Temporal Attention with Conditional Inference for Large-Scale Multi-Label Video Classification

2018. Sep. 09

ECCV YouTube-8M Workshop

Team KANU

Eun-Sol Kim, Jongseok Kim, Kyoung-Woon On, Yu-Jung Heo, Seong-Ho Choi, Hyun-Dong Lee and Byoung-Tak Zhang

kakaobrain & Biointelligence Lab.

Submitted Model

Experiments

Criteria	Methods
Multimodal Inputs	Concatenate, Element-wise summation, Attention, Differential Features
Temporal Aggregation	LSTM, GRU, Bidirectional LSTM, Hierarchical RNN NetVLAD, CBHG
Classification Modules	Logistic Regression, Mixture of Experts, Class Chaining, Conditional Inference
Additional Modules	Layer Normalization, Skip Connection, Dropout Gradient Clipping

Ensemble Models

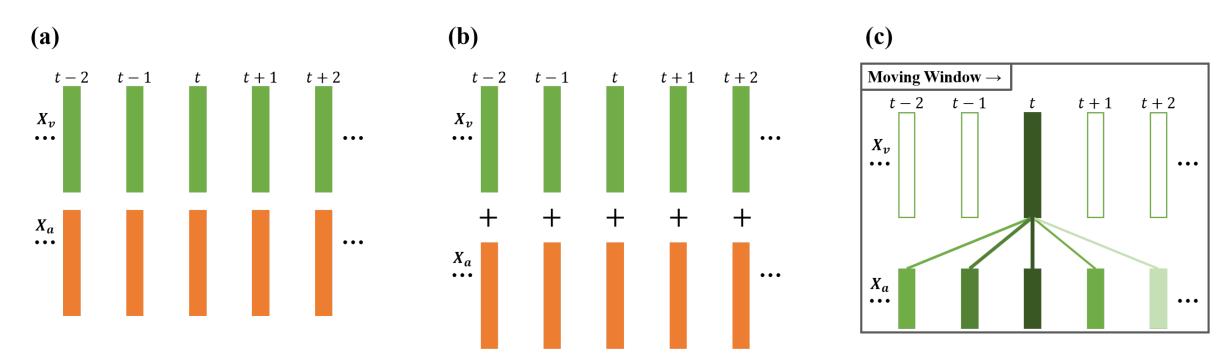
- From large methods, six modes are selected by beam search under 1GB constraints
- The six models are combined with different weight values

Ensemble Models

- Multimodal integ. (concat)-BLSTM-MoE2
- Multimodal integ. (att)-BLSTM-MoE2
- Multimodal integ. (concat)-BLSTM-CG-MoE2
- Multimodal integ. (concat)-NetVLAD-diff-C64-MoE4
- Multimodal integ. (sum)-NetVLAD-C64-MoE4
- Multimodal integ. (concat)-NetVLAD-C128-MoE4
- Size of the models: 162M, 163M, 168M, 138M, 136M, and 200M
- Weight parameters: 0.2186, 0.2220, 0.1393, 0.1684, 0.1412, and 0.1102

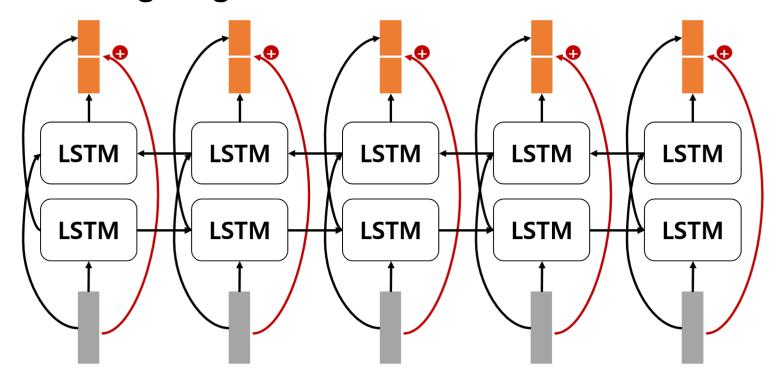
Multimodal Inputs

- Multimodal Integrations
 - (a): Concatenation, (b): Summation, (c): video-guided temporal attention



Temporal Aggregation

- Bidirectional LSTM with residual connection
- NetVLAD + context gating *



* A. Miech et al., 2017, Learnable pooling with Context Gating for video classification

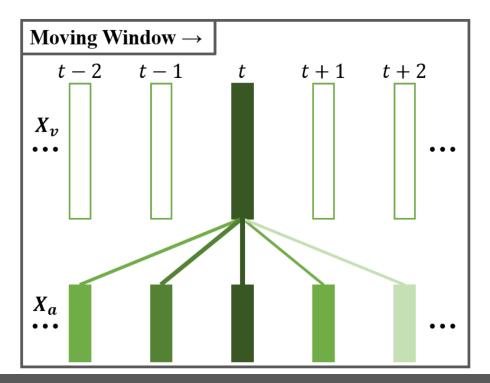
Problems on the YouTube-8M dataset

- Multimodal Representation Learning
 - Spatio-temporal Attention Methods
 - Temporal Structural Attention
 - Bi-linear (Compact) Pooling
- Multi-label Classification
 - Class-chaining
 - Conditional Inference

Multimodal Representation Learning

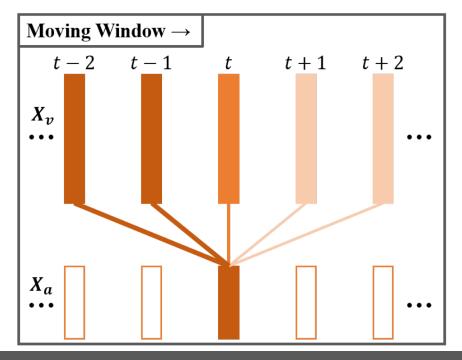
Temporal attention on audio frames guided by a video frame

$$\mathbf{x}_f = \mathbf{x}_v + softmax(\mathbf{x}_v^\top \mathbf{W}_a^{att} \mathbf{X}_{a_{exp}}^{t-w:t}) \mathbf{X}_{a_{exp}}^{t-w:t}$$
(b)



Temporal attention on video frames guided by an audio frame

$$\mathbf{x}_f = \mathbf{x}_{a_{exp}} + softmax(\mathbf{x}_{a_{exp}}^\top \mathbf{W}_v^{att} \mathbf{X}_v^{t-w:t}) \mathbf{X}_v^{t-w:t}$$
(c)



Experimental Results

Attention Method	Window Size w	Accuracy (GAP)
None	None	0.858
Image Guided Attention	5	0.86071
Image Guided Attention	9	0.86078
Image Guided Attention	13	0.85920
Image Guided Attention	all	0.86129
Audio Guided Attention	5	0.85670

+ BLSTM, MoE (#4)

Multi-label Classification

Conventional Methods on MLC

Given L classes Predict M multiple Classes

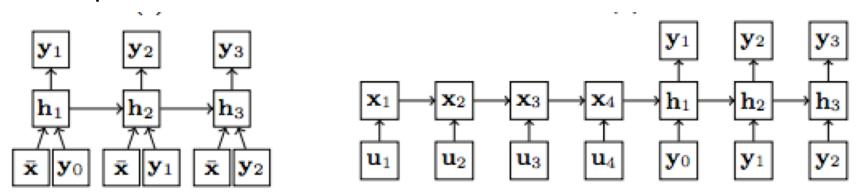
- Binary Relevance
 - Decomposing MLC problem into a number of independent binary task
 - (-) hard to learn the dependency and correlations among the labels
- Label Powerset(LP)
 - Redefine the label powerset (2^L) , and one-class classification
 - (-) Limited training examples / Cannot predict unseen label sets
- Class-chaining
 - Sequentially predict label sets
 - (-) label ordering problem

Class Chaining with RNN

- Sequentially predict M labels
- Factorize the conditional probability

$$p(\mathbf{y}|\mathbf{x}) = \prod_{I=1}^{M} p(y_i|\mathbf{x}, \mathbf{y}_{< I})$$

- Calculated in a chaining manner, implement using RNN
- Use the previous predicted labels as features



Conditional Inference

• Instead of ordering labels, build the function to learn mapping to y given x and any combination of previously observed labels

•
$$p(\mathbf{y}|x) = \prod_{i=1}^q f(x, y_{<\phi_i})$$

- Previously observed labels is q-dimensional vector $\{0,1\}^q$ where observed as positive set to 1 and others 0
- Constraint:
 - Forcing previously observed labels to the positive ones only.
- Iteratively perform as far as it doesn't seriously impair constraint

Conditional Inference

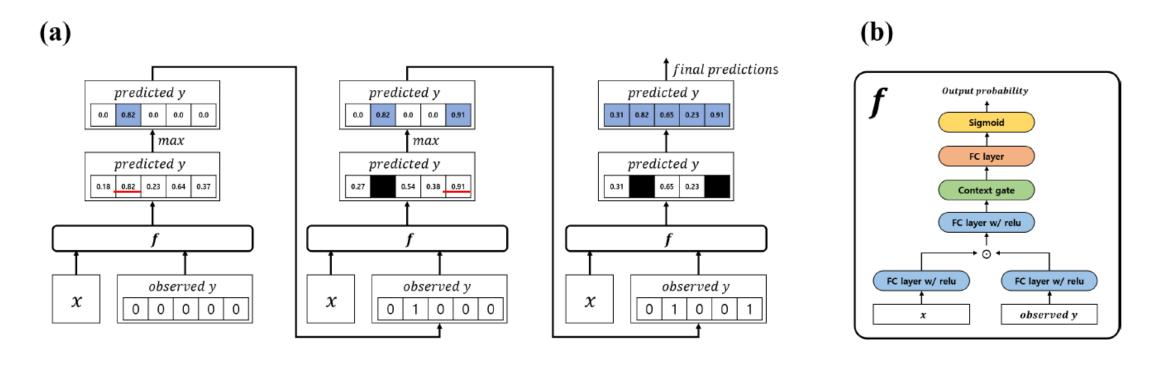


Fig. 3. (a): An illustration of the conditional inference procedure on 5-labels and 2-steps situation. (b): Core neural network architecture of conditional inference.

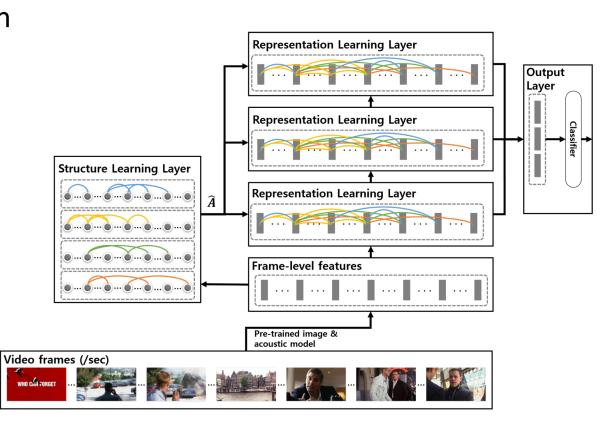
Conditional Inference

MLC Method	Structure	GAP
Logistic Model		0.7942
Class Chaining	GRU	0.795
Mixture of Experts	(# of Experts) 2	0.8282
	(# of Experts) 3	0.829 <u>6</u>
	(# of Experts) 4	0.8305
Conditional Inference	(# of Steps) 1	0.8385
	(# of Steps) 2	0.8398
	(# of Steps) 3	0.8407
	(# of Steps) 4	0.8410
	(# of Steps) 5	0.8403

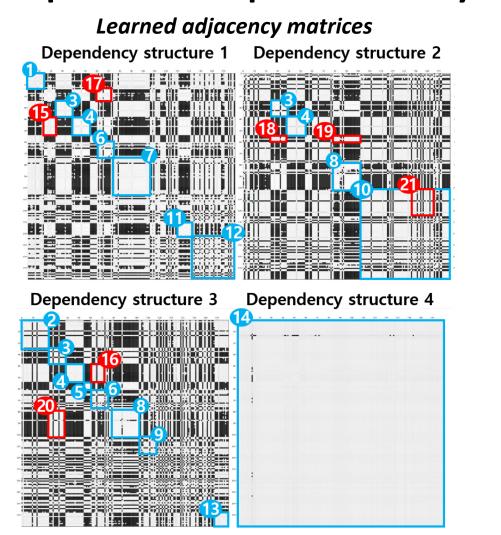
Further Works

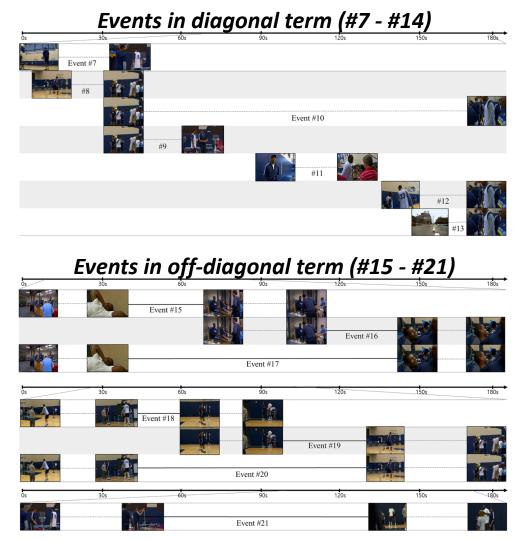
Temporal Dependency Networks

- Learning video data by discovering temporal dependency structure
 - represents video data as a temporal graph
 - Node: frame of a video
 - Edge: the dependency between two frames
 - Structure learning
 - Representation learning



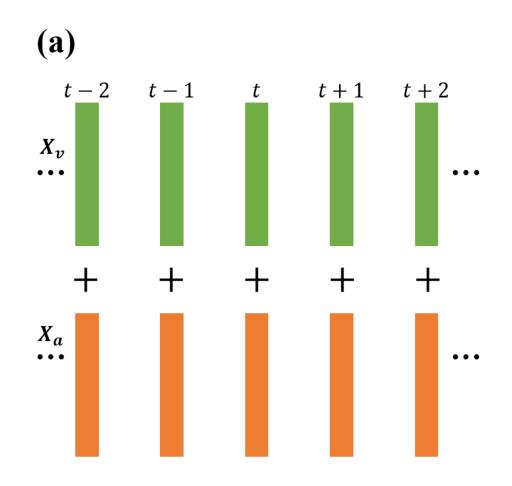
Temporal Dependency Networks





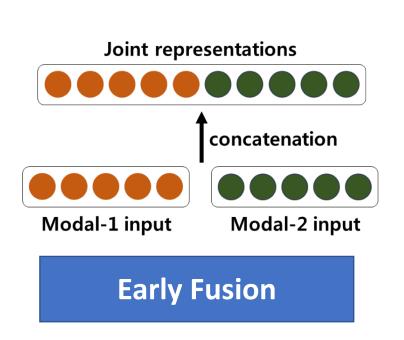
Appendix

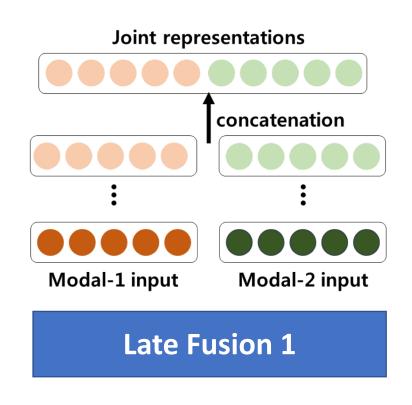
Element-wise summation after a linear transformation

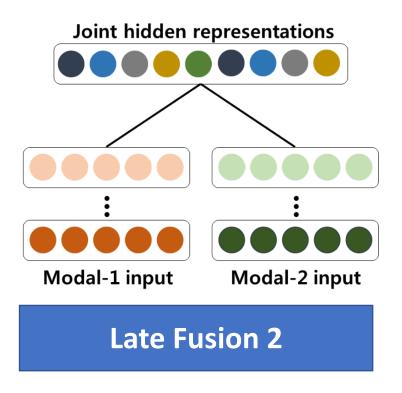


$$\mathbf{x}_{a_{exp}} = \mathbf{W}_{va}\mathbf{x}_a + \mathbf{b}_{va}$$
$$\mathbf{x}_f = \mathbf{x}_v + \mathbf{x}_{a_{exp}}$$

Conventional Methods







Multi-label Classification(MLC)

- Training data: $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{1}^{n}, \boldsymbol{x}_i \in \mathcal{X} \subseteq \mathbb{R}^{D}, \boldsymbol{y}_i \in \{0,1\}^{L}$
- Learning a mapping: $g: \mathcal{X} \to \{0,1\}^L$
- Each instance x_i is associated with a set of relevant labels y_i

(cf) Multiclass Classification

- Training data $\{(\boldsymbol{x}_i, y_i)\}_1^n, \boldsymbol{x}_i \in \mathcal{X} \subseteq \mathbb{R}^D, y_i \in \mathcal{Y} = \{1, 2, ..., L\}$
- Learn a mapping $f: \mathcal{X} \to \mathcal{Y}$
- Each instance x_i is associated with a single relevant label y_i