Detecting Activities with Less

Cees Snoek

UNIVERSITY OF AMSTERDAM

Innovation **Center** for **Artificial Intelligence**

IARPA DIVA program

Goal: activity understanding

Spatio-temporal localization is key.

Prior art: box-supervised RGB and flow streams

G. Gkioxari and J. Malik, CVPR, 2015.

G. Singh et al, ICCV, 2017.

P. Weinzaepfel et al, ICCV, 2015.

V. Kalogeiton et al, ICCV, 2017.

i. Detecting activities with less supervision

ii. Detecting activities with less streams

Less supervision

Pointly-Supervised Action Localization Pascal Mettes and Cees Snoek. IJCV 2019.

Related work: unsupervised action proposals

Analyze space and time jointly to obtain action proposals

Action-class agnostic, covers variable aspect ratios and temporal lengths

High recall with few proposals

Jain *et al.,* CVPR 2014 / IJCV 2017 Oneata *et al.,* ECCV 2014 Gemert *et al.,* BMVC 2015

Idea: exploit proposals during training

Training on bounding boxes not required.

Training on action proposals with point annotations is as effective.

Human point supervision

Compute proposal affinity

Mine best proposal

Train action classifiers using best proposals.

Idea: guide selection by point-supervision

Train action classifiers using best proposals.

Proposal affinity

Novel overlap measure between point annotations and proposals.

No overlap

Small overlap

High overlap

Mind the centre bias

Subtract the size of the proposal from the match.

To alleviate center bias of large proposals.

Action localization optimization

$$\begin{split} \min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \lambda \sum_i \xi_i, \\ \text{s.t.} \quad \forall_i : Y_i \cdot (\mathbf{w} \cdot \operatorname*{arg\,max}_{\mathbf{z} \in X_i} S(\mathbf{z}|\mathbf{w},b,P)) \geq 1 - \xi_i, \quad \forall_i : \xi_i \geq 0 \end{split}$$

Action localization optimization

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \lambda \sum_i \xi_i,$$

Max-margin objective to separate top proposals of positive examples from negative examples.

s.t.
$$\forall_i : Y_i \cdot (\mathbf{w} \cdot \operatorname*{arg\,max}_{\mathbf{z} \in X_i} S(\mathbf{z} | \mathbf{w}, b, P)) \ge 1 - \xi_i, \quad \forall_i : \xi_i \ge 0$$

Action localization optimization

Experiments

UCF Sports

THUMOS13

Unsupervised proposals from clustered trajectory features. Evaluated with Fisher Vectors and SVMs.

van Gemert et al. BMVC 2015

Training without ground truth boxes

Training without ground truth boxes

Training without ground truth boxes

Mean AP maintained using our mined proposals.

Qualitative results

Points vs boxes

How precise do we need to point?

How much faster?

	Box supervision	Point supervision Annotation stride						
		1	2	5	10	20	50	100
mAP@0.2	0.399	0.393	0.404	0.389	0.384	0.395	0.379	0.371
mAP@0.5	0.074	0.063	0.060	0.068	0.064	0.061	0.064	0.053
Annotation speed-up	1.0	9.8	19.3	46.0	85.0	147.6	264.6	359.6

Points on par with boxes, with 50-fold speed-up.

Up to 300-fold speed-up with marginal mAP drop only

Apple-to-apple comparison

	Action s	upervision	THUMOS13
	Boxes	Labels	mAP @ 0.2
van Gemert <i>et al.</i> BMVC 2015	\checkmark	\checkmark	34.5
Point annotation		\checkmark	34.8

Point annotation good alternative for box annotation.

Adding pseudo-points during inference

Adding pseudo-points during inference

Pseudo-point examples

Pseudo-pointing with person detector

Person detection

Select box with highest person confidence from pre-trained network.

Ren et al. NIPS 2015.

Pseudo-pointing with action proposals

Action proposals Centre of mass of the per-pixel action proposal count.

van Gemert et al. BMVC 2015.

33

Matching pseudo-points with proposals

Person detection (box)

Intersection-over-Union between boxes

Other pseudo-annotations (point)

Match point with box centre

Weighted overlap regularizes proposal selection.

Apple-to-apple comparison

	Action s	upervision	THUMOS13
	Boxes	Labels	mAP @ 0.2
van Gemert <i>et al.</i> BMVC 2015	\checkmark	\checkmark	34.5
Point annotation		\checkmark	34.8
\w pseudo points at inference		\checkmark	41.8

Points and pseudo-points better than box.

Points provide a fast and viable alternative to box-supervision

Pseudo-points at inference aid action localization accuracy

||.

Less streams

Dance with Flow: Two-in-One Stream Action Detection Jiaojiao Zhao and Cees Snoek. In CVPR 2019.

Simonyan & Zisserman NeurIPS14

Default strategy for action detection and classification.

RGB-stream: appearance only

Flow-stream: motion only

Doubles computation and parameters for modest accuracy gain.

Use motion as condition when training a single RGB-stream.

Two-in-one Stream

Learns a single stream RGB model conditioned on motion information

Motion condition layer

Generates simple features from flow images

Flow images are sparse, simple 1x1 or 3x3 convolution layer sufficient

Flow

Motion condition maps

Motion modulation layer

Generates a pair of transformation parameters

Two groups of 1x1 convolutional layers generate the parameters

RGB features are modulated by element-wise multiplication

Feature visualization

Feature visualization

Modulated features focus more on moving actors.

Ablation: Two-in-one detection vs. baselines

Single-frame SSD by Singh *et al.* ICCV17, on UCF101-24.

Better action detection

Ablation: Two-in-one detection vs. baselines

Single-frame SSD by Singh *et al.* ICCV17, on UCF101-24.

Better action detection with only <u>half</u> the computation and parameters.

Ablation: Two-in-one classification vs. baselines

ResNet152 by Wang *et al.* ArXive15, on UCF101.

Action classification profits less, accuracy-wise.

Ablation: Where to modulate?

Single-frame SSD by Singh *et al.* ICCV17, on UCF101-24.

Modulating after Conv 1 gives us the best result with least parameters.

Ablation: What flow?

	Brox	Flownet	RealTimeFlow	
		ì		
Flow-stream	11.60	7.13	3.58	
RGB-stream	18.49	18.49	18.49	
Two-stream	19.79	19.75	18.53	
Two-in-one stream	21.51	19.97	19.16	

Works with any flow, best with Brox.

Ablation: Generalization ability

Also better than two-stream on UCF-Sports, worse on J-HMDB.

Qualitative analysis

(a) RGB-stream Results: no detections (confidence scores < 0.5)

Two-in-one stream has higher activation on actions, resulting in correct detection.

(b) RGB-stream Heatmaps: low activation on actor

Qualitative analysis

(a) RGB-stream Results: no detections (confidence scores < 0.5)

Two-in-one stream has higher activation on actions, resulting in correct detection.

(b) RGB-stream Heatmaps: low activation on actor

(d) Two-in-one Heatmaps: high activation on actor

Comparison with state-of-the-art

Faster, lighter and better accuracy.

Results: success

Ground truth

Our prediction

Results: *failures*

Ground truth

Our prediction

Two-in-one stream is simple, effective and efficient but we still need to pre-compute optical flow

Modulation may profit from other priors as well

Thank you

www.ceessnoek.info