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Abstract

In this paper we develop an efficient implementation for a
k-means clustering algorithm. The novel feature of our al-
gorithm is that it uses coresets to speed up the algorithm. A
coreset is a small weighted set of points that approximates
the original point set with respect to the considered problem.
The main strength of the algorithm is that it can quickly de-
termine clusterings of the same point set for many values of
k. This is necessary in many applications, since, typically,
one does not know a good value for k in advance. Once
we have clusterings for many different values of k we can
determine a good choice of k using a quality measure of
clusterings that is independent of k, for example the aver-
age silhouette coefficient. The average silhouette coefficient
can be approximated using coresets.

To evaluate the performance of our algorithm we com-
pare it with algorithm KMHybrid [28] on typical 3D data
sets for an image compression application and on artificially
created instances. Our data sets consist of 300,000 to 4.9
million points. We show that our algorithm significantly
outperforms KMHybrid on most of these input instances.
Additionally, the quality of the solutions computed by our
algorithm deviates less than that of KMHybrid.

We also computed clusterings and approximate average
silhouette coefficient for k = 1,...,100 for our input in-
stances and discuss the performance of our algorithm in de-
tail.

1 Introduction

Clustering is the computational task to partition a given in-
put into subsets of equal characteristics. These subsets are
usually called clusters and ideally consist of similar objects
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that are dissimilar to objects in other clusters. This way one
can use clusters as a coarse representation of the data. We
loose the accuracy of the original data set but we achieve
simplification.

Clustering has many applications in different areas of
computer sciences such as computational biology, machine
learning, data mining and pattern recognition. Since the
quality of a partition is rather problem dependent, there is no
general clustering algorithm. Consequently, over the years
many different clustering algorithms have been developed.
These algorithms can be characterized as hierarchical algo-
rithms or partitioning algorithms.

Hierarchical algorithms build a hierarchy of clusters, i.e.
every clusters is subdivided into child clusters, which form
a partition of their parent cluster. Depending how the hierar-
chy is built we distinguish between agglomerative (bottom-
up) and divisible (top-down) clustering algorithms.

Partitioning algorithms try to compute a clustering di-
rectly. For example, they try to compute a clustering by it-
eratively swapping objects or groups of objects between the
clusters or they try to identify dense areas containing many
points.

The most prominent and widely used clustering algorithm
is Lloyd’s algorithm sometimes also referred to as the k-
means algorithm. This algorithm requires the input set to be
a set of points in the d-dimensional Euclidean space. Its goal
is to find k cluster centers and a partitioning of the points
such that the sum of squared distances to the nearest center
is minimized. The algorithm is a heuristic that converges
to a local optimum. The main benefit of Lloyd’s algorithm
is its simplicity and its foundation on analysis of variances.
Also, it is relatively efficient. The drawbacks are that the
user must specify the number of clusters in advance, the al-
gorithm has difficulties to deal with outliers and clusters that
differ significantly in size, density, and shape.

Our Contribution. In this paper we develop an efficient
k-means clustering algorithm called CoreMeans. The main



new idea is that the algorithm uses coresets [11] to speed up
the computation of the clustering. Such a coreset is a small
weighted set of points that for every set of k centers has
roughly the same cost as the original (unweighted) point set
[5, 15, 11, 14]. Our algorithm first computes a small coreset
of the input points and then runs a combination of Lloyd’s
algorithm and random swaps, which is somewhat similar to
the algorithm Hybrid presented in [28, 20]. Then the algo-
rithm doubles the size of the coreset and runs for a few steps
on this coreset. This process is done until the coreset coin-
cides with the whole point set. The coreset computation is
supported by a quadtree (or higher dimensional equivalent)
based data structure. This data structure can also be used to
speed up nearest neighbor queries.

We compare our algorithm with algorithm KMHybrid
[28, 20], which uses a combination of Lloyd’s algorithm
with random swaps and simulated annealing. On most of
the input instances our algorithm significantly outperforms
KMHybrid, especially for low dimensional instances. For
high dimensional instances our algorithm finds good solu-
tions faster but KMHybrid’s solution after a few seconds is
slightly better. If we want to compute a clustering for one
value of k the running time of both algorithms is often domi-
nated by the setup time to compute auxiliary data structures.
In this case CoreMeans benefits from its smaller setup time.

However, in many applications we do not know the right
value of k in advance. In such a case one has to compute
clusterings for many different values of k. Then one can
use a quality measure independent of k to find out the best
clustering. A prominent quality measure for such a sce-
nario is the average silhouette coefficient. Unfortunately,
computing the average silhouette coefficient for one clus-
tering takes quadratic time, which is not feasible for point
sets of medium and large size. However, we would like to
compute the sihouette coefficient for many values of k. In
this situation we can see the real strength of coresets. Us-
ing coresets it is possible to find clusterings and compute
their average silhouette coefficient for large point sets and
many values of k. For example, we computed clusterings
for k = 1,...,100 and approximated their average silhou-
ette coefficient for a set of more than 4.9 million points in
3D consisting of the RGB values of an image in a few sec-
onds on one core of an Intel Pentium D dual core processor
with 3 GHz core frequency. In higher dimensions we did
the same computations for an (artificially created) point set
of 300, 000 points in 20 dimensions for all values of k be-
tween 1 and 100 in less than 8 minutes. Without coresets,
the computation of the sihouette coefficient for one value of
k takes several hours.

1.1 Related Work

It is beyond the scope of this section to give a comprehen-
sive overview of the clustering literature. Instead we will

give a brief overview of the most important developments
with focus on partitioning algorithms. We will also briefly
summarize the recent work on coresets. For a more compre-
hensive overview of the work in clustering we refer to the
surveys/books [12, 18, 6]. An overview of coreset construc-
tions is given in [2].

k-Means Clustering. The most popular algorithm for the
k-means clustering problem is Lloyd’s algorithm [10, 23,
25]. It is known that this algorithm converges against
a local optimum [32]. Recently, a number of very effi-
cient implementations of this algorithm have been devel-
oped [3, 20, 19, 29, 30, 31]. These algorithms reduce the
time needed to compute the nearest neighbors in a Lloyd’s
iteration, which is the most time consuming step of the al-
gorithm. In the Euclidean space there are many (1 + €)-
approximation algorithms for the k-means clustering prob-
lem [5, 9, 15, 17, 22, 24]. Also for the k-means problem in
metric spaces efficient constant factor approximation algo-
rithms are known [26, 20].

The quality of random sampling in metric spaces has been
analyzed for some clustering problems including the metric
and the Euclidean k-median [27, 8]. The analysis can be
easily extended to the k-means clustering problem.

A testbed for k-means clustering algorithms has been
given in [28]. We compare our implementation with algo-
rithm KMHybrid, which is the fastest of 4 implementations
described in [28].

Coresets. A coreset is a small set of points that approxi-
mates the original set with respect to some problem. In the
context of clustering algorithms several coreset construc-
tions have been developed for the k-median and k-means
clustering problem [5, 15, 11, 14]. These coresets found ap-
plications in approximation algorithms [5, 14], data stream-
ing [15, 11], and clustering of moving data [13]. Also for
projective clustering, coresets have been developed [16].
Apart from clustering, coresets have found applications in
basic problems in computational geometry, for example, to
compute an approximation of the smallest enclosing ball of
a point set [4] or to approximate extent measure of point sets
[1,7].

2 Preliminaries

We will use ||p, q|| to denote the Euclidean distance be-
tween p and q and we generalize this definition to sets,
ie. |lp,Qll = mingeq llp, qll for any set Q of points in
the R¢. We use C(Q) to denote the centroid of a set Q, i.e.

We will deal with weighted and unweighted sets of points.
We will always assume that the set P represents the input in-
stance, which is an unweighted set of n points in the R9.



A weighted point set will usually be denoted by R. The
weights of the points in R are given by w(r) for every r € R.
We will only consider integer weights in this paper.

In the k-means clustering problem we want to find a set
C ={c1,...,cx} of k cluster centers and a partition the set
P into k clusters Cy, ..., Cyx such that

k
> D lpal?

i=1peC;

is minimized. The goal of the weighted k-means problem
is to find a set C = {cq,...,cy} of k cluster centers and a
partition of a weighted set R into k clusters Cy, ..., Cx such

that .
> > wip)-lp,el?

i=1peC;
is minimized. Hence in this case the weight is simply the
multiplicity of a point.

Once the set C is known an optimal partition can be com-
puted by assigning every point to its nearest cluster center
breaking ties arbitrarily, ie. C; = {p € P : |Ip,cil =
[[p, Cl|} under the assumption that all distances are distinct.
We therefore can write means(P, C) to denote the cost of an
optimal partition of P with respect to the centers in C. In a
similar way we write means(R, C) to denote the cost of an
optimal partition of a weighted set R with respect to C. It
is also known that the centroid C(Q) of a set Q is the point
¢ € R4 that minimizes > veqlp, cl? .

2.1 The Basic k-Means Method

Based on the observations that it is easy to compute an op-
timal partition for a fixed set of centers and an optimal set
of centers for a fixed partition, a simple and elegant clus-
tering heuristic has been developed [10, 23, 25]. Nowadays,
one often refers to this heuristic as the k-means algorithm or
Lloyd’s algorithm. This algorithm runs in iterations. At the
beginning of an iteration the algorithm has a set of k centers
{c1,...,ck}. Every iteration consists of two steps.

1. For every p € P compute its nearest center in
{cq,...,ck}. Partition P into k sets Cq,..., Cy such
that C; contains all points whose nearest center is c;.

2. For every cluster C; compute its centroid C(Cy), i.e.
the optimal center of that cluster. Then set ¢c; = C(Cy)
forevery 1 <i<k.

Each iteration runs in O(ndk) time. Typically, the algo-
rithm runs for a fixed number of iterations (standard values
are in the range from 50 to 500). It is well known that the
algorithm only converges to a local optimum and that the
quality of this solution depends strongly on the intial set of
centers. Therefore, the algorithm is usually repeated sev-
eral times with different sets of initial centers and the best
discovered partition is returned.

2.2 Algorithm KMHybrid

In the experiments we compare our algorithm to an al-
gorithm called KMHybrid [28, 20]. KMHybrid combines
swapping of centers with Lloyd’s algorithm and a variant of
simulated annealing. The algorithm does one swap followed
by a sequence of Lloyd’s steps and an acceptance test. If the
current solution passes the test, the algorithm continues with
the current solution. Otherwise, it restores the old one. The
acceptance test is based on a variant of simulated annealing.
Additionally, the algorithm uses a kD-tree to speed up near-
est neighbor search in the Lloyd’s steps. For more details
see [28, 20].

2.3 Coresets and their Construction

A coreset for an unweighted set of points P is a much smaller
weighted set of points that approximates P with respect to
the k-means problem.

Definition 2.1 A weighted set of points R is an e-coreset for
P with respect to the k-means problem, if for every set C of
k centers we have (1 — ¢)means(P, C) < means(R,C) <
(1 + ¢)means(P, C).

Constructing a coreset. In our algorithm we will use a
coreset construction from [11], which has been used to de-
rive a streaming algorithm (a small space dynamic data
structure) for several problems including k-median and k-
means clustering. We will briefly review the theoretical con-
struction here. Later in Section 3 we will discuss our imple-
mentation.

For the theoretical part we assume that the point set has
integer coordinates from {1, ..., A}. For simplicity we will
focus on the 2D-case. We assume that we know the cost
Opt of an optimal set of centers. In our algorithm we replace
this assumption by guessing the value of Opt. To construct
the coreset we subdivide the input space using log A nested
square grids g(”,...g(“gﬂ). The cells in grid G have
side length 2*. To compute the coreset we will first identify
the heavy cells of each grid. A cell is called heavy, if it
contains more points than specified by a certain threshold.
This threshold depends quadratically on the inverse of the
side length of the grid cell. Under the assumption that d is
a constant we can parametrize the threshold by some value
5 = O(e?/(klogn)) in the following way.

Definition 2.2 [11] We call a cell of grid G'V) heavy, if it

. Opt .
contains at least b - 55 points of P.

The process of constructing the coreset is somewhat sim-
ilar to computing a quadtree decomposition of the (heavy)
cells of the input space. We start with the coarsest grid
GUlogA) and identify all heavy cells. Then we subdivide ev-
ery heavy cell H into 4 subcells. We call H the parent cell



of its subcells. We mark H, if none of its subcells is heavy.
Otherwise, we do not mark H and recurse this process with
all heavy subcells. By the definition of heavy cells it is clear
that this recursion must eventually stop, since at some point
a heavy cell is required to have more than n points (by our
assumption of integer coordinates, we have Opt > m for
sufficiently large ). At the end of this recursion we choose
one point from every marked cell and call it a representative
point of that cell. The union of all representative points is
the coreset. It remains to compute the weights of the coreset
points. The weight of a coreset point is given by the number
of points assigned to it in the following assignment. Every
point in a marked heavy cell H is assigned to the represen-
tative point of H. For every point p that is not contained in
a heavy cell let H; denote the smallest heavy cell that con-
tains p. Since H; is not marked it must contain at least one
marked heavy cell H, (which may be much smaller than
H1). Then p is assigned to the representative point of H;.
If H1 contains more than one marked heavy cell, p may be
assigned to the representative point of any one of them.

Theorem 1 [11] The coreset construction described above
computes an e-coreset of size O(klogn/ed+2). O

2.4 The Silhouette Coefficient

Usually, the right number of clusters is not known in ad-
vance. Since the k-means objective function drops mono-
tonically as k increases, one needs a different measure for
the quality of a clustering that is independent of k. Such
a measure is provided by the average silhouette coefficient
[21] of the clustering. The silhouette coefficient of a point
pi is computed as follows. First compute the average dis-
tance of p; to the points in the same cluster as p;. Then for
each cluster C that does not contain p; compute the average
distance from p; to all points in C. Let b; denote the mini-
mum average distance to these clusters. Then the silhouette
coefficient of p; is defined as (b; — a;)/ max(ai, by).

The value of the silhouette coefficient of a point varies
between —1 and 1. A value near —1 indicates that the point
is clustered badly. A value near 1 indicates that the point is
well-clustered. To evaluate the quality of a clustering one
can compute the average silhouette coefficient of all points.

3 The Algorithm

We first provide a high level description of our algorithm
and then we give some more details on the implementation.
The algorithm starts to compute a coreset of size roughly
2k and chooses k points from this coreset as a starting so-
lution. Then it repeats max{40/v/k, 2} times the following
two steps, which form the main loop of the algorithm.

e First it runs Lloyd’s algorithm for d steps. After this,
the current solution is compared to the previously best

COREMEANS(P, k)
m « 2k
while m < |P| do
Compute coreset of size m.
if m = 2k then
C « k random points from coreset
K« C
repeat max{40/v'k, 2} times  (* Main loop *)
Do d iterations of Lloyd’s algorithm
starting with C
Let C denote the current solution
if means(P, K) < means(P, C) then
C+K
K+ C
Choose kg at random from {0, ..., k}
Swap ko centers from C with points
chosen uniformly from the coreset
mée2-m

and the algorithm continues with the better of these so-
lutions.

e In the second step, the algorithm chooses a number kg
between O and k uniformly at random. Then it picks
centers from the current set of centers according to
the following probability distribution until ko differ-
ent centers are chosen. The probability that the cen-
ter of cluster Cj is replaced is \C-\-Zﬁ’ where

j i=1 TCql

C1,...,Cx denotes the current clustering. Finally,
these ko random centers are replaced by points chosen
uniformly at random from the coreset.

After the main loop is finished the algorithm doubles the
size of the coreset and continues with the main loop. This is
done until the coreset is the whole point set. The algorithm
is given in Figure 3.

To support efficient computation of coresets and to speed
up nearest neighbor queries in Lloyd’s algorithm we use a
quadtree or its higher dimensional equivalent. Our approach
is the analog to the kD-tree algorithm from [20]. The root
of the quadtree corresponds to a bounding box of the point
set. With each cell B associated with a node of the quadtree
we store the number of points contained in the cell, the sum
of the point vectors Zp cg P, and the sum of the squared
£>-norm of the point vectors 3, g [|p |3. This information
can be used to quickly compute the exact cost of the parti-
tion of P that corresponds to a given partition of the core-
set. Since all points from one cell are assigned to the same
coreset point and hence to the same cluster, we can com-
pute the cost of a cluster C by first computing the mean c
of the cluster from the sum of the vectors devided by the
number of points in the cluster. Then we have to compute

Ypecdpc)? =% ccllp—cli =X cclpllz—llcl3.



which can be done efficiently by using the information
stored with each box.

In our implementation we fixed the depth of the quadtree
to 11. To build the tree we proceeded bottom-up. We iden-
tify the non-empty cells in the grid corresponding to the 11-
th level of the tree. The non-empty cells are stored in a hash
table with cell coordinates as keys. After we have computed
the non-empty cells in the finest grid we iterate over these
cells and compute all non-empty cells in the next coarser
grid together with the corresponding point statistics.

To compute a coreset of around m points we first have to
identify a good guess for y := & - Opt. We do it by setting
v to a large value and dividing it iteratively by 1.3. After
each iteration we compute the size of the coreset from the
cell statistics (without computing the actual coreset points).
For high values of y this is done very fast since the coreset
size can be computed using a few large cells. Alltogether
the time to compute the coreset size is negligible compared
to the coreset computation time.

The coreset for a given value of y is computed using a
recursive depth first search function on the quadtree cells.
For the root cell we call a function COMPUTECORESET-
PoINTS. This function has a cell as input parameter as
well as statistics about points to be moved into that cell.
COMPUTECORESETPOINTS adds the input points to the cell
statistics. Then for each subcell it checks heaviness. If there
is at least one heavy subcell, it calls COMPUTECORESET-
POINTS for all heavy subcells. The points given as function
parameter and the points in all light subcells are then moved
into a heavy subcell by adding up their statistics and giving
these statistics to one call of COMPUTECORESETPOINTS as
function parameters. If a cell has no heavy subcell, a coreset
point is introduced from the statistics about cell points and
the statistics given as function input.

To speed up of the later k-means algorithm we store
the following statistics: For each cell occupied by coreset
points we store a pointer to a corresponding coreset point (if
there is one) and pointers to all subcells containing coreset
points. During the construction of coreset R we addition-
ally compute for each cell B the sum of the coreset vectors
> vcrnp WI(T) - 7, the number )¢5 W(T) of points as-
signed to the coreset points in the cell and the sum of squared
{2-norm of the coreset vectors Y g W(T) - [|7]13.

One iteration of the k-means algorithm is done as follows:
Instead of searching the nearest center for each coreset point
separately we use an approach analogous to the kd-tree ap-
proach as in [20]. We start with a list £ of all centers as
possible candidates for nearest centers and do a depth first
walk on those quadtree cells which contain a coreset point.
For each cell B in the quadtree we check if we can rule out
that some centers c in £ are the nearest center to any point
in B. This is done by first computing the point p from £
that is nearest to the center of B. Then we check for each
point q € L, whether B lies completely on the same side as

SILHOUETTE(K)
mé>5
while m <K
Compute coreset of size m.
for each k € {1,...,100} do
Use main loop of CoreMeans
to compute clustering
Compute average silhouette coefficients
for the current coreset and centers
me2-m

p of the bisector between p and . All centers which cannot
be nearest centers for coreset points in B are evicted from
L and the algorithm proceeds to the children of cell B. If
|£] = 1 we know the nearest center for all coreset points
within the cell. Since we hold statistics for all coreset points
within each cell we can then assign all coreset points in one
step to the center ¢ € £ and stop. If [RNB| = 1, we compute
the distances of the coreset point to all ¢ € £ directly, assign
the coreset point and stop the depth first walk.

Computation of silhouette coefficients. The computa-
tion of silhouette coefficients for each point p; is speeded
up in the following way: We first compute the average dis-
tance a; to all points in the same cluster. To compute b,
the minimum over average distances b; ; to points in other
clusters Cj, we identify the second nearest cluster center
¢ and compute the average distance b; 1 to all points in
Cy. In most cases by 1 is the minimum of all b; ; for other
clusters. To get a certificate for this, we use the lower
bound d(pi,c;) < byj. We check for all other clusters if
d(pi,c5) > by 1. If this inequality holds then b1 < by
and b; ; cannot be the minimal one. In that case we save the
computations of all distances to points in cluster Cj.

4 Experiments

We implemented our algorithm using C++. The code was
compiled using gcc version 3.4.4 using optimization level
2 (-02). We compare our algorithm to KMHybrid [20].
KMHybrid was compiled using the same compiler and also
with optimization level 2. We ran it using the standard set-
tings given by the developers.

We ran our experiments on an Intel Pentium D dual core
processor with two cores. The algorithm used one core with
core frequency 3 GHz. The computer has 2 GByte RAM.

4.1 Data Sets

We performed our experiments on two different types of in-
stances. The first type of instance consists of images and we
want to cluster the RGB values of the pixels. Thus the input



points lie in 3D and the i-th input point corresponds to the
RGB-values of the i-th pixel of the image. Such a clustering
has applications in lossy data compression, since one can
reduce the palette of colors used in the picture to the colors
corresponding to the cluster centers.

Our test images consist of three large images
(Tower, Bridge, and PaSCo) and three medium size
images (Monarch, Frymire, and Clegg).  The latter
images are commonly used to evaluate the perfor-
mance of image compression algorithms. The ex-
act sizes of the test images can be found in Table
4.1. The images are available at http://homepages.uni-
paderborn.de/frahling/coremeans.html

4.1.1 Artificially created instances.

The second type of instance is artificially created. Instance
ArtificialxD consists of 300,000 points in x dimensions.
The instance is generated by taking a random point from one
of 20 Gaussian distributed clusters, whose center are picked
uniformly at random from the unit cube. The standard devi-
ation of the Gaussian distribution is 0.02 - v/d, i.e. it is the
product of the one dimensional Gaussian distribution with
standard deviation 0.02. An example of a sample of points
from instance Artificial2D is given in Figure 5.

4.2 Comparison of CoreMeans and KMHy-
brid

To evaluate the performance of CoreMeans we compare our
algorithm to KMHybrid. We first compare the setup times
for both algorithms, i.e. the time to construct the auxiliary
data structures. If one wants to compute a clustering for
fixed value of k then the setup times often dominate the
running time of the algorithm. If a good value of k is not
known, then one often wants to compute a clustering for
multiple values of k. In this case, it is more interesting to
compare the running time of both algorithms without setup

Setup Times

Instance Size KMHybrid CoreMeans
Tower 4,915,200 28.59 4.77
Bridge 3,145,728 18.13 2.95
PaSCO 3,145,728 19.41 4.29
Frymire 1,234,390 4.71 0.65
Clegg 716320 2.76 1.05
Monarch 393,216 1.43 0.63
Artificial 5D 300,000 2.27 1.49
Artificial 10D 300,000 3.71 2.17
Artificial 15D 300,000 4.71 2.70
Artificial20D 300,000 6.09 3.87

Table 1: Data sets and setup time.

time (however, the time to extract the coresets from the data
structure is contained in the given running times). This is
done in Sections 4.2.2 to 4.2.4. In Section 4.2.2 we compare
both algorithm for different input sizes. In Section 4.2.3 we
focus on the performance with increasing dimension, and
in Section 4.2.4 we investigate into the dependence on the
number of clusters.

4.2.1 Setup time

The times to compute the auxiliary data structure are given
in Table 4.1. The time to build these structures does not de-
pend on k. The setup time for KMHybrid is between 1.5 to
7 times higher than that of CoreMeans. There is a tendency
that the gap becomes larger for larger instances. However,
there seems to be also an dependence on the distribution of
points as the largest factor was achieved for the medium size
instance Frymire.

If one computes a clustering for one value of k then the
setup time is typically larger than the computation time.
Even for the larger instances both algorithms obtain a good
clustering in a few seconds (see also Section 4.2.2).

4.2.2 Dependence on input size

To evaluate the dependence on the input size we run both
algorithms on instance Monarch, Clegg, Frymire, PaSCo,
Bridge, and Tower. We used paramter k = 50. In general,
CoreMeans performs better for smaller k (see Section 4.2.4)
and tends to perform similar to KMHybrid as k increases.
The results are shown in Figures 7 to 12. The plots give
the average performance of 10 runs. The vertical bars in-
dicate the best and worst solution found within these runs.
The relative performance of CoreMeans increases slightly
with the size of n. We would like to emphasize that the dif-
ference between the best and worst solution found during
the 10 runs is much smaller for CoreMeans. Therefore, to
guarantee a good solution we have to run KMHybrid more
often than CoreMeans. Another interesting observation is
that CoreMeans achieves slightly better approximations for
larger instances.

4.2.3 Dependence on the dimension

Next we are interested in the dependence on the dimen-
sion. To evaluate this dependence, we compare the average
performance of 10 runs of KMHybrid and CoreMeans for
k = 20 on the instances ArtificialxD for x = 5,10, 15, and
20. The graphs are shown in Figure 1 and 2. CoreMeans
performs better on all instances. The most significant dif-
ference in performance can be found in the 5D instance,
where CoreMeans performs a factor 10 — 30 better. The
higher the dimension the smaller is the advantage of Core-
Means. In these experiments the deviation of KMHybrid



was much bigger than that of CoreMeans. Although Core-
Means shows the much better average performance, the best
solution found by KMHybrid was better than the best so-
lution found by CoreMeans. Overall, the performance of
the algorithm for medium dimensions was much better than
theory predicts with an exponential dependence on the di-
mension.

Objective

0.25 d=10, KMLocalHybrid
0.2 d=10, CoreMeans
0.15 d=5 , KMLocalHybrid

d=5 , CoreMeans

Figure 1: Performance for ArtificialxD with x = 5 and x =
10 excluding setup time.

Objective
0.8

, KMLocalHybrid
, KMLocalHybrid
CoreMeans

, CoreMeans

Figure 2: Performance for ArtificialxD with x = 15 and

x = 20 excluding setup time.

4.2.4 Dependence on the number of clusters

To investigate in the dependence on the number of cluster
centers, we ran a number of experiments on different in-
puts. Due to space limitations we only present results for
k = 10,50, 100, and 200 for instance Bridge. These results
are typical for the performance we encountered. As before,
the Figures 3 and 4 show the average performance of 10 runs
excluding the setup times. Typically, our algorithm performs
significantly better for small values of k. For example, for
k = 10 CoreMeans often performs a factor 10 — 100 bet-
ter. Additionally, the quality of the solutions computed by

KMHybrid varies significantly. CoreMeans is less sensitive
to the random choices of the algorithm. As a consequence
one must perform more runs of KMHybrid to obtain a good
solution with high probabilty. As k grows larger the per-
formance gap between the two algorithms decreases. The
reason for this is that the quality of the coreset decreases as
k grows.

Objective
1000

k=10, KMLocalHybrid

800 k=10, CoreMeans

k=50, KMLocalHybrid
600 CoreMeans

400

200

Figure 3: Performance for Bridge with k = 10 and k = 50
excluding setup time.
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80 | k=100, CoreMeans

k=200, KMLocalHybrid

60 k=200, CoreMeans

a0 |
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Figure 4: Performance for Bridge with k = 100 and k =
200 excluding setup time.

4.3 Computing the silhouette coefficient

We computed the approximate average silhouette coefficient
for 1 < k < 100 for instances Tower, Clegg, Monarch, and
ArtificialxD with x = 2,10, 20 using coresets of different
sizes. Table 4.3 summarizes the running times of our tests.
The second column gives the overall running time for the
computation and the third column states the time spend to
compute the silhouette coefficients. Since the time to com-
pute the silhouette coefficient is quadratic in the coreset size,



Instance Coreset | Time | Silhouette
Tower 404 7.99 0.84
1607 19.24 6.43

Clegg 423 4.69 0.8
1720 15.07 6.58

Monarch 428 4.80 0.77
1626 15.37 6.11

Artificial2D 427 2.52 0.62
1616 7.73 4.3

6431 51.89 45.57

Artificial 10D 400 | 43.34 1.88
1711 | 123.38 17.68

Artificial20D 408 | 139.58 4.18
1778 442.5 40.62

Table 2: Time to compute clusterings and approximate aver-
age silhouette coefficients. The second column contains the
overall running time (including setup). The third column
gives the time required to compute the approximate average
silhouette coefficient.

the fraction of time spent for this computation increases sig-
nificantly with increasing coreset size.

To show the effectivity of our method we focus on in-
stance Artificial2D. A sample of points from this instance
is shown in figure 5. The average silhouette coefficent for
this instance and coreset sizes 427, 1616, and 6431 is given
in Figure 6. We see that even the smallest coreset suffices
to approximate the coefficient quite well. The only problem
is that the silhouette coefficient increases slightly with k. A
reason for this may be that the number of centers is already
relatively large compared to the number of coreset points.
If some centers contain only one point, then they have sil-
houette coefficient exactly 1 and this may lead to slightly
increasing coefficient, if k is large compared to the coreset
size. For our applications a coreset of size roughly 1600 will
definitly suffice. There is almost no difference to one with
more than 6000 points.

The highest silhouette coefficient value was achieved for
14 clusters (using the larger coreset) by the cluster centers
shown in figure 5. The reason why only 14 clusters were
found (although we had 20 cluster centers) can be explained
by the fact that some of the clusters were very close to ea-
chother and so the clustering coefficient is higher when one
assign only one center to these clusters.

4.4 Summary

Summarizing we can say that CoreMeans performs very
well especially for small values of k. When we compare
the computation time of CoreMeans with KMHybrid we see
that for one clustering the running time of both algorithms is
typically dominated by the setup time. However, KMHybrid

Figure 5: A sample of points from instance Artificial2D.
The bold points are the centers that achieve the best average
silhouette coefficient.

is much more volatile and might require a number of runs to
guarantee a good solution. The main strength of CoreMeans
is that it can very quickly compute relatively good solutions
and that one can approximate the average silhouette coeffi-
cient from the coreset.

5 Conclusions

In this paper we presented an efficient implementation of a
k-means clustering algorithm using coresets. Our algorithm
performs very well compared to KMHybrid [28] for small
dimension and small to medium k. The quality of the solu-
tions varies less than that of KMHybrid, which implies that
we need fewer runs to guarantee a good solution. The main
strength of our algorithm is to quickly find relatively good
approximations for many values of k, for example when a
good value for k is not known in advance. In this case, we
can also use the coresets to compute the average clustering
coefficient and thus to find a good choice of k.
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Figure 7: Data set Monarch; k = 50; excluding setup time.
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Figure 8: Data set Clegg; k = 50; excluding setup time.
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Figure 9: Data set Frymire; k = 50; excluding setup time.
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Figure 10: Data set PaSCo; k = 50; excluding setup time.
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Figure 11: Data set Bridge; k = 50; excluding setup time.
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Figure 12: Data set Tower; k = 50; excluding setup time.



