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Tracking people and objects indoors from signal strength measurements has applications
as diverse as security monitoring, self-guided museum tours, and personalization of com-
munications services. Accurate dynamic tracking in real-time has been elusive, though,
because signal propagation in buildings and the paths that people follow are complex. This
paper proposes a simple algorithm for indoor tracking that requires neither a propagation
model nor a motion model. It is also simple to compute, requiring only standard tools:
Delaunay triangulation, linear interpolation, moving averaging, and local regression. Ex-
periments with real data and simulations based on real data show that the algorithm is not
only simple, it is effective.

I. Introduction

The widespread deployment of wireless networks in
buildings provides an opportunity to estimate the lo-
cation of people and objects in real-time for emer-
gency response, protection of corporate assets, and
personalized, location-based communications. Many
approaches to static location and dynamic tracking
from wireless signal strength measurements have been
proposed, some of which are reviewed in Section II.
Typically, tracking involves updating static location
estimates using a motion model.

This paper presents a new, simple, model-free al-
gorithm for dynamic tracking that performs well with
limited training data. Briefly stated, the proposed al-
gorithm has three pieces.

Map Training Data For each of the NAP access
points (APs), map the mean received signal
strength (RSS) across the region of interest by
linearly interpolating sample means over a tri-
angular partition of the space, ignoring height.
Also map the standard deviation of RSS by lin-
early interpolating a robust estimate of standard
deviation over the same triangles.

Estimate Location Estimate signal strength at the
current location by taking a moving average of
the m most recent RSS measurements. Then
find the k-nearest neighbors of this average in the
NAP-dimensional mean signal strength map, and
take a weighted average of their corresponding k
locations. With Gaussian weights, this estimate

approximates the Bayes estimate of location for
a uniform prior on location, Gaussian RSS mea-
surements, and squared error loss.

Smooth the Track Take a locally linear smoothing
of the moving average location estimates. This
increases the stability of the estimated path, and
as a result cuts down wall crossings.

Mapping is done off-line; location estimation and
tracking are done on-line whenever RSS measure-
ments for the tracked object become available.

Tracking, then, requires only Delaunay triangula-
tion of the region, linear interpolation over triangles,
k-nearest neighbors, weighted averaging, moving av-
eraging, and locally linear smoothing. There are well-
known fast algorithms for all these procedures (e.g.,
[11] for Delaunay triangulation, [3], [13] for k-nearest
neighbors, and [4], [5] for locally linear smoothing).
We provide rough guidelines for choosing the number
of nearest neighbors and the window of the moving
average. While others (e.g., [8]) have suggested using
a few equally weighted nearest neighbors, we show
that being bold and taking many neighbors, as many
as 100, and weighting them probabilistically can be
advantageous for static location estimation.

The rest of this paper is organized as follows. Re-
lated work is reviewed in Section II. Static location
estimation is described in Section III, and the dynamic
tracking algorithm is described in Section IV. Exper-
iments with real data and simulations based on real
paths are discussed in Section V.



II. Related Work

Relating received signal strength (RSS) to position
is key to estimating the location of either a static or
moving object. Several parametric propagation mod-
els that describe path loss across a region have been
proposed, but none is universally accepted [21],[16]
and many require restrictive assumptions. The most
common models are based on inverse exponent laws:
10 log10 L(d) = γ log10 d + Lref where d is distance,
L(d) actual path loss and Lref is path loss at a refer-
ence distance. Values for γ range from about 1.5 to
5 depending on channel conditions, such as whether
the target location is line-of-sight down a corridor or
whether the transmitter and receiver are on adjacent
floors; see [23],[22],[25] as well as [16] and the ref-
erences therein. There can also be additional log-
normal shadowing loss with a standard deviation rang-
ing from 3 to 15 dB that affects signal strength read-
ings [16]. All these sources of variation need to be
modeled for effective location estimation indoors.

More ambitious propagation models do not rely
solely on distance but also include the loss incurred
from walls, floors, partitions and other obstacles that
lie between the transmitter and the receiver. Path loss
can then be determined by adding up attenuation es-
timates for the various obstacles, see [26] for exam-
ple. In practice, however, these extended path loss
models offer little improvement over exponent mod-
els. Including detailed information about the compo-
sition of the walls, floors, and other structures in the
building can help, but this information is difficult to
obtain. Moreover, even sophisticated ray tracing mod-
els that take detailed building maps and materials into
account, such as the WISE tool [12], have typical er-
rors of 6 dB, which is far too high for accurate track-
ing. These tools may however be used in planning the
location and number of APs as well as the distribution
of training positions.

Nonetheless, some location estimation algorithms
have been based on path loss models; for example, [2].
In that paper, the parameters of the path loss model
are estimated from a set of training data with known
locations using a regression model that includes wall
attenuation and a path loss exponent. Location esti-
mates are then based on the fitted model. Using sim-
ulated data, [2] shows that this procedure can be ef-
fective when signal propagation follows the assumed
model. No experiments with real data are reported in
that paper, however.

Several authors [1, 17, 8] have avoided path loss
models and instead drawn an empirical mean RSS
map for an AP by interpolating the mean signal
strengths obtained at a set of known training loca-
tions. RSS measurements at an unknown location are
then compared to the signal strength maps to estimate
the receiver’s location Because there is no path loss
model, the locations of the APs need not be known,
and indeed are not used in any way. An unknown tar-
get location is then estimated by comparing its vector
of NAP signal strengths to the NAP mean RSS maps
computed from the training data.

For example, Krishnan et al. [17] describe a system
in which training measurements are constantly gen-
erated by transceivers, called emitters, at fixed loca-
tions. The emitters allow the current propagation en-
vironment, which depends on factors that change over
time, such as building occupancy, to be re-estimated
routinely. A mean signal map is estimated by fitting a
nonparametric smooth function to the training data us-
ing the coordinates of their locations as the covariates
in the fitted model. To estimate a location, they com-
pare its J strongest RSS readings to the correspond-
ing J smoothed RSS maps, ignoring the (NAP − J)
weaker signals. The location of the nearest neighbor
using Euclidean distance is declared to be the esti-
mated location.

Elnahrawy, Li, and Martin [8] build a purely em-
pirical mean signal strength map by partitioning the
region (“floor space”, ignoring height) with Delaunay
triangulation and then applying triangle-based linear
interpolation to the sample mean RSS at a set of train-
ing positions. (We use the same procedure to compute
an empirical mean RSS map in this paper.) As in [17],
a location is estimated by finding its nearest neighbor
in the set of empirical maps, but now the maps for
all APs are used, not just the maps corresponding to
the J strongest signals at the location, and the average
of k = 1, 2, or 3 nearest neighbors, not just the one
closest neighbor, is used to estimate location. This
approach is related to our own except that we have
a heuristic for choosing k (described in Section III)
and instead of averaging with uniform weights we use
Gaussian weights with means and standard deviations
taken from maps of the means and standard deviations
of signal strengths. This probabilistic weighting gives
a Bayes estimate of location for squared error loss
when the prior distribution is uniform across the map
and RSS measurements have normal distributions.

Dynamically estimating the location of a moving



person or object, or tracking, has also been studied
extensively. Perhaps the most well-known algorithm
for tracking is the Kalman filter, which has been used
for indoor tracking in [15] and [14], for example.
Kalman filters are based on linear motion, but people
may not take linear paths indoors because there are
doors, walls, and corners. Evennou, Marx and No-
vakov [9] use particle filters to accommodate more re-
alistic paths. Signal measurements are assumed to be
Gaussian, and motion likelihoods have a factor of one
or zero depending on whether a wall is crossed. At
each step, the posterior likelihood weight for a par-
ticle is determined by multiplying the motion like-
lihood and signal likelihood. Computations for this
method are burdensome and not suited to online track-
ing. Voronoi filters that restrict movement to a graph
that by design prohibits wall crossing have also been
used in [18]. This procedure can be more accurate,
but it also requires more computation.

Finally, other aspects of signal propagation besides
mean path loss, such as round-trip timing [19] and de-
lay [10], have been used to estimate location. Such
techniques are potentially far more accurate than those
based on signal strength, but they require high band-
width (ultra wideband) signals and specialized hard-
ware. For example, ranging involves detecting the re-
turn pulse reflected from a passive device on the target
and measuring the round trip delay. For line-of-sight
locations, this method can achieve centimeter accu-
racy over distances of about 20m [19]. The algorithm
described in this paper could be applied with timing
measurements, but we have not done so to date.

III. Static Location Estimation

Following [8], the sample mean µ̂(x, y) = R(x, y) of
RSS measurements from an AP are computed at each
location (x, y) in a training set. To take into account
changing variability over the region, we also com-
pute the MAD estimate of standard deviation σ̂(x, y)
= 1.4826median|R − median(R)| at each training
location. (The factor 1.4826 is chosen so that the
MAD is an unbiased estimate of the standard devia-
tion for Gaussian measurements. The MAD estimate
is used because it is robust against outliers and non-
normality.) Empirical mean and standard deviation
maps for each AP are obtained by linearly interpo-
lating the sample means and MAD estimates over De-
launay triangles [11].

An unknown location is estimated by finding the

k-nearest neighbors in the empirical mean maps
{µ̂i(x, y)} for i = 1, . . . , NAP to the observed vector
of RSS R = (R1, . . . , RNAP

). If the jth nearest neigh-
bor (xj , yj) has estimated mean (µ̂j1, . . . , µ̂jNAP

) and
estimated standard deviation (σ̂j1, . . . , σ̂jNAP

), then it
is assigned weight

wj =
NAP
∏

i=1

1√
2πσ̂ji

exp

(

−(Ri − µ̂ji)
2

2σ̂2
ji

)

.

The weight is the Gaussian probability density func-
tion evaluated at R. Given n measurements at the
unknown location, the average measurement is used
for finding the k nearest neighbors and each wj is the
product of the n Gaussian probability densities eval-
uated at the n measurements respectively. The esti-
mated location (x̂, ŷ) is defined to be the weighted av-
erage

(

∑k
j=1 wjxj
∑k

j=1 wj

,

∑k
j=1 wjyj
∑k

j=1 wj

)

.

Conventionally, only a few nearest neighbors, such
as 1,2, or 3, and uniform weights have been used,
but using much larger k with Gaussian weights can
be better. For example, using Gaussian weights over
the entire mean map gives an approximate posterior
mean for the unknown location when the RSS mea-
surements are normally distributed with a common
variance and the prior is uniform [24]. The RSS mea-
surements do not have a common variance, so the por-
tion of the map used to estimate the location should be
large enough to capture a large fraction of the poste-
rior distribution but not so large as to include many
locations with very different distributions of RSS.

Roughly, if the unknown location is estimated from
the sample mean of n test measurements from the un-
known location, then its estimated standard error is
about σ̂/

√
n where σ̂ is an average across locations

and APs, and the uncertainty interval should contain
at least one standard error centered at the location cor-
responding to the sample mean at the test location.
Thus, k should be approximately the number of grid
points that lie in a circle of radius aσ̂/

√
n, where a

is the error in distance caused by a 1-dB shift in RSS.
When the grid points for a mean map are a distance d
apart, this implies that

k ≈ πa2σ̂2

nd2
. (1)

In the experiments analyzed in Section 5, which
have four APs, a is less than 1. We use



a = 0.75. Furthermore, a threshold, wthresh =
(
√

2πσ̂)−nNAP exp(−nNAP/2), is used to exclude
neighbors with weights less than wthresh.

IV. Model-free Online Tracking

Kalman filter and particle filter models used in [9], for
example, assume a simple linear velocity model that
is consistent with Brownian motion, while the Voronoi
filter proposed in [9] adds constraints that prohibit im-
possible wall crossings. Linear motion models like
these work well when the trajectory is simple, but not
when people stop, turn, reverse direction, and change
speeds abruptly, as they do indoors. On the other
hand, most paths are at least smooth. Thus, we as-
sume that the path itself is locally linear, with the lin-
ear coefficients changing over time.

It is important to note that the RSS measurements
along a locally linear path need not have a locally
linear mean because indoor propagation is complex.
Thus, at every RSS reading, we update the path in two
steps. We assume that the mean and standard devia-
tion of RSS readings are roughly constant over short
paths so we first estimate the current location from an
average of RSS measurements over the recent past us-
ing the weighted k-nearest neighbor method described
in Section III. We then assume that the motion path is
locally linear over longer time spans and fit a smooth,
locally linear model to a longer segment of the esti-
mated locations in the path obtained so far. Note that
the order of operations is important; the moving aver-
age controls for the variability in RSS measurements
and the smoothing imposes regularity on the path.
These two steps of are described in Sections IV.A and
IV.B.

IV.A. Constant Location Estimation

If the target moves slowly relative to the rate at which
the RSS measurements are taken, then the mean sig-
nal strength on its path should be roughly constant for
short time spans. Thus, recent RSS measurements, not
just the current RSS measurement alone, provide rea-
sonable estimates of the current location. Since aver-
aging RSS measurements reduces their variance, com-
puting a location estimate for an average RSS over a
short time span should give more stable location es-
timates without incurring much bias. Therefore, to
estimate the location at a time t at which an RSS mea-
surement is taken,

1. compute the average R̄ of the m most recent RSS
measurements, and

2. find the weighted average of the locations of the
k nearest neighbors of R̄ in the empirical mean
signal strength map, as described in Section III

In words, the location estimate corresponds to a mov-
ing average of RSS measurements within a short win-
dow or span.

The bias introduced by using past RSS measure-
ments in the moving average when the target is not
stationary can be reduced by delayed tracking. That
is, to estimate the location at time t consider not only
m past and current measurements, but also the sub-
sequent n measurements. The delay in tracking that
results from using n future measurements may be ac-
ceptable if n is small and RSS readings are obtained
frequently.

The optimal choice of m minimizes the mean
squared error in estimated location, which depends on
the variance σ2 in RSS measurements and the distance
traveled over m measurements. If the moving aver-
age uses only the current and past measurements (no
subsequent measurements) and the distance v between
two adjacent RSS measurements is constant, then the
average distance of the sites of the m measurements
from the current location is mv/2. The mean squared
error in the estimate of the current location is then

MSE = variance+bias2 = a2σ2/m+m2v2/4, (2)

where a is the average change in distance that results
from a 1dB shift in RSS, as in Section 3. The above
equation shows that 1) the variance of the error de-
creases linearly with 1/m, and 2) the bias part in-
creases linearly with m. If σ and v are roughly con-
stant over the m measurements, then from equation
(2) and by differentiating with respect to m we obtain
that √

MSE ≥ (
27

16
)1/6(a2σ2v)1/3,

where the lower bound is achieved by taking

m =

(√
2aσ

v

)2/3

. (3)

For example, suppose a = 0.75 m, the RSS mea-
surements are received every 0.3 seconds, σ is about
3 dB along the recent path and the velocity is about 1
m/sec (i.e. v = 0.3 m). Figure 1 shows how the mini-
mal

√
MSE and the optimal m depend on the velocity.
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Figure 1:
√

MSE as a function of distance traveled be-
tween two consecutive measurements when a = 0.75
m, σ=3 dB. The solid line shows a cube root law fit to
the data; the numbers beside the solid points show the
optimal m for that velocity.

If at least one of the m RSS measurements is taken
ahead of the current position, then the bias is reduced
and the total number of measurements in the moving
average can be larger than equation (3) implies.

IV.B. Locally Linear Motion
Computing a location estimate from a moving average
of RSS measurements amounts to assuming that the
target does not move over short time intervals. These
estimates can be used to track a moving target, but
they are likely to be noisy because they are based on
only a few measurements. (Otherwise, the assumption
that the target is not moving might be false.) To make
use of older past information, we need to assume a
motion model. Here we assume that the path is locally
linear and use the LOESS smoother [4], [5].

The LOESS regression model is

xi = g(ti) + εi, i = 1, · · · , n,

where g is an unknown, locally linear regression curve
and the εi are independent, constant variance Gaus-
sian errors. The assumption of constant variance is
approximately true over time spans that are not too
large relative to the rate at which the target is moving.
The LOESS model is fit by iteratively re-weighted
least squares over a span of nearest neighbors (here
we use 40), where the weight on (ti, xi) depends on

the distance of the fitted value (ti, x̂i) from the ob-
served. (See [4] for a detailed explanation of LOESS
smoothing.) Because only a short delay in prediction
is desirable in tracking, there are typically many more
times ti to the left of t than to the right of t in the span
of t. A fast algorithm for fitting LOESS can be found
in [5] and is available in R [27], an open source sys-
tem for statistical computations and graphics. Besides
not requiring an exact motion model, LOESS is robust
to outliers and is not adversely affected by long-tailed,
non-Gaussian distributions.

Finally, in the experiments that we have analyzed,
there are often isolated measurements at the limit of
detection (about –90 dB in the data reported in Sec-
tion V). That is, the previous and subsequent mea-
surements are not close to the limit of detection, but
the current measurement is. There may be several ex-
planations for these outliers, such as passing obsta-
cles, but in any case we correct for spurious “missing”
readings by replacing each measurement at the limit
of detection by the average of the previous two mea-
surements, and then proceeding as if the replacement
were the true reading. Replacement by the mean is
not optimal, as replacement with a random draw from
a normal distribution would be better, but it is easy.

IV.C. Dynamic Tracking Algorithm
For a nearest neighbors span k, moving averaging
span m, (including n forward RSS measurements),
LOESS spans of s and r past and future estimated po-
sitions, tracking has the following steps.

1. For a set of training data with NAP APs,

(a) For each AP, create an empirical propaga-
tion model by triangle based linear interpo-
lation of sample means of RSS.

(b) For each AP, create an empirical map of
the standard deviation of RSS by triangle-
based linear interpolation of MAD esti-
mates.

2. For t = 1, 2, . . ., given an NAP-dimensional vec-
tor of RSS measurements Rt,

(a) If Rt is at the limit of detection, then re-
place it by the average of the two previous
measurements.

(b) Compute the moving average of
Rt−m+1, . . . , . . . , Rt+n, say ma(R)t.
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Figure 2: Contours of the estimated mean signal strength (left) and estimated standard deviation (right) of signal
strength for one AP for the data discussed in Section 5. The AP, shown by a filled circle, is located in the
northwest stairwell; the 40 m × 40 m building map is shown by solid lines in the background. The dotted lines
show the Delaunay triangulation based on 30 training positions.

(c) Estimate the location (x̂t, ŷt) of ma(R)t

by finding the Gaussian-weighed average
of the locations of its k nearest neighbors
in the empirical mean signal strength map.

(d) Fit a LOESS model to (x̂t−s+1, . . . , x̂t+r)
to estimate X̂t.

(e) Fit a LOESS model to (ŷt−s+1, . . . , ŷt+r)
to produce the estimate Ŷt.

(f) Return (X̂t, Ŷt) as the estimated position at
time t.

The first major step constitutes training and can be
computed off-line; the second major step defines
tracking and can be computed on-line. The final posi-
tions {(X̂t, Ŷt)} are smooth with respect to t and serve
as the estimated moving path. It would be preferable,
but more complicated, to smooth the bivariate (xt, yt)
in one step, taking into account the correlation in the
two dimensions. We believe that this would further
reduce impossible wall-crossings.

V. Experimental Results
V.A. Signal Strength Maps
Our experiments use WIFI data provided by Frédéric
Evennou of France Telecom Division R&D and re-

ported in [9]. About 100 RSS measurements from
four APs were obtained at each of 88 positions in a
space of about 40 m × 40 m that includes corridors
and offices around a walled central courtyard with
stairwells in the corners (see Figure 2). An AP was
located in each of the four corners. We use RSS mea-
surements from 30 fixed positions that are roughly
uniformly spaced over the region of interest (ignor-
ing the courtyard, for example) for training. As in [8],
we found that using more training positions, which is
costly, has little effect on the quality of location esti-
mation.

The estimated mean and standard deviation (MAD)
signal strength maps based on all the measurements
for the 30 training positions for the northwest AP and
an interpolation grid size of 0.25 m are shown in Fig-
ure 2. (The mean and standard deviation maps for the
other access points are similar, with obvious rotations
that depend on the location of the AP.) As would be
expected, the mean signal strength diminishes from
about –50 dB to about –90 dB (apparently, the limit of
detection) with distance from the access point. Sur-
prisingly, the mean signal strength falls off with the
square root of distance in both the corridors and of-
fices, with an additional constant loss for locations in
offices. This model does not fit all APs “behind the
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Figure 3: Errors in location estimates for an exper-
iment with the mean and standard deviation maps
shown in Figure 2. The maps were based on 100 mea-
surements at each of the 30 training positions; loca-
tions were estimated from 10 randomly chosen RSS
measurements from each location. The circles at the
end of the line show the true location; the other end of
the line denotes the estimated location.

courtyard wall”, though, so we do not use it here.
The most prominent features of the standard devia-

tion maps are the hills in each corner. For the access
point in the NW corner, the standard deviation is high-
est in the northeast corner and lowest in the southwest
corner, probably because the signal there is weak and
bounded below by -90. Over the entire space, the esti-
mated standard deviation ranges from 1 to 5 dB, with
a mean and median standard deviation over the region
of about 2.8 dB and 3.0 dB respectively.

V.B. Location Experiments

First, the mean and standard deviation maps in Sec-
tion V.A are used to estimate all 88 locations using
a random subset of 10 RSS measurements from each
AP for each location. Thus, the standard error at any
point in the empirical mean signal strength map is
about 2.8/

√
10 = 0.95. Because the grid size is 0.25

m, equation (1) gives k ≈ 22. Thus, we estimate loca-
tion with a Gaussian weighted average of the 25 near-
est neighbors.
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Figure 4: Simulated distribution of median location
error over the region with a training set of 100 RSS
measurements from each of 30 locations and each of
the 88 locations estimated from one randomly cho-
sen RSS measurement from the location. The white
boxplots are for uniform weights; the gray are for
Gaussian weights with means and standard deviations
taken from the empirical mean and standard devia-
tion maps. Each pair of boxplots represents a different
number k of nearest neighbors.

The errors for one trial are shown in Figure 3. The
errors are generally small, except outside the convex
hull of the training positions. Moreover, the errors are
generally larger along the north-south corridors than
they are along the east-west corridors. Also, the errors
tend to be larger in the corners, i.e., very close to the
access points. The 0.1, 0.5 and 0.9 quantiles of the er-
rors are 0.35, 0.96 and 2.86 meters respectively. Sim-
ilar maps are obtained for other trials under the same
conditions (10 RSS measurements from each location
to be estimated).

The effect of using Gaussian weights rather than
uniform weights can be seen in Figure 4. There,
static location estimates for the 88 locations are based
on one randomly selected RSS measurement from
each location, using the training maps shown in Fig-
ure 3. The optimal number of nearest neighbors k
from equation (1) is now 220, or roughly 200. In Fig-
ure 4, the boxplots are based on computing the median
error over the map for 1000 replications of this experi-
ment. The box shows the 0.25, 0.5 and 0.75 quantiles,
the open circles show outliers, and the dashed lines
show the tails of the data without the outliers. As
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Figure 5: The true path (light gray line along corri-
dors), location estimates based on the moving average
(dotted line), and smoothed, tracking estimates (solid
line). The filled circles denote the start of the path; the
open circles denote the end of the path. (Axes are the
same as in Figure 2.)

would be expected, Gaussian weights are not much
better than uniform weights if k is small, but their im-
portance increases with k. There is about a 5% re-
duction in the average median error for k = 200 and
Gaussian weights. Note that the difference between
using k = 1 and k = 5 is negligible, with or without
weights.

VI. Tracking Experiments

We will analyze the performance of our tracking algo-
rithm for the path data (RSS measurements and loca-
tions) in [9] using the training maps from Section V.B,
but first we must evaluate whether the training maps
are appropriate for the tracking data. The tracking
data were collected days after the training data, and
the signal strength map might have changed in the in-
terim. In fact, comparing the mean observed RSS in
the tracking experiments with the mean observed RSS
in the training data shows that adjusting the RSS mea-
surements for APs 1,2,3, and 4 by 1 dB, 1.5 dB, 1.5 dB
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Figure 6: Estimated path using a moving average with
a span of 8 (dotted) followed by loess with a span of
40 (solid line); the true path is the light gray line shad-
owed by the estimated path which goes into one room
off the corridor. (Axes are the same as in Figure 2.)

and 1 dB respectively corrects for the average drift in
the mean. More generally, drift in calibration could be
evaluated using data routinely collected from known
locations, as proposed in [17].

Figure 5 shows the results of applying our tracking
algorithm to the path data reported in [9] with k = 100
nearest neighbors and a moving average of m = 8
past and current measurements. The 0.1, 0.5, and
0.9 error quantiles over the map are 0.3, 1.3 and 2.5
m respectively for the moving average estimates; the
values after smoothing are 0.5, 1.4 and 2.6 m. Thus,
smoothing in this case does not reduce errors, but the
smooth path has fewer wall crossings and unrealistic
jumps. In comparison, [9] reports a median error of
2.0 m for the Kalman filter and 1.6 m for the Voronoi
filter that avoids wall crossing. That is, our tracking
method reduces the median error of the Kalman fil-
ter by about 30% and the median error of the much
more complicated Voronoi filter by about 14% in this
example.

Finally, we construct simulated paths by fixing the
locations along an actual path and simulating RSS



measurements by sampling from normal distributions
with means and standard deviations determined by the
empirical RSS maps. The same training data used in
Figure 5 were used here. Estimates for a simulated
path are shown in Figure 6. Here the 0.1, 0.5 and
0.9 quantiles of location error are 0.27, 0.9 and 1.8
m respectively after the moving average step. After
smoothing the path, the 0.1, 0.5 and 0.9 quantile er-
rors are 0.4, 0.8 and 1.8 m, and the paths are again
more realistic.

Table 1 shows the effect of using k nearest neigh-
bors and a moving average over m− 1 past RSS mea-
surements, the current measurement, and either no or
one future measurement. The table reports median er-
ror over the path, averaged over 100 simulated paths.
As would be expected, using one future (t = n + 1)
RSS measurement to estimate location at time n re-
duces the median error along the path noticeably – by
about 10%. Moreover, with one future RSS measure-
ment, the optimal choices are a moving average win-
dow of m = 8 and k = 25 nearest neighbors. Equa-
tion (1) would suggest k = π0.752σ̂2/(8/16) ≈ 28
in this case, which is quite close to the simulated op-
timum for both the no look-ahead and one look-ahead
cases in the table.

VII. Conclusions

We have shown that low complexity tracking algo-
rithms that use only propagation loss measurements
and do not require a motion model can be used for
tracking people and objects indoors. In experiments,
the proposed algorithm does better than previous algo-
rithms: our MSE is about 14% smaller than the error
of the Voronoi filter, and about 30% smaller than the
error of the Kalman filter. Root mean squared errors
are on the order of 1 m. The algorithm is built from
simple components, Delaunay triangulation, linear in-
terpolation, moving averaging, and local linear regres-
sion, which are fast to compute. The performance of
these algorithms can be enhanced by taking measure-
ments more frequently or using more APs, without re-
quiring much more computation. This approach does
need good training data, though. Training data should
be recent, or else it must be adjusted (calibrated) to
accommodate changes in propagation resulting from
changes in the building, the objects within it, or the
state of windows and doors, for example.

For static or constant location estimation, we have
proposed averaging with Gaussian weights. This

weighted average approximates the posterior local
mean of location if RSS measurements are Gaussian
and the prior is uniform over the space. The poste-
rior local mean is the optimal estimate for Gaussian
errors. We have also proposed a method for choosing
the span k for k-nearest neighbors.

For tracking, we have shown that greater accuracy
is obtained by first averaging over the RSS values and
then estimating the location of the average RSS in-
stead of first estimating the locations and then averag-
ing over these. The choice of the moving average span
has to balance bias and variance: generally shorter
spans are less biased but also less precise. The best
trade-off can be determined by using an estimate of
the tracked object’s speed, e.g. integration of the path
length divided by time. When speed is estimated ac-
curately, our results show that the error using the op-
timal m increases only as the cube root of speed. Fi-
nally, we note that using no motion model, but rather
taking local moving averages and locally linear re-
gressions, is preferable to using either a simple ap-
proximate motion model, as Kalman filtering does, or
a complicated motion model, as particle filters do.
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