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Machine Learning successes
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Feature Extraction

> C(Classifier

Feature extraction
(Mostly hand-crafted features)



Hand-Crafted Features

Computer vision:
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New feature-designing paradigm

Unsupervised Feature Learning / Deep Learning
Reconstruction ICA

Expensive and typically applied to small problems



The Trend of BigData
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Outline

Reconstruction ICA
Applications to videos, cancer images
Ideas for scaling up

Scaling up Results



Topographic Independent Component Analysis (TICA)




1. Feature computation

2. Learning

Input data: @



Topographic Independent Component Analysis (TICA)




Invariance explained

Images Imagel I Image2 I
Features
Locl Loc2
1 0]
F1
I 0] 1

F2

Pooled feature of F1 and F2

sqrt(F+0°) =1

sqrt(0°+1%) =1

~ T

Same value regardless the location of the edge



TICA: Reconstruction ICA:
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—> Equivalence between Sparse Coding, Autoencoders, RBMs and ICA

——> Build deep architecture by treating the output of one layer as input to
another layer

Le, et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. NIPS 2011



Reconstruction ICA:
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Reconstruction ICA:
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Le, et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. NIPS 2011



TICA: Reconstruction ICA:
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Le, et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. NIPS 2011



Why RICA?

Algorithms Speed Ease of training Invariant Features
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Le, et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. NIPS 2011



Summary of RICA

- Two-layered network
- Reconstruction cost instead of orthogonality constraints

- Learns invariant features



Applications of RICA



Action recognition
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Le, et al., Learning hierarchical spatio-temporal features for
action recognition with independent subspace analysis. CVPR 2011
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Le, et al., Learning hierarchical spatio-temporal features for
action recognition with independent subspace analysis. CVPR 2011
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Cancer classification
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Hand engineered Features RICA

Le, et al., Learning Invariant Features of Tumor Signatures. ISBl 2012



Scaling up
deep RICA networks



Scaling up Deep Learning
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It’s better to have more features!
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Most are
local features




Local receptive field networks
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Challenges with 1000s of machines



Asynchronous Parallel SGDs
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Asynchronous Parallel SGDs

’Parameterserver =<§/

o

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Summary of Scaling up

- Local connectivity

- Asynchronous SGDs

... And more

RPC vs MapReduce
Prefetching

Single vs Double
Removing slow machines

Optimized Softmax



10 million 200x200 images

1 billion parameters



Training

Dataset: 10 million 200x200 unlabeled images from YouTube/Web

Train on 2000 machines (16000 cores) for 1 week

1.15 billion parameters
- 100x larger than previously reported
- Small compared to visual cortex

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



The face neuron

Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Random distract

Frequency

Feature value

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Invariance properties
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Optimal stimulus
by numerical optimization

Top stimuli from the test set

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Random distractors
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Random distractors

Cat faces
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012
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ImageNet classification

22,000 categories
14,000,000 images

Hand-engineered features (SIFT, HOG, LBP),
Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



22,000 is a lot of categories...

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

PDUTLLE V ay

eagle ray
spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus

manta, manta ray, devilfish
Atlantic manta, Manta birostris
devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis
little skate, Raja erinacea




Best stimuli
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Best stimuli
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Best stimuli
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Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

ImageNet 2009 (10k categories): Best published result: 17%
(Sanchez & Perronnin ‘11 ),
Our method:

Using only 1000 categories, our method > 50%

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



Other results

- We also have great features for
- Speech recognition

- Word-vector embedding for NLPs



Conclusions

*  RICA learns invariant features
*  Face neuron with totally unlabeled data
with enough training and data
*  State-of-the-art performances on
— Action Recognition
— Cancer image classification
— ImageNet

Cancer classification
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Feature visualization

ImageNet
0.005% 9.5%
Random guess Best published result Our method
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Action recognition benchmarks

Face neuron
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