2015 IEEE 12th International Conference on Autonomic Computing

Automatic Reconfiguration of Distributed Storage

Artyom Sharov,

Computer Science Department
Technion Israel Institute of Technology
Haifa, Israel 320004
Email: sharov@cs.technion.ac.il

Abstract—The configuration of a distributed storage system
with multiple data replicas typically includes the set of servers
and their roles in the replication protocol. The configuration can
usually be changed manually, but in most cases, system adminis-
trators have to determine a good configuration by trial and error.
We describe a new workload-driven optimization framework
that dynamically determines the optimal configuration at run
time. Applying the framework to a large-scale distributed storage
system used internally in Google resulted in halving the operation
latency in 17% of the tested databases, and reducing it by more
than 90% in some cases.

Globally distributed storage systems usually provide con-
sistency across replicas of data (or metadata) using serial-
ization or conflict resolution protocols. Distributed atomic
commit or consensus-based protocols are often used when
strong consistency is required, while simpler protocols suffice
when replicas need only preserve weak or eventual consistency.
Such protocols typically define multiple possible roles for
the replicas, such as a leader or master replica coordinating
updates, and appoint some of the replicas to participate in the
commit protocol. The performance of such a system depends
on the configuration: how many replicas, where they are
located, and which roles they serve; for optimal performance,
the configuration must be tuned to the workloads.

Applications using the same cloud storage service may
have very different workloads. For example, an application
responsible for access control may be read heavy, while a
logging system may use the storage mostly for writes and
have relatively few clients. The workloads can be extremely

variable, both in the short term — for example, load may
come from different parts of the world at different times of
the day for a social application — and in the long term

— the administrators of the service may reconfigure their
servers periodically, causing different load patterns. Long term
workload variation could also be due to organic changes in
the demands on the Internet service itself; for example, if
a shopping service becomes more popular in a region, its
demands on the underlying storage system may shift.

Ideally, a cloud storage service should adapt to such
changes seamlessly, since elasticity is an integral part of
cloud computing and one of its most attractive premises.
Reconfiguring a distributed storage system at run time while
preserving its consistency and availability is a very challenging
problem and can result in misconfigurations, which have been
cited as a primary cause for production failures [12]. Due to
its practical significance the problem has received abundant
attention in recent years both in academia and in the industry
(see [10], [5], [3] for tutorials on reconfiguring replicated state-

978-1-4673-6971-8/15 $31.00 © 2015 IEEE
DOI 10.1109/ICAC.2015.22

133

Alexander Shraer, Arif Merchant and Murray Stokely

Google, Inc.
1600 Amphitheatre Pkwy
Mountain View, CA 94043
Email: {shralex, aamerchant} @ google.com

machines and strongly consistent key-value stores), focusing
mainly on the design and implementation of efficient and non-
disruptive mechanisms for reconfiguration. Yet, little insight
exists on how to set policies and use reconfiguration mecha-
nisms in order to improve system performance. For example,
dynamic reconfiguration APIs [11] have recently been added
to Apache ZooKeeper [9], and users have since been asking for
automatic workload-based configuration management, e.g. [2].
At Google, site reliability engineers (SREs) are masters in
the dark arts of determining deployment policies and tuning
system parameters. However, hand-tuning a cloud storage
system that supports hundreds of distinct workloads is difficult
and prone to misconfigurations.

We designed and implemented a workload-driven frame-
work for automatically and dynamically optimizing the repli-
cation configuration of distributed storage systems to minimize
operation latency. The framework was tested by optimizing
a large-scale distributed storage system used internally in
Google. Our approach relies on two main elements: a global
monitoring infrastructure, such as the one available in Google,
and a detailed knowledge of the storage operation flows.
The former allows us to characterize storage workloads and
estimate network latencies, while the latter is key to projecting
end-to-end operation latencies with different alternative con-
figurations.

Storage Model. We assume a common distributed stor-
age model combining partitioning and replication to achieve
scalability and fault tolerance: users (administrators) define
databases, each database is sharded into multiple partitions,
and each partition is replicated separately [1], [4], [6], [7],
[8]. We call these partitions replication groups. Replication
policies, defined by the database administrator (usually a
systems administrator responsible for a specific client ap-
plication), govern multiple replication groups in a database
and determine the configuration of each group — the number
of replicas, their locations and their roles in the replication
protocol. For example, if most writers are expected to reside
in western Europe, the administrator will likely place replicas
in European locations and make some of them voters so that
a quorum required to commit state changes can be collected
in Europe without using expensive cross-continental network
links. One of the voters (elected dynamically) acts as a leader
and coordinates replication.

Optimizing Leader Locations. Leaders are involved in many
of the storage operations, such as commits and consistent
reads. Hence, their locations significantly affect operation
latency. The first tier of our framework optimizes leader

IEEE
computer
® psouety

placement, dynamically choosing a leader among eligible
replicas, by taking into account the precise operation workload
originating at each client location, the detailed flow of each
operation type (given each potential leader location), and the
observed network latencies.

We divide time into intervals and predict the optimal leader
location for an interval based on the workload and network
latencies observed in previous intervals. Specifically, at interval
1 we (a) determine the average latency t(of,)c(é) of each type
of operation o from every client cluster ¢, for each potential
leader location ¢ ranging over a set V' of replica locations
eligible to become leader, and (b) quantify the number of
operations n((f?c of each type « for each client cluster c.
Finally, we choose a leader A(® that minimizes the following
expression: o .

7 . N 7
A = arg rérél‘r/l{swre 0},
(é)

a,c lae

where score!) () = 3 (0)-n%).. Location A\(®) can then
serve as prediction for the optimal location A1) in the (i+1)-

st time interval.

For simplicity of exposition, the expression above opti-
mizes average operation latency and considers only the pre-
vious interval, but it can be extended to account for multiple
intervals weighted according to recency and to minimize a
given latency percentile, which can potentially be different for
different databases.

Furthermore, we allow database administrators to assign
weights to operation types, e.g., in order to prioritize read la-
tency over commits, if desired, as well as output predictions for
each operation type separately, to allow fine-grained placement
control, if desired.

Our evaluation, using both simulations with production
workloads and production experiments, shows that our meth-
ods are fast, accurate and significantly outperform previously
proposed ‘“common sense” heuristics, such as placing the
leader close to the writers (e.g., in Google Megastore and
Yahoo! PNUTS), which may work for one workload but
not for another. Our experiments indicate that it results in a
substantial speed-up for the vast majority of databases in our
system, halving operation latency for 17% of the databases
and reducing the latency by over 90% in some cases.

Optimizing Replica Roles. In many distributed storage
systems different replicas may have different roles in the
replication protocol. For example, in ZooKeeper (and most
other Paxos-based systems) some of the replicas actively
participate in the commit protocol, voting on state updates,
while others passively apply committed updates to their state.
While the number of voter replicas is usually determined
based on availability requirements, the assignment of roles
to specific replicas is flexible. For example, if 10 replicas
are needed to support the expected read bandwidth and 2
simultaneous replica failures must be tolerated, then 5 voting
replicas will likely be used. But which 5 out of the 10
should be voters? This question is answered dynamically, by
the second optimization tier in our framework, based on the
database workload. Note that once the optimal configuration
has been determined, actually changing replica roles at run-
time is usually inexpensive, as demonstrated in [11].

134

Usually, in such systems, the leader is one of the voters
and thus optimizing replica roles not only affects the latency of
commits but also the latency of other operations involving the
leader. Our algorithm efficiently prunes sub-optimal configura-
tions, achieving four orders of magnitude speedup compared to
an exhaustive configuration search. Our evaluation demonstrate
the benefits of dynamic role assignment for both write and read
heavy workloads, achieving a speed-up of up to 50% on top
of the first optimization tier, for some databases.

Optimizing Replica Locations. Finally, the third optimization
tier dynamically determines the best replica locations out of
a potentially large set of options. Our algorithms can further
help determine the desired number of replicas. For example,
if a database suddenly experiences a surge in client operations
coming from Asia, we will detect the change in workload and
identify the best replica locations to minimize latency. The
first and second optimization tiers can then be used to assign
different roles to the new set of replicas.

In summary, the main contribution of our work is the design
and implementation of a new optimization framework for dy-
namically optimizing the replication policy in distributed stor-
age systems. Our system facilitates self-configurable storage,
freeing administrators from manually and periodically trying
to adjust database replication based on the currently observed
workloads, which is a very difficult task since such systems
usually support hundreds or thousands of distinct workloads.
Our evaluation and production experiments with a distributed
storage system used internally in Google demonstrate dramatic
latency improvements.

REFERENCES

Amazon dynamodb. http://aws.amazon.com/dynamodb/.

[2] Zookeeper feature request. https://issues.apache.org/jira/browse/
ZOOKEEPER-2027, Retrieved February 10, 2015.

[3] M. K. Aguilera, I. Keidar, D. Malkhi, J.-P. Martin, and A. Shraer.
Reconfiguring replicated atomic storage: A tutorial. Bul. of EATCS,
102, 2010.

[4] J. Baker et al. Megastore: Providing scalable, highly available storage
for interactive services. CIDR, 2011.

[5] K. Birman, D. Malkhi, and R. van Renesse. Virtually synchronous
methodology for dynamic service replication. Technical Report 151,
MSR, Nov. 2010.

[6] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin.
Orleans: cloud computing for everyone. In ACM SOCC, 2011.

[71 B. Cooper et al. PNUTS: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2), Aug. 2008.

[8] J. Corbett et al. Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3), Aug. 2013.

[9]1 P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free

coordination for internet-scale systems. In USENIX ATC, 2010.

L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine.
SIGACT News, 41(1):63-73, Mar. 2010.

A. Shraer, B. Reed, D. Malkhi, and F. Junqueira. Dynamic reconfigu-
ration of primary/backup clusters. USENIX ATC, 2012.

Z. Yin et al. An empirical study on configuration errors in commercial
and open source systems. In SOSP, 2011.

[10]

[11]

[12]

