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Abstract. Messages often refer to entities such as people, places and events.
Correct identification of the intended reference is an essential part of communi-
cation. Lack of shared unique names often complicates entity reference. Shared
knowledge can be used to construct uniquely identifying descriptive references
for entities with ambiguous names. We introduce a mathematical model for ‘Ref-
erence by Description’, derive results on the conditions under which, with high
probability, programs can construct unambiguous references to most entities in
the domain of discourse and provide empirical validation of these results.

1 Introduction

Messages often need to refer to real world entities. Communicating a reference to an
entity is trivial when the sender and receiver share an unambiguous name for it. How-
ever, nearly all symbols in use are ambiguous and could refer to multiple entities. The
word ‘Lincoln’ could for example, refer to the city, the president, or the film. In such
cases, ambiguity can be resolved by augmenting the symbol with a unique description
— ‘Lincoln, the President’. We call this Reference by Description. This leverages a
combination of language (the possible references of ‘Lincoln’) and knowledge/context
(that there was only one President named Lincoln) that the sender and receiver share to
unambiguously communicate a reference.

This method of disambiguation is common in human communications. For example
in the New York Times headline [17] ‘John McCarthy, Pioneer in Artificial Intelligence
...’ the term ‘John McCarthy’ alone is ambiguous. It could refer to a computer scientist,
a politician or even a novel or film. In order to disambiguate the reference, the head-
line includes the description “Pioneer in Artificial Intelligence”. An analysis, in the
appendix, of 50 articles of different genres from different newspaper/magazine articles
shows how ‘Reference by Description’ is ubiquitous in human communication.

The significance of correctly constructing and resolving entity references goes be-
yond human communication. The problem of correctly constructing and resolving en-
tity references across different systems is at the core of data and application interoper-
ability. The following example illustrates this.

Consider an application which helps a user select and watch a movie or TV Show.
The application has a database of movies and shows, which the user can browse through,
look at reviews from movie review sites such as RogerEbert.com, IMDb, Rotten Toma-
toes and the other (language specific) sites. Then, it identifies a service (such as Ama-
zon, Hulu, Netflix, ...) from which the movie may be purchased or rented. Given that
there are about 500,000 movies and 3 million TV episodes, one of the most difficult
parts of building such an application is communicating references to these entities
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(movies and TV shows) with these different sites. Expecting a large number of different
sites to use the same unique identifiers for these millions of entities is unrealistic.

Humans do not and cannot have a unique name for everything in the world. Yet, we
communicate in our daily lives about things that do not have a unique name (like John
McCarthy) or lack a name (like his first car). Our long term goal is to enable programs
to achieve communication just as effectively. We believe that like humans, applications
such as these too have to use ‘Reference by Description’.

The problem of entity reference is also closely related to that of privacy preserving
information sharing. When the entity about whom information is shared is a person,
and it is done without the person’s explicit consent (as with sharing of user profiles for
ad targeting), it is critical this information not uniquely identify the person.

We are interested in a computational model of Reference by Description, which
can answer questions such as: What is the minimum that needs to be shared for two
communicating parties to understand each other? How big does a description need to
be? When can we bootstrap from little to no shared language? What is the computational
cost of using descriptions instead of unique names?

In this paper, we present a simple yet general model for ‘Reference by Description’.
We devise measures for shared knowledge and shared language and derive the relation
between these and the size of descriptions. From this, we answer the above questions.
We validate these answers with experiments on a set of random graphs.

2 Background

Formal study of descriptions started with Frege [10] and Russell’s [22] descriptivist
theory of names, in which names/identity are equivalent to descriptions. Kripke [16] ar-
gued against this position using examples where differences in domain knowledge could
yield vastly different descriptions of the same entity. We focus not on the philosophical
underpinnings of names/identity, but rather on enabling unambiguous communication
between software programs.

In [23], the founding paper of information theory, Shannon referred to this problem,
saying ‘Frequently the messages have meaning; that is they refer to or are correlated ac-
cording to some system with certain physical or conceptual entities’, but he passed over
it, saying ‘These semantic aspects of communication are irrelevant to the engineering
problem.’

Computational treatments of descriptions started with linking duplicates in census
records [25]. In computer science, problems in database integration, data warehousing
and data feed processing motivated the development of specialized algorithms for de-
tecting duplicate items, typically about people, brands and products. This work ([8],
[4], [12] and [20]) has focused on identifying duplicates introduced by typos, alternate
punctuation, different naming conventions, transcription errors, etc. Reference resolu-
tion has also been studied in computational linguistics, which has developed specialized
algorithms for resolving pronouns, anaphora, etc.

Sometimes, we can pick a representation for the domain that facilitates reference by
description. Keys in relational databases [6] are the best example of this.



The goal of privacy preserving information sharing [7] is the complement of un-
ambiguous communication of references, ensuring that the information shared does not
reveal the identity of the entities referred to in the message. [1], [18] discuss the diffi-
culty of doing this while [15] shows how this can be done for search logs.

We have two main contributions in this paper. Most computational treatments to
date have focused on specific heuristic algorithms for specific kinds of data. We present
a general information theoretic model for answering questions like how much knowl-
edge must be shared to be able to construct unambiguous references. Second, in contrast
to previous treatments which use simple propositional / feature vector representations,
we allow for richer, relational representations.

3 Communication model

We extend the classical information theoretic model of communication from symbol
sequences to sets of relations between entities. In our model of communication (Fig. 1):

1. Messages are about an underlying domain. A number of fields from databases and
artificial intelligence to number theory have modeled their domains as a set of en-
tities and a set of N-tuples on these entities. We use this model to represent the do-
main. Since arbitrary N-tuples can be constructed out of 3-tuples [21], we restrict
ourselves to 3-tuples, i.e., directed labeled graphs. We will refer to the domain as
the graph, and the entities as nodes, which may be people, places, etc. or literal
values such as strings and numbers. The graph has N nodes.

2. The sender and receiver each have a copy of a portion of this graph. The arcs that
the copies have could be different, both between them and from the underlying
graph. The nodes are assumed to be the same.

3. The sender and receiver each associate a name (or other identifying string) with
each arc label and zero or more names with each of the nodes in the graph. Multiple
nodes may share the same name. Some subset of these names are shared.

4. Each message encodes a subset of the graph. We assume that the sender and receiver
share the grammar for encoding the message.

5. The communication is said to be successful if the receiver correctly identifies the
nodes that the message refers to.

When a node’s name is ambiguous, the sender may augment the message with a
description that uniquely identifies it. Given a node X in a graph, every subgraph that
includes X is a description of X . If a particular subgraph cannot be mistaken for any
other subgraph, it is a unique description forX . The nodes, other thanX , in the descrip-
tion are called ‘descriptor nodes’. In this paper, we assume that the number arc labels
is much smaller than the number of nodes and arcs and that arc labels are unambiguous
and shared.

Figures 2-4 illustrate examples of this model that are situated in the following con-
text: Sally and Dave, two researchers, are sharing information about students in their
field. They each have some information about students and faculty: who they work for
and what universities they attend(ed). Fig. 1 illustrates the communication model in this
context.



As the examples in Figures 2-4 illustrate, the structure of the graph and amount of
language and knowledge shared together determine the size of unique descriptions. In
this paper, we are interested in the relationship between stochastic characterizations of
shared knowledge, shared language and description size. As discussed in the appendix,
we can also approach this from a combinatorial, logical or algorithmic perspective.

In an earlier iterations of this paper [13] we presented this model and the solution
for simpler version of this problem.

Communication model

4 Quantifying Sharing

When the sender describes a nodeX by specifying an arc betweenX and a node named
N1, she expects the receiver to know both which node N1 refers to (shared language)
and which nodes have arcs going to this node (shared domain knowledge). We distin-
guish between these two.

4.1 Shared Language / Linguistic Ambiguity

Let pij be the probability of name Ni referring to the jth object. The Ambiguity of Ni is

Ai =

N∑
j=0

−pij log(pij)

Ai is the conditional entropy — the entropy of the probability distribution of over the
set of entities given that the name was Ni. When there is no ambiguity in Ni, Ai =



Studies at
Works for
Co-authors with
Alumnus of
Student
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1 2 3 4

Sally and Dave’s shared view of the domain:

Sally wants to share information about student 3 (the numbers corresponding to 
the students are not shared. We have added them here for our use only).

? RG

If she sends the following message: Dave could interpret it as:

RG

3

RG

4

So Sally adds a description to the message: Dave interprets this correctly as:

? RG

S

RG

S

3

or

Flat message descriptions

0. Conversely, if Ni could refer to any node in the graph with equal probability, the
ambiguity is Ai = log(N). Given a set of names in a message, if we assume that
the intended object references are independent, the ambiguity rate associated with a
sequence of names is the average of the ambiguity of the names. We use the Asymptotic
Equipartition Property [5] to estimate the expected number of candidate referents of a
set of names from from their ambiguity. The expected number of interpretations, of
〈N1N2N3 . . . ND〉 is 2DAd .

Linguistic ambiguity may arise not just from a single name corresponding to mul-
tiple entities (like the earlier example of ‘Lincoln’) but also from variations of a name
(such as ’Google Inc.’ vs ’Google’ or even ’Goggle’). Both these can be modeled with
the definition of Ambiguity discussed here.

Typically, entities with more ambiguous names are described using entities less
ambiguous names. We distinguish the ambiguity rate of the nodes being described (Ax)
from that of the nodes used in the description (Ad).



Here, Sally and Dave only have the initials of both advisors (G). 

Studies at
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S

The previous message is now ambiguous and could be interpreted as (2) or (3).

S

2
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S

3

Sally has to augment it with a richer description to disambiguate it for Dave, which
he interprets correctly.

? G

S M

G

M

3

S

or

Deep message descriptions

4.2 Shared Domain Knowledge

Graphs differ in their ability to support distinguishing descriptions. If the portion of
the graph around a node looks like the portion around every other node, as it does in
a clique, it becomes more difficult to construct unique descriptions. As the variety in
the graph, or its randomness, increases, it becomes easier to construct distinct descrip-
tions. We are interested in characterizing graphs from the perspective of estimating the
information content of descriptions.

Consider the set of statements that are true for an entity X . Each description of
X is a subset of these statements. A disambiguating description of X holds true only
for X . If a description of X is likely to be satisfied by a number of other nodes, it is
not very informative about X . Let the probability of a description α being true of a
randomly chosen entity be pα. In information theoretic terms, information content of
the description α(X) is Iα(X) = − log(pα). As pα decreases, the information in the
description and the likelihood of the description uniquely identifying X increases.

In a stochastic setting, any particular description, however informative, might pos-
sibly be satisfied by some other node. We are interested in an ensemble of S candidate
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Dave is now confused about the alma mater’s of both advisors:

Sally’s view of the domain:

Sally sends a message with 
richer descriptions (Y is a 
co-author of the student):

Which Dave interprets as:

Dave’s view of the domain:

? G

S Y B

M

1 G

S Y B

M

x
x x

2 G

S Y B

M

x
x

3 G

S Y B

Mx 4 G

S Y B

Mx

x
x

✓

Sally has to augment her description with annotations of the co-author of the student
(Y). Dave can use a process similar to decoding Hamming codes to deduce that she is
most likely describing student (3).

descriptions, at least one of which will be unique, with a probability of 1 − ε, where ε
can be made arbitrarity small. We will show later (equation 15) that for a given ε, as S
increases, the required information content of the description decreases, up to a certain
minimum. Beyond that, increasing S does not reduce the required information content
of descriptions. In other words, having more descriptions does not completely compen-
sate for a lack of more informative descriptions. If we want at most a small constant
number (independent of N ) nodes to not have unambiguous descriptions, S ∝ logN .

In relational or graph terms, there is an arc from a X to each of the other nodes in
the graph (we label the absence of an arc itself as a kind of arc). Each of these arcs is a
statement about X . Given a particular set of D nodes, 〈D1, D2, D3, ...DD〉, let the set
of arcs fromX to theseD nodes be 〈LXD1 , LXD2 , LXD3 ...LXDD

〉. Let the probability
of this sequence (or more generally, ’shape’) occurring between theseD nodes and any
randomly chosen node in the graph be pi. The information content of this set of rela-
tions, or this description, is − log pi. Consider an ensemble of size S of descriptions,
containing γ distinct shapes with prior probabilities of appearing between a randomly



chosen set of D nodes and another node of p1, p2, ...pγ . Let the fraction of the S de-
scriptions that have these shapes be q1, q2, ...qγ respectively. Assuming independence
between the pi, the average information content of the descriptions in this ensemble is:∑

i

−qi log pi (1)

We call this the ‘Salience’ of this ensemble, relative to the rest of the graph.1 The
salience of a set of statements about an object is a measure of how well it captures the
most distinctive aspects of that object. The salience of an ensemble is meaningful only
in the context of the larger graph it is derived from. Since the pi depend on the rest
of the graph, the same ensemble, relative to a different graph might have a different
salience. For example, consider the following description: ‘X is a current US Senator,
who studied at Harvard, ...’. If the rest of the graph was about US senators, since many
of the other nodes in the graph also satisfy this description, this description has a low
salience. On the other hand, if the rest of the graph is about actors, this description has
very high salience and uniquely identifies X.

Since the information content of a description grows with its length, the salience of
an ensemble will be a function of the length of the descriptions it contains. The ‘Salience
Rate’ of an ensemble is the salience of the ensemble divided by the average length
(number of arcs) of the descriptions in the ensemble. Given our interest in constructing
unique descriptions, we restrict our attention to ensembles that have the highest salience
rate. We will use the symbol F for the salience rate of an adquately large (log(N))
ensemble with the highest salience rate. Given a description of length L and D nodes
and a salience rate of F , the probability of a randomly chosen node satisfying this
description is 2−LF .

Consider the set of all possible shapes of size D. Given a random node X and ran-
dom set of D other nodes, consider the distribution corresponding to the probability of
a particular shape occurring between that node and the D other nodes. Let the entropy
of this distribution be HD and let HD/D = Hg . How is Hg related to the salience
rate of an ensemble from the graph? Entropy estimates the average/expected informa-
tion content rate of a sufficiently long or randomly chosen sequence. Salience measures
the information content of a particular (potentially non-contiguous) subsequence in the
context of a larger sequence. If the descriptions in an ensemble are constructed by ran-
domly picking statements aboutX or if the descriptions are very long, then the salience
rate of that ensemble will be Hg .

Given a set of D nodes, we have only considered the arcs from X to these D nodes.
We can extend our treatment to include some number, say bD (b < D/2) arcs between
the D nodes in addition to the D arc between X and the D nodes. The salience in such
descriptions is the combination of the salience from X to the D arcs plus the salience
from from the bD arcs.

The salience of a graph is a measure of the underlying graph’s ability to provide
unique descriptions. Differences in the view of the graph between the sender and re-

1 Note that pi is not a distribution. The sum of the pi’s in an ensemble may be less than 1. So,
though the definition of salience bears superficial similarity to Cross entropy and Kullback-
Liebler Divergence, they are different.



ceiver affect how much of this ability can be used. E.g., if ‘color’ is one attribute of
the nodes but the receiver is blind, then the number of distinguishable descriptions is
reduced. Some differences in the structure of the graph may be correlated. E.g., if the
receiver is color blind, some colors (such as black and white) may be recognized cor-
rectly while certain other colors are indistinguishable. We use the mutual information
between the sender’s and receiver’s versions of an ensemble as the measure of their
shared knowledge. As before, consider an ensemble of size S of descriptions, contain-
ing γ distinct shapes. Let P (xi) be the probability of the ith shape occurring between a
randomly chosen node and a randomly chosen set ofD other nodes in the graph as seen
by the sender. Given an ensemble, let Q(xi) be the probability of the ith shape occur-
ring in the ensemble. Let P (yi) be the probability of the ith shape occurring between
a randomly chosen node and a randomly chosen set of D other nodes in the graph as
seen by the sender. Given an ensemble, let Q(yi) be the probability of the ith shape
occurring in the ensemble. P (yi|xi) is the conditional probability of the receiver’s view
having the ith relation between a randomly chosen node and D descriptor nodes, given
that it has this relation occurs in the sender’s view.

The sender chooses a description from the ensemble and sends it to the receiver
(through a noiseless channel). The information content of the description to the receiver
is not the same as it is to the sender. The information content of the description to the
receiver is a function of the mutual information between the sender’s and receiver’s
view of the underlying graph. Shared salience is defined as:

Shared Salience =
∑
i

−Q(xi)Q(yi|xi) logP (xi)P (yi|xi) (2)

Shared salience is to salience as mutual information is to entropy. If the descriptions
in an ensemble are constructed by randomly choosing statements or if the descriptions
become very large, shared salience tends to the mutual information.

4.3 Salience of Random Graphs

Given our interest in probabilistic estimates on the sharing required, we focus on graphs
generated by stochastic processes, i.e., Random Graphs. The most commonly studied
Random Graph model is that proposed by Erdos and Renyi [9]. The Erdos-Renyi ran-
dom graph G(N, p) has N nodes where the probability of a randomly chosen pair of
nodes being connected is p. The Salience Rate of a sufficiently large G(N, p) graph is
− log(p) (or − log(1− p), whichever is larger).

More recent work on stochastic graph models has tried to capture some of the phe-
nomenon found in real world graphs. Watts, Newman, et. al. [24], [19] study small
world graphs, where there are a large number of localized clusters and yet, most nodes
can be reach from every other node in a small number of hops. This phenomenon is
often observed in social network graphs. ‘Knowledge graphs’, such as DBPedia [2]
and Freebase [3], that represent relations between people, places, events, etc., tend to
exhibit complex dependencies between the different arcs in/out of a node. Learning
probabilistic models [11] of such dependencies is an active area of research.

G(N, p) graphs assume independence between arcs, i.e., the probability of an arc
Li occurring between two nodes is independent of all other arcs in the graph. Clustering



and the kind of phenomenon found in knowledge graphs can be modeled by discharging
this independence assumption and replacing it with appropriate conditional probabili-
ties. For example, the clustering phenomenon occurs when the probability of two nodes
A and C being connected (by some arc) is higher if there is a third node B that is
connected to both of them.

When the graph is generated by a first order Markov process, i.e., the probability
of an arc appearing between two nodes is independent of other arcs in the graph, as
in G(N, p), calculating F is simple. For more complex graphs where there are condi-
tional dependencies between the arcs in/out from a node, we need to model the graph
generating process as a second or even higher order Markov processes to compute F .

4.4 Description Shapes

The number of nodes (D) in a description of length (L) depends on its shape. The
decoding complexity of a description is a function of both its size and its shape. Flat
descriptions, which are the easiest to decode only use arcs between the node being
described and the nodes in the description. E.g., Jim, who lives in Palo Alto, CA, age
56 yrs, works for Stanford, studied at UC Berkeley, married to Jane. The description
consists of the arcs from node being described, Jim, to the descriptor nodes, Palo Alto
CA, 56 yrs, Stanford, UC Berkeley and Jane. The length (L) flat descriptions, i.e., the
number of arcs included, is the same as the number of nodes (D), i.e., L = D. They
have O(aD) decoding complexity, where a is the average degree of each node.

L3L2L1

Flat Deep Intermediate

Description Shapes

Flat descriptions are most effective when the descriptors have low ambiguity and
do not require disambiguation themselves. In the previous description of Jim, the terms
‘Palo Alto, CA’, ‘Stanford’ and ‘UC Berkeley’ are relatively unambiguous. Most de-
scriptions in daily communication are relatively flat. When low ambiguity descriptor
terms are not available, the descriptor terms might need to be disambiguated them-
selves. In such cases adding ‘depth’ to the description is helpful.

In their most general form, deep descriptions do not impose any constraints on the
shape. E.g., Jim, who is married to Jane who went to school with Jim’s sister and
whose sister’s child goes to the same school that Jim’s child goes to. This descrip-
tion includes a number of links between the descriptor nodes (Jane, Jane’s school, Jim’s



sister, etc.). The goal is capture some unique set of relationships that serve to unambigu-
ously identify the node being described. Decoding deep descriptions involves solving a
subgraph isomorphism problem and is NP-complete. These descriptions have length up
to L = D2/2 and have O(ND) decoding complexity.

A trade off between decoding complexity and expressiveness can be achieved with
by constraining the arcs (between descriptor nodes) that are included in the description.
More specifically, the D nodes in the description can be arranged into square blocks
where only the arcs within each block are included in the description. We assume that
there are Db links between the descriptor nodes giving us L = D(b + 1). This is
illustrated in Fig. 1, with the label ’intermediate’. When b = D/2, these reduce to the
general form of deep descriptions.

5 Description size for unambiguous reference

Problem Statement: The sender is trying to communicate a message that mentions a
large number of randomly chosen entities, whose average ambiguity is Ax. The overall
graph has N nodes. Each entity in the message has a description, involving on average,
D descriptor nodes, whose ambiguity rate is Ad. The description includes bD (b ≤
D/2) arcs between the descriptor nodes, which may be used to reduce the ambiguity in
the descriptor nodes themselves, if any. We are interested in the average number of arcs
and nodes required in the description.

In the most general terms, the ambiguity resolved by a description is less than or
equal to its information content. More specifically, if F is the salience rate of the graph,
under the assumption of uniform salience rate, we have:

D =
Ax

F −max(0, Ad − bF )
(3)

Equation 33 covers a range of communication scenarios, some of which we discuss now.
Proofs and empirical validation of equation 33 and its application to these scenarios are
in the appendix We first examine the impact of the structure of the description, which
affects the computational cost of constructing and decoding it.

5.1 Flat Descriptions

Flat descriptions (Fig. 2), which are the easiest to decode, only use arcs between the
node being described and the descriptor nodes. They can be decoded in O(aD), where
a is the average degree of a node. For flat descriptions, b = 0, giving,

D =
Ax

F −Ad
Flat descriptions (4)

Flat descriptions are very easy to decode, but require relatively unambiguous de-
scriptor nodes, i.e., F � Ad. Most descriptions in human communication fall into this
category.



5.2 Deep Descriptions

If the descriptor nodes themselves are very ambiguous (F − Ad is small), the am-
biguity of the descriptor nodes can be reduced by adding bD arcs between them. If
the descriptor nodes are considerably less ambiguous than the node being described
(Ad < Ax/2), all ambiguity in the descriptor nodes can be eliminated by including
Ad/F links between them, giving us:

D =
Ax
F

Deep descriptions (5)

Fig. 3 and 4 are examples of deep descriptions. Deep descriptions are more expres-
sive and can be used even when the descriptor nodes are highly ambiguous. However,
decoding deep descriptions involves solving a subgraph isomorphism problem and have
O(ND) decoding complexity.

5.3 Purely Structural Descriptions

When the sender and receiver don’t share any linguistic knowledge, all nodes are max-
imally ambiguious (Ax = Ad = logN ). We have to rely purely on the structure of the
graph. We have:

D = 2 log(N)/F Purely structural descriptions (6)

By using detailed descriptions that include multiple attributes of each of the de-
scriptor nodes, we can bootstrap communication even when there is almost no shared
language.

5.4 Limiting Sender Computation

The sender may not be able to search through multiple candidate descriptions, checking
for uniqueness. We are interested in D such that every candidate description of size D
and salience rate F is very likely unique. Assuming unambiguous descriptor nodes, we
have:

D =
log(N) +Ax

F
Flat Landmark descriptions (7)

When the descriptions are constructed by randomly choosing facts about the entity,
the salience rate is equal to the entropy of the adjacency matrix of the graph, Hg . In
this case, the the nodes can use the same set of descriptor nodes, whence the name
‘landmark descriptions’.



5.5 Language vs Knowledge + Computation trade off

Consider a node with no name (Ax = log(N)). Given a set of candidate descriptions
with salience rate F , we consider two kinds of descriptions which are at opposite ends
of the spectrum in the use of language vs knowledge. We could use purely structural
descriptions (eq 6), which use no shared language. We could also, use a flat landmark
description (eq. 34) which makes much greater use shared language and ignores most
of shared graph structure/knowledge. Though the number of nodes D = 2 log(N)/F
is the same in both, flat descriptions are of length O(D), require no computation to
generate and can be interpreted in time O(aD). The former, in contrast are of length
O(D2). Further, since generating and interpreting them involves solving a subgraph iso-
morphism problem, they may require O(N2 log(N)/F ) time to interpret. This contrast
illustrates tradeoff between shared language, shared domain knowledge and computa-
tional cost. We can overcome the lack of shared language by using shared knowledge,
but only at the cost of exponential computation.

5.6 Minimum Sharing Required

When there are relatively unambiguous descriptor nodes available,Ax/F , the minimum
size of the description forX , is a measure of the difficulty of communicating a reference
toX . It can be high either becauseX is very ambiguous (Ax → log(N)) and/or because
very little unique is known about it (F → 0). When Ax/F ≥ N it is not possible to
communicate a reference to X . As the ambiguity of the descriptor nodes increases,
domain knowledge has to play a greater role in disambiguation. In the limit, when there
are no names, we have to use purely structural descriptions. In this case, 2 log(N)/F
has to be less than N .

5.7 Non-identifying descriptions

We are interested in comparing the number of statements that can be made about an
entity, while still keeping it indistinguishable fromK other entities [7], with the number
of statements required to uniquely identify it. For this comparison to be meaningful,
in both cases, we use statements with the same salience rate (F ). Since the purpose
is to hide the identity of the entity, its name is not included in the description, i.e.,
Ax = log(N). For flat descriptions we have:

D ≤ log(N)− log(K)

F −Ad
(8)

Comparing this to equation 4 (with Ax = log(N)), we see that there is only a small
size difference (log(K)/(F−Ad)) between K-Anonymous descriptions and the shortest
unique description. This is because of the phase change (discussed in the appendix),
wherein at aroundD = Ax/(F−Ad), the probability of finding a unique description of
size D abruptly goes from ≈ 0 to ≈ 1. Though most descriptions of size Ax/(F −Ad)
are not unique, for every node, there is at least one such description that is unique.

Given the statistical nature of equation 8, it is a neccessary, but not sufficient condi-
tion for privacy. Given a large set of entity descriptions, if the average size of description



is close to or larger than this limit, then, with high probability, at least some of the enti-
ties have been uniquely identified.

6 Conclusion

As Shannon [23] alluded to, communication is not just correctly transmitting a symbol
sequence, but also understanding what these symbols denote.

Even when the symbols are ambiguous, using descriptions, the sender can unam-
biguously communicate which entities the symbols refer to. We introduced a model for
‘Reference by Description’ and show how the size of the description goes up as the
amount of shared knowledge, both linguistic and domain, goes down. We showed how
unambiguous references can be constructed from purely ambiguous terms, at the cost of
added computation. The framework in this paper opens many directions for next steps:

– Our model makes a number of simplifying assumptions. It assumes that the sender
has knowledge of what the receiver knows. An example of this assumption breaking
down is when two strangers speaking different languages have to communicate. It
often involves a protocol of pointing to something and uttering its name in order
to both establish some shared names and to understand what the other knows. A
related problem appears in the case of broadcast communication, where different
receivers may have different levels of knowledge, some of which is unknown to
the sender. A richer model, that incorporates a probabilistic characterization of not
just the domain, but also of the receiver’s knowledge, would be a big step towards
capturing these phenomena.

– We have assumed large graphs and long messages. In practice, context is used to
circumscribe the graph. Understanding the relation between context and descrip-
tions would be very interesting.

– Though our communication model makes no assumptions about the graph, the sim-
ple form of the results presented here arise out of assumptions about ergodicity and
uniformity of salience rate (which are analogous to those made in [23]). Versions
of these results that don’t make these assumptions would be useful.

– Though we have touched briefly on practical applications of our model, much work
remains to be done. The first task is the development of algorithms for constructing
unique descriptions.
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Appendices
We have the following appendices:

Appendix A: Derivation of results and various special cases
Appendix B: Empirical validation of results on random graphs
Appendix C: Studies on usage of descriptive references on a set of newspaper/magazine

articles
Appendix D: Alternate problem formulations

A Derivation of Results

A.1 Problem Statement

We are given a large graph G with N nodes and a message, which is a subgraph of G.
The message contains a number of randomly chosen nodes. We construct descriptions
for each of the nodes (X) in this subgraph so that it is uniquely identified. We are
interested in a stochastic characterization of the relationship between the amount of
shared domain knowledge, shared language, the number of nodes in the description
(D) and the number of arcs (L) in the description.

For expository reasons, we go through the derivation for the simpler case, where
there is no ambiguity in the descriptor nodes. We then extend this proof to the case
where the descriptor nodes themselves may be ambiguous.

We model the graph corresponding to the domain of discourse, and the message
being transmitted, as being generated by a stochastic processes. We carry over the as-
sumption from Shannon [23] and information theory [5] that sequences of symbols (in
our case, entries in the adjacency matrix) are generated by an ergodic process.

A.2 Unambiguous Descriptor Nodes

Consider a node X in the message, which has an ambiguity of Ax2. The description for
X involvesD unambiguous descriptor nodes. There are a number of possible configura-
tions ofD arcs fromX to the descriptor nodes. Let us call these 〈CXD1, CXD2, CXD3, ...〉.
Let the probability of the ith of these occuring between a randomly chosen node a set
of D descriptor nodes be pi.

The sender looks through an ensemble of S descriptions, i.e., S possible combina-
tions of D descriptor nodes in search of a unique description for X . Let the probability
a randomly chosen element of this ensemble of these descriptions having the configu-
ration CXDi be qi.

There are 2Ax − 1 nodes that might be mistaken for X . Consider one particular
element in the ensemble that has the configuration CXDi with X . It provides a disam-
biguating description forX if none of the 2Ax−1 nodes that we are trying to distinguish

2 More precisely, we let the average ambiguity rate of the nodes in the message be Ax. Hence-
forth, even though we are dealing with average value of properties of entities in the message,
for the sake of clarity in the presentation, we will treat the corresponding properties of the
node X and its descriptor nodes as proxies for the average.



X from is also in the configuration CXDi with this set of descriptor nodes. The proba-
bility of this is

(1− pi)2
Ax−1 (9)

There are S such sets of descriptors. We want the probability of none of these S descrip-
tions being unique to be less than ε. Assuming independence between the descriptions
in the ensemble, the probability of this is:∏

Di∈S
(1− (1− pi)2

Ax−1) ≤ ε (10)

This product is over the candidate descriptions in the ensemble. Since we are inter-
ested in descriptions that are unlikely to be satisfied by other nodes, we can restrict our
attention to the case where pi is very small, or more specifically, (2Ax−1)pi � 1. This
allows us to use the binomial approximation, using which we get:∏

Di∈S
(1− (1− pi(2Ax − 1))) ≤ ε (11)

Assuming 2Ax � 1 ∏
Di∈S

pi2
Ax ≤ ε (12)

Taking logs, ∑
Di∈S

log pi + SAx ≤ log(ε) (13)

For sufficiently large S, the different description configurations will occur in pro-
portion to their likelihood, i.e. the number of times shape CXDi occurs in the set S
is approximately Sqi. So,

∑
Di∈S log pi can be rewritten as,

∑
j Sqj log pj where j

ranges over all the possible description configurations.∑
Di∈S

log pi =
∑
j

Sqj log pj = −SFD (14)

where FD is the average salience of the descriptions in the ensemble.

FD ≥ Ax −
log(ε)

S
(15)

From this, we see that the impact of the size of S on the average FD required is a
function of ε. Increasing S beyond the stage where log(ε)

S is sufficiently small does not
provide additional benefit.

If we want at most a small constant (say one) node to not have a unique description,
ε = 1/N , in which case we get,

FD = Ax −
log(N)

S
(16)



If S is sufficiently large so that log(N)
S is negligible, we get,

FD = Ax (17)

If the salience rate of the ensemble is F , i.e., FD = FD, where D is the average length
of the description in the ensemble, we have

D = Ax/F (18)

This gives us an upper bound on D. We now show that this is also a lower bound
(under the assumption, Ax � 0). To simplify, we demonstrate the proof for the average
case, where FD = DF . We are interested in large graphs where the number of ambigu-
ous nodes does not grow with the size of the graph. So we let ε = 1/N . We can rewrite
equation 28 as:

2(Ax−DF )S = 2(Ax+
log(N)

S −DF )S (19)

This is the number of ambiguous nodes. Let

D =
(1 + δ)(Ax +

log(N)
S )

F
(20)

where δ can be positive or negative. We get

2δ(Ax+log(N)/S)S = Number of ambiguous nodes (21)

Clearly, for large N , the only way the number of ambiguous nodes does not grow with
N is if δ ≤ 0, showing that equation 33 is a lower bound as well.

A variant of this derivation shows the sensitivity of the whether a set of descriptions
are unambiguous to the description size. Using the earlier approximations, we get the
probability pu of a node having a uniquely identifying description of size D as:

pu = (1− (1− 2−FD)2
Ax

)S (22)

pu = 2(Ax−FD)S (23)

Let D = Ax

F + δ, where δ can be positive or negative. This gives us

pu = 2δS (24)

Given the size of S (O(logN)), in the exponent, for large N , it is easy to see how as
δ goes from negative to positive, at around δ = 0, there is a ‘phase change’ and pu
abruptly goes from being pu ≈ 0 to pu ≈ 1. So, for a certain D which is just less
than given by equation 33 almost none of the nodes have unique descriptions. When the
description size reaches that given by equation 33 there is an abrupt change and almost
all nodes have unique descriptions.

If the shared salience between the sender and receiver is M , then, by using argu-
ments identical to those in [23], we have



D = Ax/M (25)

Note again that this is the upper bound on the average number of descriptor nodes
for the entities in a sufficiently long message. When Ax is low, description sizes will
be small and individual nodes in the message may have shorter or longer descriptions.
However, this bound still applies to the average description length for a large set of
nodes.

A.3 Ambiguous Descriptor Nodes

We now consider the case where the descriptor nodes themselves are ambiguous. Let
the ambiguity rate of the descriptor nodes be Ad. The description also includes bD
(0 ≤ b ≤ D/2) arcs between the descriptor nodes. The role of these bD arcs is to
reduce the ambiguity of the descriptor nodes.

There are a number of possible configurations of bD arcs between a randomly cho-
sen set ofD candidate descriptor nodes. Let us call these 〈CbD1, CbD2, CbD3...〉 Let the
probability of the ith of these occurring amongst a randomly chosen set ofD descriptor
nodes be qi3.

The sender looks through S possible combinations of D descriptor nodes in search
of a unique description for X . Consider one particular set i of D descriptor nodes for
X . Let the configuration of the arcs between X and the D nodes be CXDi and the
configuration of the bD arcs between the D nodes be CbDi.

There are 2DAd sets of D nodes which have the same names as these descriptor
nodes. Only one of these is the intended set of descriptor nodes. One of the other 2DAd−
1 sets of descriptor nodes can be mistaken for the intended descriptor nodes only if the
bD arcs between them also has the configuration CbDi, the probability of which is qi.
Similarly, there are 2Ax −1 nodes that might be mistaken for X . The probability of one
of these having the configuration CXDi with a set of D descriptor nodes is pi. This set
of descriptor nodes provides a disambiguating description for X if,

1. None of the 2Ax − 1 nodes that we are trying to distinguish X from is in the
configuration CXDi with this set of descriptor nodes AND

2. None of the 2Ax − 1 nodes that we are trying to distinguish X from is in the
configuration CXDi with one of the set of nodes that the descriptor nodes could be
mistaken for.

The probability of this set of descriptor nodes providing a unique description for X is:

(1− pi)2
Ax−1(1− piqi)(2

Ax−1)(2DAd−1) (26)

As before, assume that 2Ax � 1. To simplify the analysis, we only consider the case
where the ambiguity in the descriptor nodes is not insignificant, i.e., 2DAd � 1. With
these assumptions, we get:

3 Ambiguity amongst the descriptor nodes themselves might lead to some of these configuration
of arcs might being automorphic to others. In this paper, we ignore this.



(1− pi)2
Ax

(1− piqi)2
Ax+DAd (27)

There are S such sets of descriptors. The probability of none of these S descriptions
being unique should be less than ε.∏

Di∈S
(1− (1− pi)2

Ax
(1− piqi)2

Ax+DAd
) < ε (28)

Using the binomial approximation (as before, we assume that the number of descrip-
tions is large and hence pi and piqi are very small),∏

Di∈S
(1− (1− pi2Ax)(1− piqi2Ax+DAd)) < ε (29)

Multiplying out, and ignoring terms with higher powers of pi and qi,∏
Di∈S

pi2
Ax
(
1 + qi2

DAd
)
< ε (30)

Taking logs, ∑
Di∈S

log pi + SAx +
∑
Di∈S

log(1 + qi2
DAd) < ε (31)

qi is the probability of the ith shape in the ensemble occurring between a randomly
chosen set of D nodes and is equal to 2−bDF , where F is the salience rate for the
ensemble with respect to the graph. So,∑

Di∈S
log pi + SAx +

∑
Di∈S

log(1 + 2DAd−bDF ) < ε (32)

Assume log(1 + 2DAd−bDF ) ≈ D(Ad − bF ), bF ≤ Ad. If bF > Ad, log(1 +
2DAd−bDF ) ≈ 0. So, log(1+ 2DAd−bDF ) ≈ Dmax(0, Ad − bF ). Letting pi = 2−DF

as before, we get:

D ≈ log(N)/S +Ax
F −max(0, Ad − bF )

(33)

A.4 Searching through candidate descriptions

Description size (and hence decoding cost) is influenced by S, the number of potential
descriptions the sender can search through. S = 1 corresponds to the case where D is
sufficiently large, so that any selection ofD nodes will likely form a unique shape. This
minimizes the sender’s computation at the expense of description length and receivers
compute cost.

TheD nodes can be selected such that the sameD nodes are used to describe all the
remaining N −D nodes or each node can use a different set of D nodes to describe it.
We call these ‘landmarks’ nodes and the associated descriptions are called ‘landmark
descriptions’. From eq. (33), we have:



D =
log(N) +Ax

F −max(0, Ad − bF )
(34)

Intuitively, the size of D given by equation 34 answers the following question: how
many randomly chosen facts, at the salience rate F , about an node does one have to
specify to uniquely identify that node, with high probability. Note that in this case, the
sender is not looking at the other nodes in the domain to see if the description is unique.
If the description is longer that the size given by equation 34, it is very likely unique.

Remember that if the statements are chosen at random from the graph, the salience
rate is Hg . So, restricting ourselves to flat descriptions composed of randomly chosen
statements about the object, we have:

D =
log(N) +Ax
Hg −Ad

(35)

One interesting case of this is where the ‘randomly’ chosen nodes (in terms of which
X is described) is the same for allX . Such a set of descriptor nodes serve as ’landmarks’
in terms of which all other nodes are described. If the landmark nodes are unambiguous
and the X have no name, we have the special case where:

D =
2 log(N)

Hg
(36)

At the other extreme, the sender could search through enough descriptions to find
the smallest set of descriptor nodes for uniquely identifying X . For each description,
the sender checks to see if the description is indeed unique. It is enough for the sender to
search through S randomly chosen descriptions such that logN

S ≈ C, whereC is a small
constant (which can be ignored). In practice, by going through candidate descriptions
in something better than random order, far fewer than O(log(N)) descriptions need to
be considered. In this case:

D =
Ax

F −max(0, Ad − bF )
(37)

A.5 Flat Descriptions

The shape of the description influences decoding complexity. Flat descriptions, which
are the easiest to decode, only use arcs between the node being described and the nodes
in the description — no arcs between other nodes in the description are considered.
Thus for these b = 0.

D =
Ax

F −Ad
Flat descriptions (38)

In the case where we do not have a name for the node being described, we get:

D =
logN

F −Ad
Flat descriptions (39)



As expected, flat descriptions are longer when the sender can not search through
multiple candidates.

D =
log(N) +Ax
F −Ad

Flat landmark descriptions (40)

If F < Ad, we cannot use flat descriptions.

A.6 Deep Descriptions

When Ad > 0, the number of nodes in the description may be reduced by using deep
descriptions. In deep descriptions, in addition to the arcs between the descriptor nodes
and X , arcs between the D nodes may also be included in the description. We include
bD arcs between the descriptor nodes in the description.

We can restrict the search for descriptions (i.e., S = 1), giving us deep landmark
descriptions. If b ≤ Ad

F , we have:

D =
log(N) +Ax
(b+ 1)F −Ad

Deep Landmark Descriptions (41)

Note that if (b + 1)F < Ad, then communication will not be possible. When the
descriptor nodes are unambiguous, adding depth does not provide any utility. For suffi-
ciently large S,

D =
Ax

(b+ 1)F −Ad
Deep Descriptions (42)

WhenAd < 2Ax andAd/F < D/2 and we can eliminate ambiguity in the descrip-
tor nodes without increasing D, giving us:

D =
Ax
F

Deep descriptions (43)

Given a particular 〈F,Ad, Ax〉, deep descriptions have the fewest nodes. AsF decreases
or Ax (or Ad) increases, we need bigger descriptions.

A.7 Purely Structural Descriptions

For purely structural descriptions (i.e. no names), Ax = Ad = logN . Allowing b =
D/2 in equation 42:

D =
log(N)

(D/2 + 1)F − log(N)
≈ log(N)

DF/2− log(N)
(44)

D2F = 2D(1 + log(N)) ≈ 2D log(N) (45)

From which we get:

D =
2 log(N)

F
(46)



A.8 Message Composition / Self Describing Messages

We have allowed for the entities in a message to be randomly chosen. The entities in the
message may or may not have relations between them. For example, if the message is a
set of census records or entries from a phone book, the different entities in the message
will likely not be part of each other’s short descriptions. In contrast, in a message like
a news article, the entities that appear do so because of the relations between them and
can be expected to appear in each other’s descriptions.

We call messages, where all the descriptors for the entities in the message are other
entities in the message, ‘self describing’ messages. We are interested in the size of such
messages.

Let the message include the relationship of each node to all the other nodes. Setting
Ax = Ad in equation 41 and assuming Ad/F < D/2 and Ad � log(N), we get:

D =
log(N)

F
(47)

All messages with at least as many nodes as given by equation 47, that include all
the relations between the nodes, are self describing.

Comparing eq. 34 to eq. 43 we see that while most sets of Ax/F nodes do not
have a unique set of relations, about O(1/ log(N)) of them do. Setting b = D/2 and
Ax = Ad = A in equation 42, and approximating, we get the minimum size of a self
describing message:

D =
2A

F
(48)

A.9 Communication Overhead

Descriptions can be used to overcome linguistic ambiguity, but at the cost of added
computational complexity in encoding and decoding descriptions. We now look at the
impact of descriptions on the channel capacity required to send the message. We only
consider the case where the sender and receiver share the same view of the graph.

Consider a message that includes some number of arcs connecting W nodes. If
we assume that the number of distinct arc labels is much less than N , most of the
communication cost is in referring to the W nodes in the message.

Now, consider the case where each node in the graph is assigned a unique name.
Each name will require log(N) bits to encode. If the message is a random selection of
arcs from graph, we need W log(N) bits to encode references to the nodes.

Next consider encoding references to these W nodes using flat descriptions with
unambiguous landmarks where the descriptions are constructed by randomly picking
statements about each node, i.e., F = Hg . This is the case covered by equation 36. We
will need descriptions of length 2 log(N)/Hg . These descriptions are strings from the
adjacency matrix and have an entropy rate of Hg . So, the string of length 2 log(N)/Hg

can be communicated using 2 log(N) bits and references to W nodes will require
2M log(N) bits. Comparing this to using unique names for each node, we see that
there is a overhead factor of 2.



Now consider encoding references to theseW nodes using purely structural descrip-
tions. These descriptions require 2 log(N)/Hg nodes and are of length 2(log(N)/Hg)

2

and we will require 2 log(N)2/Hg bits to represent each description, giving us an over-
head of 2 log(N)/Hg . We see that purely structural descriptions are not only very hard
to decode, but they also incur a significant channel capacity overhead. This is assuming
that the nodes in the message are randomly chosen. However, if the message is self
describing, each of the nodes in the message serves as descriptors for the other nodes
in the message, amortizing the description cost. Since there are 2 log(N)/Hg nodes in
the message, there is no overhead.

A.10 Non-identifying descriptions

We are interested in the question of how much can be revealed about an entity without
uniquely identifying it. This is of use in applications involving sharing data for research
purposes, for delivering personalized content, personalized ads, etc.

We are interested in comparing the number of statements that can be made about an
entity, while still keeping it indistinguishable fromK other entities [7], with the number
of statements required to uniquely identify it. For this comparison to be meaningful, the
descriptions need to be drawn from the same ensemble of descriptions. For a given
salience rate F , we are interested in how big D can be, such that at least K other nodes
satisfy this description. Since the purpose is to hide the identity of the entity, the name
of the entity is not included in the description, i.e., Ax = log(N).

Given N nodes and R descriptions, assume that each node is randomly assigned a
description. The probability that a given description corresponds to r nodes is approxi-
mately:

pr ≈
e−λλr

r!
(49)

where λ = N
R , since this is a Poisson process with parameter λ. However, since there are

2DAd interpretations for D, let us find the number of other nodes that also map to these
2DAd descriptions. Since the sum of Poisson processes is a Poisson process, we find
that the probability of r additional nodes mapping to any of these 2DAd descriptions is

pr ≈
e−λ2

DAd (λ2DAd)r

r!
(50)

Thus the approximate number of nodes with fewer that K such conflicts is

K−1∑
r=0

Npr = Ne−λ2
DAd

K−1∑
r=0

(λ2DAd)r

r!
(51)

We want this number to be a small constant U , thus

K−1∑
r=0

(λ2DAd)r

r!
=
Ueλ2

DAd

N
(52)



The left hand side consists of the firstK terms of the Taylor series of ex. Using Taylor’s
theorem we have

ex −
K−1∑
r=0

xr

r!
≤ exxK

K!
(53)

Substituting the summation, we get:

eλ2
DAd − Ueλ2

DAd

N
≤ eλ2

DAd (λ2DAd)K

K!
(54)

Thus

K!

(
1− U

N

)
≤ (λ2DAd)K (55)

Using Stirling’s approximation K! ≈ (K/e)K and taking K-th roots of both sides,

K

e

(
1− U

N

) 1
K

≤ λ2DAd (56)

Since U/N is small, we can use the binomial approximation to get

K

e

(
1− U

KN

)
=
KN − U
eN

≤ N2DAd

F
(57)

Thus R ≤ eN22DAd

KN−U . Since U � KN , we can ignore U . For sufficiently large descrip-
tions, on average, the probability of a description size D holding for an object is 2−DF

where F is the salience rate of the description. So, we have:

R = 2DF ≤ eN2DAd

K
(58)

Taking logs we get:

D ≤
logN − log K

e

F −Ad
≈ logN − logK

F −Ad
(59)

Discussion on non-identifying descriptions Comparing equation 59 to equation 39,
we see that D for ‘K-anonymity’ is very close to the D for the shortest description of
that node. For any node, there are a lot –

(
N
D

)
– of descriptions of size logN−logK

F−Ad
. All of

these are satisfied by at least K other nodes. In fact, we could use a slightly larger value
of D, as given in equation 59 and most descriptions of this size would be satisfied by at
least one other node. Most descriptions of size logN/(F − Ad) do not reveal identity.
But for every node, there is at least one description of this size that uniquely identifies
it. Once the description size exceeds 2 logN/(F − Ad), then, with high probability,
every description of that size uniquely identifies the node.

This behavior of descriptions — until a certain size D < logN/(F − Ad) they
are, with high probability ambiguous, but once they cross that threshold, there is a
‘phase transition’ and their ambiguity cannot be guaranteed — follows from from the



analysis in the earlier section on the phase transition in the likelihood of finding unique
description of size D.

We also note that the limits we have derived are for the average length of descrip-
tions for the entities in a sufficiently long message. Therefore, limits derived above are
a neccessary, but not sufficient condition for anonymity. If the average size of the de-
scriptions in a sufficiently large set of descriptions is higher than that given by equation
59, then, with high probability, anonymity has not been preserved.

B Empirical Validation

We validate our results for description length for on a set of random graphs with dif-
ferent structural, connection and naming properties. We look at three kinds of random
graphs:

1. Erdos-Renyi random graph withN nodes, where the probability of two nodes being
connected is p. Nodes are divided into two categories, the first are assigned names
with ambiguity Ax and the second are assigned names with ambiguity Ad.

2. A random bipartite graph where the probability of a node from one size (same
number of nodes on both sides) being connected to a node from the other side is p.
Nodes on one side are assigned names with ambiguity Ax and nodes on the other
side are assigned names with ambiguity Ad.

3. A random graph with local clustering, constructed as follows: We start with a num-
ber of Erdos-Renyi graphs that are not connected to each other. With then pick a
number of pairs of nodes from different clusters and add a link between them, with
probability p. Within each node, we divide nodes into two categories and assign
them names with ambiguity Ax and Ad.

We look at three categories of descriptions:

1. Flat descriptions with unambiguous descriptors (equation 18).
2. Flat descriptions with ambiguous descriptors (equation 38).
3. Deep descriptions (equation 42).

We vary the following parameters:

1. The salience rate for the graph. Note that the salience. rate for each of these graphs
is −log(p).

2. Ax, the ambiguity in the nodes being described.
3. Ax, the ambiguity in the descriptor nodes

For each value of p, Ax and Ad, we generated 10 random instances of the graphs
and (with N = 1000). For each instance, computed the shortest description for 100 of
the nodes. We compared the lengths of these descriptions with those predicted by the
corresponding equations. Figures 2-9 compare the actual description lengths with those
predicted by our theory.

Overall the predicted lengths correspond fairly closely to the observed lengths. The
differences between observed and predicted lengths are because of the approximations
made in deriving equations 18, 38 and 42.



Description length as a function of salience, for flat descriptions with no ambiguity in
descriptor nodes. Ambiguity in nodes being described is held constant at log2 100 (i.e.,
100 nodes corresponding to each name).

Description length as a function of salience, for flat descriptions. Ambiguity in nodes
being described is held constant at log2 100 (i.e., 100 nodes corresponding to each
name). Ambiguity in descriptor nodes is log2 1.4 (i.e., 1.4 nodes corresponding to each
name, on average).



Description length as a function of salience, for deep descriptions. Ambiguity in nodes
being described is held constant at log2 100 (i.e., 100 nodes corresponding to each
name). Ambiguity in descriptor nodes is log2 8 (i.e., 8 nodes corresponding to each
name, on average). Number of arcs between descriptor nodes (bD) comes from the
actual graph.

Description length as a function of ambiguity in nodes being described, for flat de-
scriptions. Salience rate is held constant at − log2 0.01 and there is no ambiguity in the
descriptor nodes.



Description length as a function of ambiguity in nodes being described, for flat descrip-
tions. Salience rate is held constant at − log2 0.01. Ambiguity in descriptor nodes is
log2 1.4 (i.e., 1.4 nodes corresponding to each name, on average).

Description length as a function of ambiguity in the nodes being described, for deep de-
scriptions. Salience rate is held constant at − log2 0.01. Ambiguity in descriptor nodes
is log2 10 (i.e., 10 nodes corresponding to each name, on average). Number of arcs
between descriptor nodes (bD) comes from the actual graph, which accounts for the
jagged nature of the predicted length.



Description length as a function of ambiguity in the descriptor nodes, for flat descrip-
tions. Salience rate is held constant at − log2 0.01. Ambiguity in the nodes being de-
scribed is held constant at log2 100 (i.e., 100 nodes corresponding to each name, on
average).

Description length as a function of ambiguity in the descriptor nodes, for deep de-
scriptions. Salience rate is held constant at − log2 0.01. Ambiguity in the nodes being
described is held constant at log2 100 (i.e., 100 nodes corresponding to each name, on
average). Number of arcs between descriptor nodes (bD) comes from the actual graph.



C Ubiquity of Reference by Description

Reference by description is ubiquitous in everyday human communication. Below are
the results of an analysis of 50 articles from 7 different news sources, covering 3 differ-
ent kinds of articles — analysis/opinion pieces, breaking news and wedding announce-
ments/obituaries. We extracted the references to people, places and organizations from
these articles. In each article entity pair, we examined the first reference in the article
to that entity and analyzed it. The number of entities referenced and the size of descrip-
tions, as measured by the number of descriptor entities in the description, are given in
tables 1 and 2. We found the following:

1. Almost all references to people have descriptions. The only exceptions are very
well known figures (e.g., Obama, Ronald Reagan).

2. References to many places, especially countries and large cities, do not have asso-
ciated descriptions. References to smaller places, such as smaller cities and neigh-
bourhoods follow a stylized convention, which gives the city, state and if necces-
sary, the country.

3. News articles tend to contain more references to public figures, who have shorter
descriptions, reflecting the assumption of their being known to readers.

4. Wedding/obituary announcements, in contrast, tend to feature descriptions of greater
detail.

5. The names of many organizations are, in effect, descriptions (e.g., Palo Alto Unified
School District).

Article Type → Analysis/Opinion Breaking Obituaries Total
Source ↓ Piece News Weddings
NY Times 23 6 24 53
BBC 14 24 4 42
Atlantic 121 0 0 121
CNN 10 11 6 27
Telegraph 12 20 10 42
LA Times 16 21 9 46
Washing. Post 28 23 8 59
Total 224 104 61 389

Number of entity reference in each source, broken down by article type

Given that these articles are stories, the entities that are mentioned in them are
closely related. Consequently, there exists no clear distinction between the parts of the
description that serve to identify an entity from the message itself.

D Alternate Problem Formulations

Descriptions based on random graph models are only one way of looking at the problem
of Reference by Description. In this section, we briefly look at three alternate formula-



Article Type → Analysis/Opinion Breaking Obituaries Average
Source ↓ Piece News Weddings
NY Times 2.9 3 3.5 3.18
BBC 3 2.54 3.5 2.78
Atlantic 3.7 0 0 3.7
CNN 2.5 2.63 4 2.88
Telegraph 2.6 2.95 3.2 2.9
LA Times 2.43 2.52 3.55 2.69
Washing. Post 3.14 3.65 4 3.45
Average 3.29 2.92 3.57 3.23

Average description size in each source, broken down by article type

tions. In all of these formulations, we continue to use the model described in section 3.
We modify our analysis of descriptions and/or the richness of descriptions.

D.1 Combinatorial analysis

Here we look at descriptions from a combinatorial perspective. Variations exist for the
following combinatorial decision problem: Given a graph with N nodes, B names and
description size D, where each node is assigned one or zero of these names, does each
node have a unique description, with fewer than D nodes? In the worst case, B = 0, in
which case verification of a possible solution includes solving a subgraph isomorphism
problem. Since subgraph isomorphism is known to be NP complete, this problem is
NP complete. Since there are

(
N
D

)
sets of D nodes, we might need to solve as many

subgraph isomorphism problems.

D.2 Descriptions and Logical Formulae

Here, we continue to model the domain of discourse as a directed labelled graph, but
instead of restricting descriptions to subgraphs, we allow for a richer description lan-
guage. More specifically, we use formulae in first order logic as descriptions.

Consider the class of descriptions where the node being described has no name
(Ax = log(N)), where some of the nodes in the description similarly have no name
and others have no ambiguity. This class of descriptions can be represented as a first
order formula with a single free variable (corresponding to the node being described)
and some constant symbols (nodes with shared names). The formula is a unique de-
scriptor for a node when the node is the only binding for the free variable that satisfies
the formula. The simplest class of descriptions, ‘flat descriptions’, corresponds to the
logical formula:

Lx1
(X,S1) ∧ Lx2

(X,S2) ∧ ... ∧ LxS
(X,SS) (60)

where Lxi
is the label of the arc between X and the ith descriptor node.

Deep descriptions can be seen as introducing existentially quantified variables (cor-
responding to the descriptor nodes with no names) into the description. For the sake



of simplicity, we consider graphs with a single label, L (and Lnull indicating no arc).
Consider a description fragment such as Li(X,Sj), where Li is either L or Lnull. Let
us allow a single nameless descriptor node. This corresponds to

(∃y Li(X, y) ∧ Li(y, Sj))

Introducing two nameless descriptor nodes corresponds to

(∃ (y1, y2) Li(X, y1) ∧ Li(X, y2)
∧ Li(y1, y2) ∧ Li(y2, y1)
∧ Li(y1, Sj) ∧ Li(y2, Sj))

We can define different categories of descriptions by introducing constraints on the
scope of the existential quantifiers. For example the nameless descriptor nodes can be
segregated so that there are separate subgraphs relating the node being described to
each of the shared nodes. The logical form of these descriptions (for a single nameless
descriptor node) look like:

(∃yLi(X, y) ∧ Li(y, S1))

∧ (∃yLi(X, y) ∧ Li(y, S2))

∧ (∃yLi(X, y) ∧ Li(y, S3)) ∧ . . .

More complex descriptions can be created by allowing universally quantified vari-
ables, disjunctions, negations, etc. The axiomatic formulation also allows some of the
shared domain knowledge to be expressed as axioms. The down side of such a flexible
framework is that very few guarantees can be made about the computational complexity
of decoding descriptions.

D.3 Algorithmic descriptions

We can allow descriptions to be arbitrary programs that take an entity (using some
appropriate identifier that cannot be used in the communication) from the sender and
output an entity (using a different identifier, understood by the receiver) to the receiver.

This approach allows us to handle graphs with structures/regularities that cannot
be modeled using stochastic methods. An interesting question is the size of the small-
est program required for a given domain, sender and receiver. If the shared domain
knowledge is very low, the program will simply have to store a mapping from sender
identifier to receiver identifier. As the shared domain knowledge increases, the program
can construct and interpret descriptions.
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