixes to nodes that are predomi-
nantly nearby, we find that more than 20% of prefixes experience
inflation greater than 50ms. In contrast, less than 5% of paths were
estimated to have more than 25ms inflation in prior work [17].

Overlay routing systems [16, 2] have attempted to circumvent
inflated paths by routing through end-hosts that serve as relays. In-
stead, we focus on fixing instances of path inflation by identifying
the underlying cause. Though the predominant causes of path in-
flation are known, we are the first to study how the cause for infla-
tion on any given path can be identified. WhyHigh diagnoses the
cause for each instance of inflated latency, thus providing network
administrators with the steps they need to take to improve the per-
formance of their clients.

WhyHigh uses active measurements, such as traceroutes and pings,
if necessary. Traceroutes are a common network diagnostic tool,
and have been used primarily to diagnose reachability issues and
to pinpoint such problems to a particular AS, router, or link, e.g.,
PlanetSeer [21], Hubble [11], and [22]. We use traceroutes instead
for performance diagnosis of paths, similar to iPlane [12] and Netd-
iff [14]. WhyHigh uses the geographic location of routers observed
in the output of traceroute to determine if the path is circuitous. To
do so, we use router DNS name to location mappings developed
as part of the Rocketfuel project [18]. WhyHigh also attempts to
group together prefixes affected by the same underlying cause, an
approach used previously to diagnose BGP routing instabilities [5,
20].

8. CONCLUSIONS AND FUTURE WORK
Replicating content across a geographically distributed set of

servers and redirecting every client to the server with least latency
is commonly expected to significantly improve client performance.
However, using data from Google’s CDN infrastructure that serves
over 170K prefixes across the Internet, we find that routing ineffi-
ciencies and packet queueing can greatly undermine the potential
improvements in RTT that a CDN can yield. To aid administrators
in the task of debugging instances of high RTTs, we have built the
WhyHigh system which first identifies affected prefixes, then prior-
itizes the several tens of thousands of inflated prefixes, and finally
diagnoses the causes underlying these cases. We see significant im-
provements in client latencies offered by Google’s CDN from the
use of WhyHigh over the course of a year.

Given the large fraction of prefixes affected by path inflation is-
sues, we are working on better visualization of our RTT data; clus-
tering of problems with the same underlying cause is vital in our
effort to debug Internet routing. Many questions still remain open
on the cause for poor latencies we observe from clients to nearby
nodes, e.g., “where are packets being queued to result in the con-
gestion overhead we observe?", and we look to answer these in the
future to further improve client performance.

9. REFERENCES
[1] Akamai, Inc. home page. http://www.akamai.com.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In SOSP, 2001.
[3] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. In

INFOCOM, 2000.
[4] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.

Characterizing residential broadband networks. In IMC, 2007.
[5] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs.

Locating Internet routing instabilities. In SIGCOMM, 2004.
[6] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing

content publication with Coral. In NSDI, 2004.
[7] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS:

Anycast for any service. In NSDI, 2006.
[8] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker. On routing

asymmetry in the Internet. In Autonomic Networks Symposium in
Globecom, 2005.

[9] C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and evaluating
large-scale CDNs. In IMC, 2008.

[10] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall,
T. Anderson, and Y. Chawathe. Towards IP geolocation using delay
and topology measurements. In IMC, 2006.

[11] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy, and
T. Anderson. Studying black holes in the Internet with Hubble. In
NSDI, 2008.

[12] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An information
plane for distributed services. In OSDI, 2006.

[13] R. Mahajan. Practical and Efficient Internet Routing with Competing
Interests. PhD thesis, University of Washington, 2005.

[14] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering
performance differences among backbone ISPs with Netdiff. In
NSDI, 2008.

[15] V. Paxson. End-to-end routing behavior in the Internet. ToN, 1997.
[16] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,

A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: a case for informed Internet routing and
transport. IEEE Micro, 1999.

[17] N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of
path inflation. In SIGCOMM, 2003.

[18] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring
ISP topologies with Rocketfuel. ToN, 2004.

[19] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar.
Answering what-if deployment and configuration questions with
WISE. In SIGCOMM, 2008.

http://www.akamai.com

[20] J. Wu, Z. M. Mao, , and J. R. J. Wang. Finding a needle in a
haystack: Pinpointing significant BGP routing changes in an IP
network. In NSDI, 2005.

[21] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang. PlanetSeer:
Internet path failure monitoring and characterization in wide-area
services. In OSDI, 2004.

[22] Y. Zhang, Z. M. Mao, and M. Zhang. Effective diagnosis of routing
disruptions from end systems. In NSDI, 2008.

	Introduction
	Overview
	CDN Architecture
	Goals
	Non-goals
	Measurement Dataset
	Data Pre-Processing

	Understanding Path Latency
	Effectiveness of Client Redirection
	Characterizing Latency Inflation
	Characterizing Queueing Delays
	Summary

	WhyHigh: A System for Diagnosing Latency Inflation
	Identifying Inflated Prefixes
	Identifying Causes of Latency Inflation
	Identifying Path Inflation Granularity
	Ranking Nodes
	Identifying Root Causes of Inflation
	System Architecture

	Results
	Illustrative Example Cases
	Resolution of Cases
	Summarizing use of WhyHigh

	Limitations
	Related Work
	Conclusions and Future Work
	References

