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How Can We Build More Intelligent Computer 
Systems?

Need to perceive and understand the world

Basic speech and vision capabilities	


Language understanding	


User behavior prediction	



…



How can we do this?

• Cannot write algorithms for each task we want to 
accomplish separately	



• Need to write general algorithms that learn from 
observations

Can we build systems that:	



• Generate understanding from raw data	



• Solve difficult problems to improve Google’s products	



• Minimize software engineering effort 	



• Advance state of the art in what is possible



Plenty of Data

• Text:  trillions of words of English + other languages	



• Visual: billions of images and videos	



• Audio: thousands of hours of speech per day	



• User activity: queries, result page clicks, map requests, etc.	



• Knowledge graph: billions of labelled relation triples	



• ...



Image Models



What are these numbers?



What are all these words?



How about these words?



Textual understanding

“This movie should have NEVER been made. From the poorly 
done animation, to the beyond bad acting. I am not sure at what 
point the people behind this movie said "Ok, looks good! Lets do 
it!" I was in awe of how truly horrid this movie was.”



General Machine Learning Approaches
• Learning by labeled example: supervised learning	



• e.g.  An email spam detector 	



• amazingly effective if you have lots of examples	


!

• Discovering patterns: unsupervised learning	



• e.g. data clustering	



• difficult in practice, but useful if you lack labeled 
examples	


!

• Feedback right/wrong: reinforcement learning	



• e.g. learning to play chess by winning or losing	



• works well in some domains, becoming more important



Machine Learning

• For many of these problems, we have lots of data	



!

• Want techniques that minimize software engineering effort	



• simple algorithms, teach computer how to learn from 
data	



• don’t spend time hand-engineering algorithms or high-
level features from the raw data



What is Deep Learning?

of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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A working hypothesis:

The ventral stream “untangles” objects

“cat”

•  The modern reincarnation of Artificial Neural Networks from 
the 1980s and 90s.	


•  A collection of simple trainable mathematical units, which 
collaborate to compute a complicated function.	


•  Compatible with supervised, unsupervised, and reinforcement 
learning.
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A working hypothesis:

The ventral stream “untangles” objects

“cat”

•  Loosely inspired by what (little) we know about  
    the biological brain.	


•  Higher layers form higher levels of abstraction



Neural Networks

• Learn a complicated function from data

space 
1

space 
2



The Neuron

yi = F

 
X

i

wixi

!

x1 x2 x3

w1 w2 w3

F (x) = max(0, x)

• Different weights compute different 
functions



Neural Networks
• Simple compositions of neurons• Different weights compute different 

functions



Neural Networks
• Simple compositions of neurons

Input:

Output:



Neural Networks
• Simple compositions of neurons

Input:

Output:



Neural Networks

Input:

Output:



Neural Networks

Input:

Output:



Learning Algorithm

• while not done	



• pick a random training case (x, y) 	



• run neural network on input x 

• modify connections to make prediction 
closer to y 



Learning Algorithm

• while not done	



• pick a random training case (x, y) 	



• run neural network on input x 

• modify connection weights to make 
prediction closer to y 



How to modify 
connections?

• Follow the gradient of the error w.r.t. the 
connections

Gradient points in direction of improvement



What can neural nets 
compute?

• Human perception is very fast (0.1 second)	



• Recognize objects  (“see”)	



• Recognize speech   (“hear”)	



• Recognize emotion	



• Instantly see how to solve some problems	



• And many more!



Why do neural 
networks work?
Why do neural 
networks work?

see	


image

catclick	


if cat	



0.1 sec: 
neurons 
fire only 
10 times!	





Why do neural 
networks work?

• Anything humans can do in 0.1 sec, the 
right big 10-layer network can do too



Functions Artificial Neural Nets 
Can Learn

Input Output

Pixels: “ear”

Audio: “sh ang hai   res taur aun ts”

<query, doc1, doc2> P(doc1 preferred over doc2)

“Hello, how are you?” “Bonjour, comment allez-vous?”



Research Objective: Minimizing Time to Results

• We want results of experiments quickly	



• “Patience threshold”: No one wants to wait more than a few 
days or a week for a result	



• Significantly affects scale of problems that can be tackled	



• We sometimes optimize for experiment turnaround time, 
rather than absolute minimal system resources for 
performing the experiment



Train in a day what takes a single GPU card 6 weeks



How Can We Train Big Nets Quickly?

• Exploit many kinds of parallelism	



!

• Model parallelism	



• Data parallelism



Input data

Layer 1

Layer N

Representation

...



Input data

Layer 1

Layer N

Representation

(Sometimes)	


Local Receptive 

Fields
...



Layer 1

Layer 0

Layer N

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

...

Model Parallelism: Partition model across machines



Layer 1

Layer 0

Layer N

Partition 1 Partition 3Partition 2

Partition 1 Partition 3Partition 2

Minimal network traffic:	


The most densely connected	



areas are on the same partition

One replica of our biggest model: 144 machines, ~2300 cores

...

Model Parallelism: Partition model across machines



p

Model	



Data	



∆p p’

p’ = p + ∆p

Data Parallelism: 
Asynchronous Distributed Stochastic Gradient Descent

Parameter Server

∆p’

p’’ = p’ + ∆p’



Parameter Server

Model	


Workers

Data	


Shards

p’ = p + ∆p

∆p p’

Data Parallelism: 
Asynchronous Distributed Stochastic Gradient Descent



Applications



Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English	


(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Close collaboration with Google Speech team

label



Fully-connected layers

Input

Layer 1

Layer 7

...

Softmax to predict object class

Convolutional layers	


(same weights used at all	


spatial locations in layer)	


!
Convolutional networks 
developed by	


Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever & Hinton 
(all now at Google).	



Won 2012 ImageNet challenge with 16.4% top-5 error rate

2012-era Convolutional Model for Object Recognition



24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:	


Won 2014 ImageNet challenge with 6.66% top-5 error rate

Module with 6 separate!
convolutional layers



Good Fine-grained Classification

“hibiscus” “dahlia”



Good Generalization

Both recognized as a 
“meal”



Sensible Errors

“snake” “dog”



Works in practice
 for real users.



Works in practice
 for real users.







What about domains with sparse input data?

Deep neural networks have proven	


themselves across a range of supervised learning 

tasks involve dense input features.



~1000-D joint embedding space

dolphin

SeaWorld

Paris

Answer: Embeddings

porpoise

Camera

How can DNNs possibly deal with sparse data?



EEmbedding function

Deep neural network

Raw sparse inputs

Floating-point vectors

Prediction	


(classification or regression)

How Can We Learn the Embeddings?

features



ESingle embedding function

Hierarchical softmax	


classifier

Raw sparse features Obama’s

How Can We Learn the Embeddings?

nearby word

Skipgram Text Model

meeting with Putin

Mikolov, Chen, Corrado and Dean.  Efficient Estimation of Word 
Representations in Vector Space,  http://arxiv.org/abs/1301.3781.

http://arxiv.org/abs/1301.3781


source word

nearby words

  embedding!
    vector

upper layers

Nearest neighbors in language embeddings 
space are closely related semantically.

tiger shark!
!
bull shark!
blacktip shark!
shark!
oceanic whitetip shark!
sandbar shark!
dusky shark!
blue shark!
requiem shark!
great white shark!
lemon shark

car!
!
cars!
muscle car!
sports car!
compact car!
autocar!
automobile!
pickup truck!
racing car!
passenger car !
dealership

new york!
!
new york city!
brooklyn!
long island!
syracuse!
manhattan!
washington!
bronx!
yonkers!
poughkeepsie!
new york state

•  Trained skip-gram model on Wikipedia corpus.

E

   * 5.7M docs, 5.4B terms, 155K unique terms, 500-D embeddings



Solving Analogies

• Embedding vectors trained for the language modeling task have 
very interesting properties (especially the skip-gram model).

!

E(hotter) - E(hot) ≈ E(bigger) - E(big)	


!

E(Rome) - E(Italy) ≈ E(Berlin) - E(Germany)	





!

E(hotter) - E(hot) + E(big) ≈ E(bigger)	


!

E(Rome) - E(Italy) + E(Germany) ≈ E(Berlin)	



Solving Analogies

• Embedding vectors trained for the language modeling task have 
very interesting properties (especially the skip-gram model).

Skip-gram model w/ 640 dimensions trained on 6B words of news text 
achieves 57% accuracy for analogy-solving test set.



Visualizing the Embedding Space



Embeddings are Powerful

fallen

draw

fell

drawn

drew take
taken

took

give
given

gave

fall



Embeddings seem useful.	


What about longer pieces of text?



Can We Embed Longer Pieces of Text?

• Query similarity / Query-Document scoring	



• Machine translation	



• Question answering	



• Natural language understanding?

Roppongi	


weather

Is it raining in 
Tokyo?

Record temps in 
Japan’s capital



Bag of Words:	


  Avg of embeddings

word word word word word

sentence rep

word word word word word

sentence rep

Topic Model:	


  Paragraph vectors

word word word word word

sentence rep

Sequential:	


  RNN / LSTM



Embeddings for long chunks of text.
Paragraph Vectors:

Word vectors

similar_wordword

Paragraph Vectors

similar_docdoc



the quick brown fox jumped

Ew Ew

Concatenate

Hierarchical softmax	


classifier

Simple Language Model

Ew Ew



the quick brown fox jumped

Ew Ew

Paragraph	


embedding	


matrix

Concatenate

Hierarchical softmax	


classifier

Paragraph Vector Model

training!
paragraph!

id

Ep Ew Ew

Details in Distributed Representations of Sentences and Documents, by 
Quoc Le and Tomas Mikolov, ICML 2014,  http://arxiv.org/abs/1405.4053

Ep

is a matrix of dimension ||# training paragraphs|| x dEp

At inference time, for a new paragraph, hold rest of model fixed and run gradient 
descent on words in paragraph to obtain representation for the paragraph
Paragraph vector captures the complementary, non-local information that is best 
able to predict the next word

http://arxiv.org/abs/1405.4053


Text Classification

Example 1: I had no idea of the facts this film presents. As I remember this situation I accepted the information 
presented then in the media: a confused happening around a dubious personality: Mr. Chavez. The film is a revelation 
of many realities, I wonder if something of this caliber has ever been made. I supposed the protagonist was Mr.Chavez 
but everyone coming up on picture<br /><br />was important and at the end the reality of that entelechy: the people, 
was overwhelming. Thank you Kim Bartley and Donnacha O´Briain.<br /><br />	


!
Example 2: This movie should have NEVER been made. From the poorly done animation, to the beyond bad 
acting. I am not sure at what point the people behind this movie said "Ok, looks good! Lets do it!" I was in awe of how 
truly horrid this movie was. At one point, which very may well have been the WORST point, a computer generated 
Saber Tooth of gold falls from the roof stabbing the idiot creator of the cats in the mouth...uh, ooookkkk. The villain of 
the movie was a paralyzed sabretooth that was killed within minutes of its first appearance. The other two manages to 
kill a handful of people prior to being burned and gunned down. Then, there is a random one awaiting victims in the 
jungle...which scares me for one sole reason. Will there be a Part Two? God, for the sake of humans everywhere I hope 
not.<br /><br />This movie was pure garbage. From the power point esquire credits to the slide show ending.	



Sentiment analysis on IMDB reviews	


!
50,000 training; 50,000 test	





Results for IMDB Sentiment Classification (long paragraphs)

Method Error rate

Bag of words 12.2%

Bag of words + idf 11.8%

LDA 32.6%

LSA 16.1%

Average word vectors 18%

Bag of words + word vectors 11.7%

Bag of words + word vectors + more tweaks 11.1%

Bag of words + bigrams + Naive Bayes SVM 9%

Paragraph vectors 7.5%



Important side note:	


“Paragraph vectors” can be computed for 

things that are not paragraphs.  In particular:	


!

sentences	


whole documents	



users	


products	


movies	



audio waveforms	


…



Paragraph Vectors:

Train on Wikipedia articles

Nearest neighbor articles to article	


for “Machine Learning”



Wikipedia Article Paragraph Vectors	


visualized via t-SNE



Wikipedia Article Paragraph Vectors	


visualized via t-SNE



Example of LSTM-based representation:	


Machine Translation

Input: “Cogito 
ergo sum”

Output: “I think, 
therefore I am!”

Big vector



Source Language:   A B C
Target Language:    W X Y Z

LSTM for End to End Translation 

sentence rep

See: Sequence to Sequence Learning with Neural Networks, Ilya 
Sutskever, Oriol Vinyals, and Quoc Le.  http://arxiv.org/abs/
1409.3215.  To appear in NIPS, 2014.

http://arxiv.org/abs/1409.3215


Example Translation
• Google Translate:	



As Reuters noted for the first time in July, the seating 
configuration is exactly what fuels the battle between the 
latest devices.	



• Neural LSTM model:	



As Reuters reported for the first time in July, the 
configuration of seats is exactly what drives the battle 
between the latest aircraft.	



• Human translation:	



As Reuters first reported in July, seat layout is exactly what 
drives the battle between the latest jets.	





sentence rep

PCA

LSTM for End to End Translation 

linearly separable	


wrt subject vs object



sentence rep

PCA
mostly invariant to paraphasing

LSTM for End to End Translation 



Combining modalities	


e.g. vision and language



Generating Image Captions from Pixels

Human:  A young girl asleep on the sofa cuddling a stuffed bear.	



Model sample 1:  A close up of a child holding a stuffed animal.	



Model sample 2:  A baby is asleep next to a teddy bear.

Work in progress by Oriol Vinyals et al.



Generating Image Captions from Pixels

Human:  Three different types of pizza on top of a stove.	



Model sample 1:  Two pizzas sitting on top of a stove top oven.	



Model sample 2:  A pizza sitting on top of a pan on top of a stove.



Generating Image Captions from Pixels

Human:  A green monster kite soaring in a sunny sky.	



Model:  A man flying through the air while riding a skateboard.



Generating Image Captions from Pixels

Human:  A tennis player getting ready to serve the ball.	



Model:  A man holding a tennis racquet on a tennis court.



Conclusions
• Deep neural networks are very effective for wide range of 

tasks	



• By using parallelism, we can quickly train very large and effective deep 
neural models on very large datasets	



• Automatically build high-level representations to solve desired tasks	



• By using embeddings, can work with sparse data	



• Effective in many domains: speech, vision, language modeling, user 
prediction, language understanding, translation, advertising, …

An important tool in building 
intelligent systems.



Joint work with many collaborators!	
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