Learning Video Features for Multi-Label
Classification

Shivam Garg[0000—0002—7213—3967]

shivgarg@live.com

Abstract. This paper studies some approaches to learn representation
of videos. This work was done as a part of Youtube-8M Video Under-
standing Challenge. The main focus is to analyze various approaches
used to model temporal data and evaluate the performance of such ap-
proaches on this problem. Also, a model is proposed which reduces the
size of feature vector by 70% but does not compromise on accuracy.
The first approach is to use recurrent neural network architectures to
learn a single video level feature from frame level features and then use
this aggregated feature to do multi-label classification. The second ap-
proach is to use video level features and deep neural networks to assign
the labels.
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1 Introduction

Video classification is one of the most important problem in computer vision.
Video content consists of temporally related images. This temporal dimension
adds a new level of complexity to the image classification problem. In recent
years, with the advent of faster computational platforms alongwith high qual-
ity large datasets like Imagenet[4], MS COCO[14], Pascal VOC[G], robust image
classfication and detection algorithms have been developed. Human level perfor-
mance on Imagenet was surpassed in 2015 by ResNet[§]. Many object detection
approaches use some of the highly performant approaches on imagenet as a
backbone network for eg. Faster RCNN[19], Yolo[18], SSD[I5].This approach of
transfer learning aids the object detection a lot. Similarly development of good
video classification models would lead to improvement in a lot of tasks like track-
ing object movement in videos, detecting suspicious activity, video captioning,
summarisation , robotic vision, affective computing, HCI etc.

Understanding a video involves two parts, understanding what is happening in
a single frame and correlating the information present in various frames. The
harder part lies in the correlation of information in different frames. LSTM’s[24]
have shown promising results in natural language modelling problems which ex-
hibit similar difficulties. Thus a similar approach is used here.

For the former part of extracting features from a single frame, approaches based
on deep convolution networks [BI20021] are good at capturing salient features
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outperforming many hand crafted techniques [BIT6/I7/2] on various computer vi-
sion tasks.

The paper is divided into the following sections : Section 2 describes the dataset,
Section 3 describes the evaluation criteria, Section 4 describes the models, Sec-
tion 5 presents the experimental results and Section 6 concludes the work.

2 Dataset

The dataset used for analysis is the Youtube-8M[I]. This is by far the largest
dataset for video classification available to date. Other video datasets include
Sports-1M[12] and ActivityNet[6] .These datasets are limited to sports videos
and human activity recognition tasks respectively.

Youtube-8M contains 6.1 million videos, which have been roughly partitioned in
3.84 million examples for training and 1.13 million each for validation and test
set. The total number of labels is 3862 across 24 top level entities in knowledge
graph. The average number of labels per video is 3.

The dataset is divided into two parts, frame-level and video-level. The frame-level
features contain features of upto 360 frames per video. The frames are processed
at 1 fps and a maximum of first 6 minutes of each video is processed. Each frame
has a 1024 length vector containing rgb features and 128 length vector containing
audio features. The visual features have been extracted from Inception V3[22].
The features are extracted just after the last global pooling layer .The audio
features have been extracted using a model similar to VGG as described in Her-
shey et. al. [9]. The visual features extracted from the inception network are
further processed. The extracted feature length is 2048 which is reduced to 1024
by PCA. Both audio and visual features are quantized to 8bits to reduce the size
of the features. The data is presented in 3844 shards of equal sizes for each of the
train,test and validation split. The total size of frame-level features is 1.53TB.
The video-level dataset is similar. The rgb and audio features are mean ag-
gregated frame level features. The feature values are not quantized in contrast
to frame level features. The dataset is formatted in tfrecord format. Similar to
frame level, it is provided in 3844 equally sized shards for each train,validation
and test split.The total size of video-level features is 31GB.

The data has a lot of challenging aspects which are listed here under :-

1. Scale :- As mentioned above, there are approx. 5 million videos in the
train+validation set of the dataset. Processing all the videos for some frame-
level models takes a lot of time(in order of days). So GPUs with large amount
of memory, alongwith high speed storage device is essential for quick exper-
imentation and hyperparameter tuning.

2. Noisy labels: The dataset is annotated by youtube annotation system which
results in missing labels. This makes training even harder with model getting
contradictory signals for similar inputs.

3. Imbalance: The data is highly imbalanced with a small number of label
entities having a majority of videos. The log log plot of number of videos for
each entity follows a zipf(Fig. [1]) distribution, depicting the imbalance in the



Learning Video Features 3

data distribution. This imbalance in the dataset makes it difficult to learn
about rare classes, leading to poor performance over those classes. This fact
is supported by low MAP values obtained by the models.

10° 4
105 4
[
o
(]
il
Y
G 104 4
@
Qo
£
3
p=4
103 4
102 4
10° 10t 10? 103
Entity ID

Fig. 1. log log plot of number of videos for a single entity

As the rgbh and audio information is provided in encoded form, the focus of the
problem shifts to analysis of temporal modeling approaches for given features.

3 Evaluation

The following metrics have been used to evaluate the performance of a model.

1. GAP@20 :- Global Average Precision is the primary evaluation metric used
in the paper. For each video, a list of labels and the confidence scores is cal-
culated. Then top 20 labels and the confidence scores are picked and added
as individual data points to a global pool. Then this pool of label-confidence
pairs is sorted and the average precision is calculated over this pool.

T

GAP =) [p(i){r(i+1) —r(i)}] (1)

=0
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where p(i) denotes the precision of the first i examples, and r(i) denotes the
recall till the first i examples.

2. MAP :- Mean Average Precision is the mean of average precision of each
class. For each class, average precision of the predictions for that class is
calculated. The mean of these values for all classes is MAP.

3. PERR :- Precision at Equal Recall Rate. To calculate this metric, top k
labels for each video are extracted where k is number of labels in the ground
truth. Then precision is calculated for the extracted labels and the calculated
precision values are averaged for all the videos in the dataset.

4. Hit@1 :- For each video, the most confident label is picked and checked
whether it belongs to the ground set labels. If it belongs, a score of 1 is
assigned otherwise a 0. Then scores for all videos are averaged to calculate
the final score.

4 Models

In this section, models are described. There are two categories, one category
exploring frame-level features and other exploring video-level features.

4.1 Frame Level Models

The models here exploit the structure in per frame features. The common struc-
ture of all the models in this section is to aggregate frame level features into a
single feature vector per video and then pass this feature vector to a mixture of
experts model for determining the labels. The basic network architecture used
in the models is RNN.

LSTM Recurrent Neural Networks are designed to handle temporal data.In this
work, LSTM[24] cell is used in all RNN’s. Long Short Term Memory is one of the
most successful tool in solving various NLP problems. They have been used in a
variety of problems like machine translation, image captioning, text to speech,
speech to text, etc. LSTMs are designed to learn long term dependencies. LSTM
cell maintains a cell state, which helps the cell to remember relevant information
from all the preceding steps. A basic LSTM cell operation can be summarized
in four steps:

1. Calculate the forget_gate which determines the part of the cell state that
should be remembered and the part that should be forgotten.

fr = o Wy(hiallze) + by] (2)

2. Filter out relevant information from input at step t, which is used to update
the cell state.(input_gate).

it =0 [Wi-(ht—lnxt) + bl] (3)

ét = tanh [Wc.(ht_1||xt) + bc] (4)
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3. Update the cell state by using the forget_gate and input_gate
Ct =0 [.ft * Cp_1 + ’I:t * ét] (5)

4. Determine the parts of the cell state which should be given as output of the
cell(output_gate).

or = 0 [Wo.(he—allzi) + bo] (6)
hy = o * tanh(cy) (7)

In the above equations,|| denotes concatenation operation, * denotes elementwise
multiplication.

The first set of models use N layer LSTM architecture which is followed by a
pooling layer to pool the outputs of each lstm cell. The pooled feature is then
passed into a MoE model to determine the labels(Fig. [2]). Three different pooling

Fig. 2. N layer LSTM model with a pooling module and a final mixture of experts
layer to produce outputs.

mechanisms are used :-

1. Choosing the last state of Istm .
2. Maxpooling all the feature vectors
3. Applying attention weighting to input feature vectors.

All frames in a video are not equally important for determining the semantic
content in the video. For eg., the starting and ending frames do not contain
much information, dark frames in a video do not convey much or in a talk
show most of the frames are similar, it is the audio content that describes the
genre of video. Attention module can help to solve this problem which weighs the
feature vectors at all time steps according to the importance of the feature vector
for classification task. Then a weighted sum of these feature vectors is used as
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an input for the MoE model. The method of calculating weighted vector(F) is
described here under:-

I =tanh (H) (8)
w = softmax [1.W,] (9)
F = tanh(reduce_sum(w.H)) (10)

H is the output of Istm network at all time steps. W, is a learnable column
vector, which weighs the vectors.

Deeper LSTM models are harder to optimise due to introduction of a lot of non-
linearities, and they might suffer from vanishing or exploding gradient problems.
Residual connections introduced in ResNet[8] come handy to solve some of the
problems in optimizing such networks. The residual connections force a part of
the network to learn h(x) -x , where h is the hypothesis function to be learnt
and x is the interim representation learnt.This modeling trick facilitates the flow
of gradients in deep networks. Residual connections are utilized in Istm network
with a depth of 3. The network architecture is shown in Fig.

Fig. 3. 3 layer LSTM model with residual connections.

BiLSTM BiLSTM is similar to LSTM, with the difference being BiILSTM con-
tains two LSTM chains, one of which processes the data in forward direction and
the other processes the data in backward direction. BILSTMs try to learn repre-
sentations by considering temporal relations in both directions. A lot of times,
context from future frames is helpful in understanding the present frame, which
BiLSTMs model efficiently. The basic architecture is depicted in Fig. [4] The out-
puts of both the forward and backward lstms is concatenated to produce the
output for BiLSTM. Other approaches like mean,max aggregation, attention
weighting can be applied to produce the output vector.

A variant of BILSTM is also proposed here. Currently, the forward and backward
Istms do not interact with each other throughout the depth of BiLSTM.This lim-
its the ability of network to capture various dependencies for eg. when a state
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Concatenate

Fig. 4. N layer BiLSTM model

depends on both past and future states. In this N layer network, the forward
and backwards outputs at each time step of every layer are pooled before passing
them as input to upper layers. It can be thought of as N single BiLSTM layers
stacked over one another, where the input to the n* layer will be the pooled
output of n — 1*" layer at each time step. Since the network contains N single
BiLSTM stacked over one another, it would be referred to as Stacked BiLSTM
in this paper.

Multi-modal Approaches The data contains rgb and audio features for each
frame. Therefore, various multi-modal techniques can be adopted to model rgb
and audio features separately. The audio and rgb features may have different
distributions and independent models for each data stream can help to capture
such relations efficiently. A simple framework as shown in Fig. 5| was adopted to
judge the effectiveness of such techniques. The details of the model used is given
in the experiments section.

Fig. 5. Multi Modal architecture
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4.2 Video-Level Models

The models is this section use the mean aggregated frame level features. The
models were approached with the motive of learning a smaller representation of
video-level features without sacrificing on accuracy.

Residual CNN-X The inspiration to try deep convolutional neural networks
comes from the success of deep CNN on image classfication tasks especially on
Imagenet Competition. Even though the features here lack explicit spatial re-
lations, CNN’s perform well for various natural language problems where the
inputs lack explicit spatial relations and exhibit temporal relations as shown in
Kim et. al[13].

The network is made of two parts. The first part is a fully connected layer and the
second part is a deep cnn network. The deep cnn network is made up of several
residual modules(Fig. @ The residual module is made up of dilated convolution
layers with kernel size (9,1) and stride=1.The dilation of conv layer depends on
the position in residual module where the conv layer is located. The ith layer of
residual module has a dilation of 2 % ¢ + 1 with index starting from 0. Dilation
helps the cnn to cover large parts of input length. Each convolution layer has
same padding, which keeps the output dimension equal to input dimension. The
number of channels in convolution layers of residual modules varies with each

instance of module.
2

Fig. 6. A 3 layer residual module

The depth of residual modules used in Residual CNN-X is atmost 3. All the
convolution layers use ReLu activation. Batch normalisation[IT] has been used
which helps in faster and stable training. Batch normalization layer is added
after layers specified in Table [I} Mean and max aggregation pooling methods
have been used to pool the output of the deep cnn network. X in Residual CNN-
X denotes a hyperparameter which specifies the length of output vector used by
MokE for label assignment. Therefore, ResidualCNN-1024 would mean that the
output of network is a 1024 dimensional vector which is then passed to MoE
for label classification. The network lacking the deep neural network, containing
only the fully connected layer would be known as Residual CNN-FC-X. X would
carry similar meaning for this network too. Refer to Fig. [7] and Table [I] for full
details of Residual CNN-X architecture.
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TR,

Fig. 7. Residual CNN-X architecture

Table 1. Residual CNN-X architecture details

Layer kernel depth ! | output 9x1,dil=1| 9x1,dil=3| 9x1,dil=>5| batch
size size norm
FC Xx1x1
convl 49x1 64 Xx1x64 y
modulel 3 Xx1x64 | 128 192 64 y
conv2 1x1 128 Xx1x128 y
module2 3 Xx1x128 | 256 512 128 y
conv3 1x1 256 Xx1x256 y
module3 2 Xx1x256 | 512 256 y
conv4 1x1 X Xx1xX y
module4 2 Xx1xX | 512 X y
pooling Xx1x1

! num. of channels for conv layer, num. of conv layer for residual module.

5 Experiments & Results

This section contains details of experiments and the results obtained. The details
common to all experiments are:-

— The input to the models was the concatenation of rgb and audio features
resulting in 1152 length feature vector except multi-modal approaches.

— Adam optimizer was used to optimize the models, with learning rate decay
rate of 0.95 every epoch.

— Cross entropy loss was used as the loss function for model optimization.

— All the models were trained on the train split of the dataset and validation
set was used to evaluate the performance of models.

The accuracy measures on validation set followed closely(within 0.2%) the
results on test dataset as reported by the kaggle leaderboard. Since test la-
bels were not available, to compute all performance measures, validation set
is used. The compute platform was Nvidia GTX 1080Ti graphic card, Ubuntu
16.04 OS, 8GB RAM and a 2TB external storage. Due to limitation of com-
putational resources, the experiments were limited to maximize single model
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accuracy. Therefore ensemble/bagging/boosting/stacking methods were not ex-
plored which would have boosted the performance of existing models. The results
are provided in three sections,first for frame-level models, second for video-level
models and the last analysing feature compression. The code base is uploaded at
https://github.com/shivgarg/youtube-8m. The trained model files are also
uploaded to Onedrive with details given in github repository.

5.1 Frame-level-models

The models have been described in section 4.1l All the models were trained for 2
epochs. Learning rate of 0.001 was used for all models. The training time ranged
from 1 day for smaller models to about 3 days for large models. The details of
models, their hyperparameters and accuracy values is given in Table (LSTM

Table 2. Frame-level model hyperparameters and results

‘ Model ‘ Batch Size ‘ Hit@1 ‘ PERR ‘ MAP ‘ GAP ‘
LSTM 1 layer, 1024 * 256 0.848 | 0.741 0.334 | 0.805
LSTM 2 layer, 1024 256 0.859 |[0.754 |0.354 |0.816
LSTM 2 layer, 1280,640 2 256 0.862 |[0.759 | 0.357 |0.820
LSTM 3 layer, 1024 128 0.874 |0.776 | 0.399 |0.837
LSTM 3 layer, res®, 1024 128 0.877 | 0.780 | 0.422 | 0.842
LSTM 1 layer, 1024, max-pooling | 256 0.844 0.735 0.341 0.795
LSTM 1 layer, 1024, att-pooling® | 256 0.863 0.761 0.378 0.822
BiLSTM 1 layer, 2048 256 0.874 |0.778 | 0.437 |0.839
BiLSTM 2 layer, 2048 128 0.869 |0.771 0.409 |0.833
Stacked BIiLSTM 2 layer, 2048 128 0.876 | 0.780 | 0.427 | 0.841
BiLSTM 3 layer, 1024 128 0.866 |0.763 | 0.359 |0.824
Stacked BiLSTM 3 layer, res®, 1024 | 128 0.866 0.752 0.358 0.828
Multi-Modal, DBoF, DBoF 512 0.854 |0.747 | 0.353 | 0.800
Multi-Modal, (LSTM  2,1024), | 128 0.856 |0.752 | 0.358 | 0.814
(LSTM 2,1024)

L LSTM output feature size

2 LSTM 2 layer with hidden state sizes of 1280 and 640
3 Residual connections as in Fig.

4 Attention mechanism as defined in Eq. 8,9,10

3 layer, res, 1024) model and (Stacked BiLSTM 2 layer, 2048) perform the best,
beating all other models in three metrics. It is closely followed by (LSTM 3 layer,
1024) and (BiLSTM 1 layer,2048). Some general trends observed :-

— Deeper networks lead to better accuracy.
— Residual connections help to optimize deeper networks.
— Stacked BiLSTM perform better than simple BiLSTM.
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— Attention pooling boosts the performance of LSTM.

The performance of each of the above models can be increased by training for
larger number of iterations.

5.2 Video-level models

The models have been described in Learning rate for MoE model was 0.01,
and ResidualCNN-X was 0.0001. Batch size was 1024 for MoE, and 256 for
Residual CNN-X models. The main aim of these models was to learn condensed
representation without compromising with accuracy. The details of experiments,
model hyperparameters are given in Tablef3]

Residual CNN-1024 performs the best in video-level models, beating the baseline

Table 3. Video-level model hyperparameters and results

Model Batch Size | Hit@1 | PERR | MAP | GAP
MoE 1024 0.854 |0.759 | 0.466 | 0.817
Residual CNN-FC-320 1024 0.832 [0.726 | 0.348 |0.782
Residual CNN-FC-1024 1024 0.840 [0.735 |0.374 |0.795
Residual CNN-320, Mean-pooling | 256 0.851 0.724 |0.304 | 0.796
Residual CNN-320, Max-pooling 256 0.862 0.764 0.418 0.822
Residual CNN-512, Mean-pooling | 256 0.857 0.758 0.408 0.818
Residual CNN-512, Max-pooling 256 0.864 |0.766 | 0.428 |0.827
Residual CNN-1024, Mean-pooling | 256 0.861 0.764 0.425 0.825
Residual CNN-1024, Max-pooling | 256 0.863 | 0.768 | 0.427 0.831

by about 1.4%. ResidualCNN-X models tend to perform better than baseline
demonstrating the effectiveness of deeper neural networks. Also, max-pooled
variants performed consistently better than their mean pooled counterparts.

5.3 Feature Compression

This section highlights some models, which learnt video representations signifi-
cantly smaller than the one presented and still achieved better accuracy numbers
than the baseline(MoE). ResidualCNN-320, MaxPool reduces the feature size
by 72% without losing on the performance metrics. This network can be used
to further encode the features, which can be used by other models to predict
labels.

Another direction for reducing the feature size is to explore the autoencoder
category of models which perform well on the task of reducing the size of input
representation and capturing salient features in the input.
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Table 4. Feature Compression Results

Model Feature | GAP | A GAP | A Feature size 2
Size (in%)*

LSTM 2 layer, (1280,640) 640 0.820 | 0.3% 0.44

Residual CNN-512, Max Pooling 512 0.827 | 1% 0.55

Residual CNN-320, Max Polling 320 0.822 | 0.5% 0.72

! (GAP(Model) - GAP(MoE))
2 (1152 - Feature_size)/1152

6 Conclusion

In this paper, a lot of techniques were used to learn features of video for clas-
sification task. LSTM and it variations were used to model the video features
for the classification task. A deep convolution neural network architecture is also
proposed which helps in reducing the feature size. Deeper neural networks , both
LSTM’s and CNN’s can give improved resutls. Transformer[23] based approaches
may perform good as they show promising results on machine translation task.
Ensemble methods can improve the accuracy of the approaches mentioned in
this paper. Techniques such as model distillation[I0] can be used to transfer
the knowledge from large models to smaller models to increase the accuracy of
smaller models which are more scalable and efficient. Various network structure
optmisiation strategies like weights quantization, pruning networks[7] etc. can
be used to reduce the size and complexity of large models.
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