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Abstract— We show that the performance of existing
fault localization algorithms differs markedly for differ-
ent networks; and no algorithm simultaneously provides
high localization accuracy and low computational over-
head. We develop a framework to explain these behav-
iors by anatomizing the algorithms with respect to six
important characteristics of real networks, such as uncer-
tain dependencies, noise, and covering relationships. We
use this analysis to develop Gestalt, a new algorithm that
combines the best elements of existing ones and includes
a new technique to explore the space of fault hypotheses.
We run experiments on three real, diverse networks. For
each, Gestalt has either significantly higher localization
accuracy or an order of magnitude lower running time.
For example, when applied to the Lync messaging sys-
tem that is used widely within corporations, Gestalt lo-
calizes faults with the same accuracy as Sherlock, while
reducing fault localization time from days to 23 seconds.

1. Introduction

Consider a large system of components such as routers
and servers interconnected by network paths. This sys-
tem could be for audio, video, and text messaging (e.g.,
Lync [2]), for email (e.g., Microsoft Exchange), or even
for simple packet delivery (e.g., Abilene). When transac-
tions such as connection requests fail, a fault-localization
tool helps identify likely faulty components. An effec-
tive tool allows operators to quickly replace faulty com-
ponents or implement work-arounds, thus increasing the
availability of mission-critical networked system.

As an example, we conducted a survey of call failures
in the Lync messaging system deployed inside a large
corporation. We found that the median time for diagno-
sis, which was largely manual, was around 8 hours be-
cause the operators had to carefully identify the faulty
component from a large number of possibilities. This
time-consuming process is frustrating and leads to signif-

(a) Lync (real failures) (b) Exchange (simulated fail-
ures)

Figure 1: Applying different algorithms to two systems.
Legend shows median time to completion.

icant productivity loss for other employees. A good fault
localization tool that can identify a short list of potential
suspects in a short amount of time would greatly reduce
diagnosis time. Later in the paper, we will show how our
tool, Gestalt, reduces by 60x the number of components
that an operator must consider for diagnosis; and it has a
median running time of under 30 seconds.

Of course, we are not the first to realize the importance
of fault localization, and other researchers have devel-
oped many algorithms (e.g., [3, 6, 8, 11, 13, 14, 16–18]).

However, we have consistently heard from operators
(e.g., at Google and Microsoft) that the effectiveness of
existing fault localization algorithms in terms of running
times and accuracy depends on the network. There are no
studies that connect network characteristics to the choice
of algorithm, making it difficult to determine an appro-
priate algorithm for a given network. Figure 1 illustrates
this difficulty by running three prior algorithms on two
different networks. We picked these algorithms because
they use disparate techniques. In the graphs, the y-axis
is the diagnostic rank, which is the percentage of net-
work components deemed more likely culprits than the
components that actually failed; thus, lower values are
better1. The failures are sorted by diagnostic rank. We
1In information retrieval terms, diagnostic rank includes the
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provide more experimental details in §9,
The left graph shows the results for the Lync de-

ployment mentioned above. We see that the algorithms
perform differently. Sherlock [6](modified) does best,
and SCORE [17] does worst. The right graph shows
the results for simulated failures in an Exchange deploy-
ment [9]. We see that the algorithms exhibit different
relative performance. SCORE matches Sherlock, and
Pinpoint does worst. Further, the appropriate approach
for the two networks differs—Sherlock for Lync, and
SCORE for Exchange as it combines high localization
accuracy and fast running time.

There is also a tradeoff between localization accuracy
in the presence of impairments such as noise and compu-
tational cost for large networks. This tradeoff can be seen
in Figure 1. While SCORE runs in a few microseconds,
it localizes faults poorly for Lync. On the other hand,
while Sherlock [6] has good performance for both net-
works, it takes a long time. In large networks, this time
can be days. Running time matters because it directly in-
fluences time to recovery. For a large network like Lync,
ideally we would want a localization algorithm with ac-
curacy closer to Sherlock but runtime closer to SCORE.

Rather than simply developing yet another localiza-
tion algorithm with its own tradeoffs, we first develop
a framework to understand the design space and answer
the basic question: When is a given fault localization ap-
proach better and why? We observe that existing fault lo-
calization algorithms can be anatomized into three parts
that correspond to how they i) model the system, ii) com-
pute the likelihood of a component failure, and iii) ex-
plore the state space of potential failures. Delineating
the choices made by an algorithm for each part enables
systematic analysis of the algorithm’s behavior.

Our anatomization also explains phenomena found
empirically, but not fully explained, in existing work.
For example, Kompella et al. [18] discover that noise
leads SCORE to produce many false positives; they then
suggest mitigation through additional heuristics. By con-
trast, we show that certain design choices of SCORE are
inherently sensitive to noise, and changing these would
lead to more robust fault localization than the suggested
heuristic. As a second example, Pinpoint was found to
have poor accuracy for simultaneous failures [8]. We
show that this problem is fundamentally caused by how
Pinpoint explores the state space of failures.

We use our understanding to devise a new fault local-
ization algorithm, called Gestalt. Gestalt combines the
best features of existing algorithms to work well in many
networks and conditions. While Gestalt benefits from
reusing existing components, we also introduce a new

impact of both precision and recall. It will be high if com-
ponents deemed more likely are not actual failures (poor preci-
sion) or if actual failures are deemed unlikely (poor recall).

method for exploring the space of potential failures. Our
method navigates a continuum between the extremes of
greedy failure hypothesis exploration (e.g., SCORE) and
combinatorial exploration (e.g., Sherlock).

Experiments on three real, diverse networks show that
Gestalt simultaneously provides high localization accu-
racy and low computational cost. For instance, in Fig-
ure 1, we can see that Gestalt has higher accuracy than
SCORE and Pinpoint; its accuracy is similar to Sherlock,
but its running time is an order of magnitude lower.

In summary, this paper contributes a new fault local-
ization algorithm that simultaneously provides high lo-
calization accuracy and low running time for a range of
networks. Its design is not driven by our intuition alone,
but by anatomization of the design space of fault local-
ization algorithms. and by analysis of the ability of the
design choices of existing algorithms to handle various
characteristics of real networks (e.g., noise).Our analy-
sis framework also explains why certain algorithms work
well for some networks and not for others.

2. Related Work

Network diagnosis can be thought of as having two
phases. The first processes available information (e.g.,
log files, passive or active measurements) to estimate
system operation and is often used to detect faults.
Several system-specific techniques exist for this phase
[5, 9–11, 15, 19–21, 23–25]. Its output is often fed to a
second phase that localizes faults. Localization identifies
which system components are likely to blame for failing
transactions.

Fault localization techniques are extremely valuable
because information on component health may not be
easily available in large networks and manual localiza-
tion can lead to several hours of downtime. Even where
component health information is available, it may be
incorrect (as in the case of "gray failures" in which a
failed component appears functional to liveness probes)
or insufficient towards identifying culprits for failing
transactions [6]. Fault localization has also been studied
widely [3,6,8,11,13,14,16–18,26,27]. We focus on this
second phase and ask: given information from the first
phase, which fault localization algorithm gives the best
accuracy with the lowest overhead, and why?.

Some diagnostic tools like [21, 23, 24] leave fault lo-
calization to a knowledgeable network operator and aim
to provide the operator with a reduced dependency graph
for a particular failure. While this is different from what
we call fault localization in this paper, the automated
fault-localization techniques we discuss can be used in
those tools as well, to narrow down the list of suspects.

Steinder and Sethi [28] suvey the fault localization
landscape but consider each approach separately. To the
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best of our knowledge, ours is the first work to analyze
the design space for fault localization, and to use this in-
sight to propose a better fault localization tool Gestalt.

3. Fault Localization Anatomy

We consider the following common fault localization
scenario. The network is composed of components such
as routers and servers. The success of a transaction in the
network depends on the health of the components it uses.
The goal of fault localization is to identify components
that are likely responsible for failing transactions. While
we use the term transaction for simplicity in this paper,
it can be any indicator of network health (e.g., link load)
for which we want to find the culprit component.

More formally, the state of the network is represented
by a vector I with one element I[ j] per network compo-
nent that represents the health of component j. Let O
be a vector of observation data such that O[k] represents
whether transaction k succeeded. For example, O could
represent the results of pings between different sources
and destinations. The broad goal is to infer likely val-
ues of I that explain the observations O. Specifically, the
fault localization algorithm outputs a sequence of possi-
ble state vectors I1, I2, .. ordered in terms of likelihood.

We measure the goodness of an algorithm by its di-
agnostic rank: given ground truth about the components
that failed denoted by Itrue, the diagnostic rank is j if
Itrue = I j for some j in the output sequence; and n, the
total number of possible state vectors, otherwise. For ex-
ample, a network with two routers R and S and one link
E between them will have a 3 element state vector denot-
ing the states of R, S, and E respectively. Let us say that
only router R has failed so Itrue = (F,U,U) where F de-
notes failed and U denotes up. If the output of the fault
localization algorithm is (U,F,U),(F,U,U),(U,U,F)
then the diagnostic rank on this instance of running fault
localization is 2 because one other component failure
(router S) has been considered more likely. Lower diag-
nostic rank implies fewer "false leads" that an operator
must investigate. A second metric for an algorithm is
the computation time required to produce the ranked list
given the observation vector O.

We find that practical fault localization algorithms can
be anatomized into three parts: a system model, a scor-
ing function, and a state-space explorer. First, any fault
localization algorithm needs information such as which
components are used by each transaction, and possible
failure correlations between component failures (e.g., a
group of links in a load-balancing relationship). Thus,
localization algorithms start with a system model S that
predicts the observations produced when the system is in
state I. System models in past work are often cast in the
form of a dependency graph between transactions and

components but there is considerable variety in the types
of dependency graphs used (§4.1).

Second, in theory fault localization can be cast as a
Bayesian inference problem. Given observation O, rank
system states I based on PS(I|O), the probability that I
led to O when passed through the system model S. How-
ever, even approximate Bayesian inference [12, 22] can
seldom handle the complexity of large networks [13].
So practical algorithms use a heuristic scoring func-
tion Score that maps each component to a metric that
represents the likelihood of that component failing. The
underlying assumption is that for two system states Ii and
I j and respective observations Oi and O j predicted by S:
PS(Ii|O)≥PS(I j|O) when Score(Oi,O) ≥ Score(O j,O),
where O is the actual observation vector. This scoring
function is the second part of the pattern.

Finally, given the system model and scoring function
the final job of a fault localization algorithm is to list and
evaluate states that are more likely to produce the given
observation vector. But system states can be exponential
in the number of components since any combination of
components can fail. Thus, localization algorithms have
a third part that we call state space exploration in which
heuristic algorithms are used to explore system states,
balancing computation time with accuracy.

We do not claim that this pattern fits all possible fault
localization algorithms. It does not fit algorithms based
on belief propagation [26, 27]; such algorithms are com-
putationally expensive and have not been shown to work
with real systems. However, as Table 3 shows, this pat-
tern does capture algorithms that have been evaluated for
real networks, despite considerable diversity in this set.

4. Design Choices for Localization

We map existing algorithms into the three-part pattern
by describing the choices they make for each part. §4.1-
4.3 describes the choices, and §4.4 provides the mapping.

Prior algorithms also use different representations
such as binary [8, 17, 18] or probabilities [14]) for trans-
action and component states. We use the 3-value rep-
resentation from Sherlock [6] as it can model all prior
representations. Specifically, the state of a component or
transaction is a 3-tuple, (pup, ptroubled , pdown), where pup

is the probability of being healthy, pdown that of having
failed, and ptroubled that of experiencing partial failure;
pup+ptroubled+pdown=1. The state of a completely suc-
cessful or failed transaction or component is (1,0,0) or
(0,0,1); other tuples represent intermediate degrees of
health. A monitoring engine determines the state of
a transaction in a system specific way; for example, a
transaction that completes but takes a long time may be
assigned ptroubled > 0.
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(a) Network (b) DTL: C2→S2 (c) PTL: C2→S2 (d) PML: C2→S2 (e) C1→S1

Figure 2: An example network and models for two transactions.

Table 1: Transaction state (pup) predicted by different
models for transaction C2→S2 in Figure 2

4.1 System Model
A system model represents the impact of network

components on transactions. It can be encoded as a di-
rected graph, where an edge from A to B implies that A
impacts B. Three types of system models have been used
by prior localization algorithms:
1. Deterministic Two Level (DTL) is a two-level
model in which the top level corresponds to system
components and the bottom level to transactions. Com-
ponents connect to transactions they impact. The model
assumes that components independently impact depen-
dent transactions, and a transaction fails if any of its
parent components fails.
2. Probabilistic Two Level (PTL) is similar to DTL
except that the impact is modeled as probabilistic. Com-
ponent failure leads to transaction failure with some
probability.
3. Probabilistic Multi Level (PML) can have more
than two levels; intermediate levels help encode more
complex relationships between components and transac-
tions such as load balancing and failover.

The network in Figure 2(a) helps illustrate the three
models. The network has two clients (C1,C2), two
servers (S1,S2), two routers (R1,R2), and several links.
Transactions are requests from a client to a server
(Ci→S j). Each request uses the shortest path, based
on hop count, between the client and server. Where mul-
tiple shortest paths are present, as for C2→S2, requests
are load balanced across those paths.

Assume that the components of interest for diagno-
sis are the two routers and the two servers. Then, Fig-
ures 2(b)-(d) show the models for the transaction C2→S2.
Different models predict different relationships between

the failures of components and that of the transaction.
These predictions are shown in Table 1. For simplic-
ity, the table shows the value of pup; pdown = 1− pup

and ptroubled = 0 in this example. DTL predicts that
the transaction fails when any of the components upon
which it relies fails. Thus, the transaction is (incorrectly)
predicted as always failing even when only one of the
routers fails. PTL provides a better approximation in
that the transaction is not deemed to completely fail
when only one of the router fails. However, it still does
not correctly model the impact of both routers failing
simultaneously. PML is able to correctly encode com-
plex relationships. While this example shows how PML
correctly captures load balancing, it can also model other
relationships such as failover [6]. However, this higher
modeling fidelity does not come for free; as we discuss
later, PML models have higher computational overhead.

In this network, the three models for the other three
types of transactions (C1→S{1,2},C2→S1) are equivalent.
The model for C1→S1 is shown in Figure 2(e)

4.2 Scoring function
Scoring functions evaluate how well the observa-

tion vector predicted by the system model for a sys-
tem state matches the actual observation vector. Let
(pup, ptroubled , pdown) be the state of a transaction in the
predicted observation vector. Let (qup,qtroubled ,qdown)
be the actual state determined by the monitoring engine.
Then, the computation of various scoring functions can
be compactly explained using the following quantities:

Explained failure eF = pdownqdown

Unexplained failure nF = (1− pdown)qdown

Explained success eS = pupqup + ptroubledqtroubled

Unexplained success nS = (1− pup)qup +
(1− ptroubled)qtroubled

eF is the extent to which the prediction explains the ac-
tual failure of the transaction, and nF measures the ex-
tent to which it does not. eS and nS have similar in-
terpretations for successful transactions. We also define
another quantity T F= Σ(eF + nF), where the summa-
tion is over all elements of observation vectors. Because
eF + nF = qdown, T F is the total number of failures in
the actual observation vector.

4
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Table 2: Score computed by different scoring functions
for three possible failures.

Different scoring functions aggregate these basic
quantities across observation elements in different ways.
We find three classes of scoring functions:
1. FailureOnly (eF,T F): Such scoring functions only
measure the extent to which a hypothesis explains actual
failures. They thus use only eF and TF.
2. InBetween (eF,nS,T F): Such scoring functions
only measure the extent to which a hypothesis explains
failures and unexplained successes.
3. FailureSuccess (eF,eS): Such scoring functions
measure both the extent to which a hypothesis explains
failures and how well it explains successes.

Concrete instances of these classes are shown in Ta-
ble 3. As expected, the score increases as eF and eS
increase, and decreases when nF and nS increase. Given
the large number of elements, each aggregates them in a
way that is practical for high-dimensional spaces [4, 7].

Instead of analyzing every instance, in this paper we
use a representative for each of the three classes. We
find that the performance of different functions in a class
is qualitatively similar. Our experiments use as repre-
sentatives the functions used by SCORE (FailureOnly),
Pinpoint (InBetween), and Sherlock (FailureSuccess).

To understand how different scoring functions can lead
to different diagnoses, consider Figure 2 again. Assume
that R1 has failed and the actual state of four transactions
is available to us. Two of these are C1→S1, both of which
have failed (since they depend on R1); and the other two
are C2→S2, one of which has failed (because it used R1,
while the other used R2). Table 2 shows how the scoring
functions evaluate three system states in which exactly
one of R1, R2, and S1 has failed. The computation uses
DTL for the system model. The top four rows show the
values of the basic quantities. As an example, ΣeF is
3 in Column 1 because R1’s failure correctly explains
the three failed transactions; it is 1 in Column 2 because
R2’s failure explains the failure of only one transaction
(C2→S2) and not of the two C1→S1 transactions.

The bottom three rows of the table show the scores of
the three scoring functions for each failure. Even in this

simple example, different scoring functions deem differ-
ent failures as more or less likely. FailureOnly and InBe-
tween deem R1 as the most likely failure that explains the
observed data, FailureSuccess deems (incorrectly) that
the data can be just as well be explained by the failure
of S1. While it may appear that FailureSuccess is a poor
choice, we show later that FailureSuccess actually works
well in a variety of real networks.

4.3 State space exploration
State space exploration determines how the large

space of possible system states (i.e., combinations of
failed components) is explored. Prior work uses four
types of explorers.
1. Independent explores only system states with ex-
actly one component failure.
2. Jointk explores system states with at most k failures.
It is a generalization of Independent (which is Joint1).
3. Greedy set cover (Gsc) is an iterative method. In
each iteration, a single component failure that explains
the most failed transactions is chosen. Iterations repeat
until all failed transactions are explained. Thus, it greed-
ily computes the set of component failures that cover all
failed transactions.
4. Hierarchical is also an iterative method. As in Gsc,
in each iteration the component C that best explains the
actual observations is chosen. However, a major differ-
ence is that if there are additional observations that C
impacts, then these are added to the list of unexplained
failures even if they were originally not marked as hav-
ing failed in the input. Thus unlike Gsc, the set of unex-
plained failures need not decrease monotonically.

4.4 Mapping fault localization algorithms
Table 3 maps the fault localization portion of nine

prior tools to our framework. Readers familiar with a
tool may not immediately see how its computation maps
to the choices shown because the original description
uses different terminology. But in each case we have
analytically and empirically verified the correctness of
the mapping: composing the choices shown for the three
parts leads to a matching computation (except for as-
pects mentioned below). Due to space constraints, we
omit these verification experiments.

The last column lists aspects of the tool that are not
captured in our framework. Most relate to pre- or post-
processing data, e.g., candidate pre-selection removes ir-
relevant components at the start. The table does not list
other suggestions by tool authors such as using priors
that capture baseline component failure probabilities.

While the aspects we do not model are useful enhance-
ments, they are complementary to the core localization
algorithm. Our goal is to understand the behavior of
fundamental choices made in the core algorithm. By

5
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Tool Target system System
Model

Scoring Function State Space
Exploration Aspects not captured

Codebook [16] Satellite comm. network DTL,PTL FailureSuccess (Σ(eF + eS)) Independent Codebook selection
MaxCoverage
[18] ISP backbone DTL FailureOnly ( ΣeF

T F ) Gsc
Candidate post-selection,
Hypothesis selection

NetDiagnoser
[11]

Intra-AS, multi-AS
internetwork DTL FailureOnly ( ΣeF

T F ) Gsc Candidate pre-selection

NetMedic [14] Small enterprise network PTL FailureOnly (ΣeF) Independent Re-ranking
Pinpoint [8] Internet services DTL InBetween ( ΣeF

T F+ΣnS ) Hierarchical

SCORE [17] ISP backbone DTL FailureOnly( ΣeF
T F ) Gsc

Threshold based
hypothesis selection

Sherlock [6] Large enterprise network PML FailureSuccess (∏(eF + eS)) Joint3 Statistical significance test
Shrink [13] IP network PTL FailureSuccess (∏(eF + eS)) Joint3
WebProfiler [3] Web applications DTL InBetween ( ΣeF

ΣnS+ΣeF ) Joint2 Re-ranking

Table 3: Different fault localization algorithms mapped to our framework.

employing these choices, tools inherit their implications
(§7) even when they use additional enhancements. Our
paper abuses notation for simplicity; when we refer to a
particular tool by name, we are referring to the computa-
tion that results from combining its three-part choices.

5. Network Characteristics

Localization algorithms must handle network charac-
teristics that confound inference. We selected six such
characteristics by simply asking: “what could go wrong
with inference?" Clearly, dependency graph informa-
tion can be incorrect (which we call uncertainty) and
measurements may be wrongly recorded (which we call
noise). We, and other researchers, have seen each char-
acteristic empirically: e.g., noise in Lync and uncertainty
in Exchange. We make no claim that our six characteris-
tics are exhaustive but only that they helped explain why
inference in the real networks we studied was hard.

In detail, the six characteristics we study are:
1. Uncertainty Most networks have significant non-
determinism that makes the impact of a component
failure on a transaction uncertain. For example, if a DNS
translation is cached, a ping need not consult the DNS
server; thus the DNS server failure does not impact the
ping transaction if the entry is cached, but otherwise
it does. This creates an uncertain dependency because
the localization algorithm is not privy to DNS cache
state. Load balancing is another common source of
non-determinism e.g., C2→S2 transaction in Figure 2.

More precisely, if a component potentially (but not al-
ways) impacts a transaction failure, we call the depen-
dency uncertain. A network whose system model con-
tains uncertain edges is said to exhibit uncertainty. The
degree of uncertainty is measured by the number of un-
certain dependencies and the uncertainty of each depen-
dency. Probabilistic models like PTL and PML can en-
code uncertainty while deterministic models cannot.
2. Observation noise So far, we assumed that obser-
vations are measured correctly. However, in practice,

pings could be received correctly but lost during trans-
mission to the stored log: thus an “up" transaction can
be incorrectly marked as “down". Errors can also occur
in reverse. In Lync, for example, the monitoring sys-
tem measures properties of received voice call data to
determine that a voice call is working; however, the voice
call may still have been unacceptable to the humans in-
volved. Both problems have been encountered in real
networks [3, 11, 17, 18]. They can be viewed as intro-
ducing noise in the observation data that can lead sensi-
tive localization algorithms astray. A network with 10%
noise can be thought of as flipping 10% of the transaction
states before presentation to the localization algorithm.
3. Covering relationships In some systems, when a
particular component is used by a transaction, other com-
ponents are used as well. For example, when a link par-
ticipates in an end-to-end path, so do the two routers on
either end. More precisely, component C covers com-
ponent D if the set of transactions that C impacts is a
superset of the transactions that D impacts.

Covering relationships confuse fault localization be-
cause any failed transaction explained by the covered
component (link) can also be explained by the covering
component (router). Other observations can be used to
differentiate such failures; when a router fails, there may
be path failures that do not involve the covered link. But
some fault localization methods are better than others at
making this distinction.
4. Simultaneous failures Diagnosing multiple, simul-
taneous failures is a well-known hurdle. Investigating
k simultaneous failures among n components potentially
requires examining O(nk) combinations of components.
For example, in Lync, even if we limit localization to
components that are actively involved in current trans-
actions, the number of components can be around 600;
naively considering 3 simultaneous failures as in Joint3
can take days to run. The key characteristic is the max-
imum number s of simultaneous failures; the operator
must feel that more than s simultaneous failures are ex-
tremely unlikely in practice.

6
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Figure 3: Lync architecture.

5. Collective impact So far, we assumed that a sin-
gle component failure affects a transaction in possibly
uncertain fashion. However, many networks exhibit a
more complex dependency between a transaction and a
set of components; the transaction’s success depends on
the collective health of the components in the set. For in-
stance, when two servers are in a failover configuration,
the transaction fails only if they both fail; otherwise, it
succeeds. Collective impact is not limited to failover and
load-balancing servers. Routers or links on the primary
and backup paths in an IP network also have collective
impact on message delivery. Multi-level models (e.g.,
PML) can model collective impact using additional logi-
cal nodes, but two-level models do not.2

6. Scale Network size impacts the speed of fault lo-
calization, which is key to fast recovery and high avail-
ability. Scale can be captured using the total number of
components in the network and/or the typical number of
observations fed to the localization algorithm. For Lync,
the two numbers are 8000 and 2500.

6. Analysis methodology

Our goal is to analyze the relative merits of the choices
made by various localization algorithms in the face of
the network characteristics above. We do this by com-
bining first principles reasoning and simulations of three
diverse, real networks. This section describes our sim-
ulation method and the networks we study, and the next
section presents our findings.

6.1 Simulation harness
In each simulation, we first select which system com-

ponents fail. We then generate enough transactions—
some of which fail due to the failed components—such
that diagnosis is not limited by a lack of observations, as
is true of large, busy networks [18, 21]. Finally, we feed
these observations to the fault localization algorithm and
obtain its output as a ranked list of likely failures.

2Our notion of collective impact differs from so called “cor-
related failures” in the literature which refers to components
likely to fail together such as two servers are connected to the
same power source.

Unless otherwise specified, the components to fail and
the transaction endpoints are selected randomly. In prac-
tice, failures may not be random; we have verified that
results are qualitatively similar for skewed failure dis-
tributions. In §9, we show that our findings agree with
diagnosing real failures in Lync.

As is common, we quantify localization performance
using diagnostic rank and computation time. Since diag-
nostic rank is the rank of components that have actually
failed, it reflects the overhead of identifying real failures,
assuming that operators investigate component failures
in the order listed by the localization algorithm. Our sim-
ulation harness takes as input any network, any failure
model, and any combination of localization methods.

6.2 Networks considered
To ensure that our findings are general, we study three

real networks that are highly diverse in terms of their
size, services offered, and network characteristics. The
first network, Lync, supports interactive, peer-to-peer
communication between users; the second, Exchange,
uses a client-server communication model; and the third,
Abilene, is an IP-based backbone. Each network has one
or more challenging characteristics. For instance, Lync
has significant noise and simultaneous failures while Ex-
change has significant uncertainty. To our knowledge we
are the first to consider diagnosis in a Lync-like network.
1. Lync Lync is an enterprise communication system.
that supports several communication modes, including
instant messages, voice, video and conferencing. We fo-
cus on the peer-to-peer communication aspects of Lync.
The main components of a Lync network are shown in
Figure 3. Internal users are registered with registrars and
authenticated with AD (active directory). Audio calls
connect via mediation servers, and out of the enterprise
into a PSTN (public switched telephone network) using
gateway. Edge servers handle external calls. Branch of-
fices connect to the main sites by a WAN and PSTN.

The deployment of Lync that we study spans many of-
fices worldwide of a large enterprise. It has over 8K com-
ponents and serves 22K users. We have information on
the network topology and locations of users. For a two-
month period, we also have information on failures from
the network’s trouble ticket database and on transactions
from its monitoring engine.
2. Exchange Exchange is a popular email system. Its
transactions include sending and receiving email and are
based on client-server communication. Important com-
ponents of an Exchange network include mail servers,
DNS, and Active Directory(AD) servers.

We study the Exchange deployment used in [9], with
530 users across 5 regions. The network has 118 compo-
nents. The number of hubs, mailboxes, DNS and AD
servers in a region are proportional to the number of
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users. AD servers are in a load balancing cluster; hubs,
DNS and mailbox servers are in a failover configuration.
3. Abilene Abilene is an IP-based backbone that con-
nects many academic institutions in the USA. The topol-
ogy [1] that we use has 12 routers and 15 links, for a total
of 27 network components. The workload used for Abi-
lene consists of paths between randomly selected ingress
and egress routers selected.

7. Analysis results

Table 4 summarizes our findings by qualitatively rat-
ing models, scoring functions and explorers on how they
handle the six network characteristics. For each network
characteristic (columns), it rates each method as good,
OK, or poor. An empty (shaded) subcolumn for a char-
acteristic implies that each row is qualitatively equiva-
lent with respect to that characteristic. For instance, the
choice of state space explorer has little impact on the
ability to handle uncertainty. We focus on parts of the
table where different options behave differently. Each
such part highlights the relative merits of choices, and
we use it later to guide the design of Gestalt.

7.1 Uncertainty
Uncertainty arises when the impact of a component

on a transaction is not certain. Conventional wisdom is
that deterministic models cannot handle uncertainty [6,
13, 14]. But we find that:
Finding 1 In the presence of uncertainty, DTL suffices
if the scoring function is FailureOnly. Consider a DNS
server D whose impact on a specific transaction, say ping
1, is uncertain. In DTL, this uncertainty must be resolved
(since the model is binary) in favor of assuming impact;
for instance, we must assume that ping 1 depends on the
D even if it used a locally cached entry. (If we err in
the opposite direction and assume that ping 1 does not
depend on the D, we would never be able to implicate D
if the cache is empty and D actually fails.)

If this assumption happens to be true, no harm is done.
But if false (i.e., the transaction does not depend on the
component), there are two concerns. First, consider the
case when the the real failure was a different component;
for example, ping 1 failed because some router R in the
path failed and not because D failed. In that case, D may
be considered a more likely cause of the failure of ping 1
than R; but this can increase the diagnostic rank of R by
at most 1, which is insignificant.

The second, more important, concern is that the abil-
ity to diagnose the failure of the falsely connected com-
ponent itself may be significantly diminished. For ex-
ample, when D fails, other transactions, say ping 2 and
ping 3, may succeed because they use cached entries.
This can confuse the fault localization algorithm because

it increases the number of unexplained successes nS at-
tributed to D, and decreases eS, potentially increasing
significantly the diagnostic rank of D.

FailureOnly functions are not hindered by the false
connection because they use only eF and nF in comput-
ing their score. But FailureSuccess and InBetween are
negatively impacted because they do use eS and nS.

Figure 4 provides empirical confirmation for this find-
ing using Exchange which has significant uncertainty be-
cause of the use of DNS servers whose results can be
cached. It plots the diagnostic rank for 1000 trials; in
each trial, a single random failure is injected. Observe
that DTL with FailureOnly handles uncertainty just as
well as PML and PTL. By contrast, DTL with Failure-
Success has much worse diagnostic rank (50 versus 5
in some trials). An implication of Finding 1 is that if
the network has only uncertainty, it can be best handled
(with small computation time and comparable diagnostic
rank) using DTL and FailureOnly.

7.2 Observation noise
Finding 2 FailureSuccess is most robust to observa-

tion noise, followed by InBetween, and then by Failure-
Only. Intuitively, using more evidence and all available
elements reduces sensitivity to noise. Noise turns suc-
cessful transactions into apparent failures or vice versa.
FailureOnly is the most impacted because it uses only
failure elements. FailureSuccess is the least impacted as
legitimate failures appearing as successes add to eS the
same amount as that subtracted from eF , and vice versa.

Figure 6(a) confirms this behavior. We inject single
failures in Abilene and introduce 0-50% noise. We run
100 trials for each noise level and plot the median diag-
nostic rank for each level. This graph uses DTL and In-
dependent as the system model and state space explorer;
the relative trends are similar with other combinations.
Finding 3 Iterative state space explorers, Gsc and Hi-
erarchical, are highly sensitive to noise. This is because
an erroneous inference (due to noise) made in an early
iteration can cause future inferences to falter.

Figure 6(b) confirms this behavior. In this experiment,
we introduced two independent failures in Abilene and
0-50% observation noise. The experiment uses DTL and
FailureSuccess while varying the state space explorer;
other combinations of model and scoring function pro-
duce similar trends. Figure 6(b) plots the median diag-
nostic rank across 100 trials. We see that Gsc and Hierar-
chical deteriorate with small amounts of noise. Finding
3 helps explain the extreme sensitivity of SCORE, which
uses FailureOnly and Gsc, to noise, that prior work [18]
empirically observed but did not fully explain.

7.3 Covering relationships
Recall that a component C covers a component D if
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Observation Covering Simultaneous Collective
Uncertainty Noise relationship failures Impact Scale

DTL Good w/ FailureOnly. Poor GoodPoor w/ other scoring funcs.
PTL Good Poor OK
PML Good Good w/ Jointk . OK

Poor otherwise.
FailureOnly(FO) Good Poor Poor Good

InBetween Good w/ PTL, PML OK Good OKPoor with DTL
FailureSuccess(FS) Good w/ PTL, PML. Good Good OKPoor with DTL
Independent(Ind) Good Poor Poor Good

Jointk(Jt_k) Good Good (s≤k). Good (c≤k). Poor
Poor (s>k) Poor (c>k)

Gsc Poor Good∗ Poor Good
Hierarchical Poor Poor Poor OK

Table 4: Effectiveness of diagnostic methods with respect to factors of interest. ∗ depends on the network.

Figure 4: DTL can handle
uncertainty when used with

FailureOnly. [Exchange]

Figure 5: FailureOnly
performs poorly for

covering relationships.
[Abilene]

(a) Scoring functions (b) State space explorers

Figure 6: Sensitivity to observation noise. [Abilene]

the set of transactions that D impacts is a subset of those
that C impacts. In other words, when a transaction that D
impacts fails, it is impossible to distinguish a failure of C
from that of D by looking only at failures.
Finding 4 For covering relationships, FailureOnly
scoring functions should not be used. Other scoring
functions (FailureSuccess, InBetween) can better disam-
biguate the failures of the covering and covered compo-
nent because they use successful transactions (eS, nS)
as well, and not only failed ones. For instance, consider
a failed link. All failed transactions due to the link can
also be explained by the failure of the attached routers.
By using successful transactions that include the routers
but not the failed link, the scoring function can assign a
higher likelihood to link failure than router failure.

Figure 5 verifies Finding 4 by showing the results of
an experiment using Abilene, which has many covering
relationships. We randomly introduced a single failure
in the network and diagnosed it using different scoring
functions (combined with DTL and Independent). We
see that FailureOnly has the worst performance with non-
zero diagnostic rank in 60% of the trials while the other
two methods have rank 0 most of the time.

We note that FailureOnly has been used by several

tools to diagnose ISP backbones [11,17,18], which have
many covering relationships. Finding 4 suggests that the
localization accuracy of these tools can be improved by
changing their scoring function.

7.4 Simultaneous failures
We now discuss simultaneous failures of components

that have independent impact on transactions. The next
section discusses collective impact.
Finding 5 For a small number of simultaneous failures
(s≤k), Jointk is best and Hierarchical is worst. The effec-
tiveness of Jointk follows because it examines all system
states with k or fewer failures. Hierarchical does poorly
because its clustering approach forces it to explain more
failures than needed. Suppose transactions O1,O2,O3
have failed and component C explains O1 and O2 and no
other component explains more failures. Suppose, how-
ever, that C also impacts transaction O4. Then Hierarchi-
cal will add C to the cluster but will also add transaction
O4 as a new failed transaction to be explained by subse-
quent iterations. Intuitively, the onus of explaining more
failures than those observed can lead Hierarchical astray.

Figure 7(a) shows the performance of different state
space explorers when diagnosing two (randomly picked)
simultaneous failures in Abilene. The graph uses PML

9
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(a) 2 simultaneous failures (b) 3-4 simultaneous failures

Figure 7: Ability of state space explorers to handle
simultaneous failures. [Abilene]

(a) 2 collective failures (b) 3 collective failures

Figure 8: Ability of a model+state space explorer to
handle collective impact failures. [Abilene]

and FailureSuccess; other combinations produce similar
trends. We see that Jointk is highly effective (rank 2 or
less), and Hierarchical is poor (rank > 20 in 25% of tri-
als). Gsc has bimodal behavior with a rank > 25 in a
small fraction of trials. Closer investigation confirms that
these trials involve the simultaneous failures of two com-
ponents that together cover a third component.

Finding 5 explains why Pinpoint [8], which uses Hier-
archical, has poor performance (see Figure 4 in [8]) for
even two simultaneous failures, despite the handling of
simultaneous failures being an explicit goal of Pinpoint.
It suggests that replacing Hierarchical state space explo-
ration in Pinpoint (with, say, Joint2) while keeping the
same system model and scoring function would improve
Pinpoint’s diagnosis of simultaneous failures.

7.5 Collective impact
We now study simultaneous failures of components

that have a collective impact on transactions by being, for
instance, in a load balancing or failover relationship. We
find that in such cases, the choice of system model and
state space explorer should be jointly made. We explored
two cases: when the number s of failed components in a
collection is small (s≤k), and when it is large (s>k).
Finding 6 For diagnosing a small number of simulta-
neous failures in a collection (s ≤ k), combining PML
and Jointk is most effective; any other system model or
state space explorer leads to poor diagnosis. This is
because, among existing models, only PML can encode
collective impact relationships. Other models represent
approximations that can be far from reality. However,
picking the right model is not enough. The state explorer
must also consider simultaneous failure of these compo-
nents. Among existing state space explorers, only Jointk
has this property. Independent does not consider simul-
taneous failures, and Gsc and Hierarchical assume that
components have independent impact.

Figure 8(a) demonstrates this behavior. We modeled
failures among components with collective impact in
Abilene as follows. Each trial randomly selects a pair of
nodes that has two vertex-disjoint paths between them.

For messages between these nodes, the two paths can be
considered to be in a failover relationship with collective
impact. We then introduced a randomly selected failure
along each path. Thus, all messages sent between the
pair of nodes will now fail. For 1000 such trials, the
graph plots the diagnostic ranks of several combinations
of system model and state space explorer. It uses Fail-
ureSuccess for scoring function, but others yield similar
results. We omit results for Gsc and Hierarchical; they
had worse performance than Independent. As we can
see, only PML+Joint2 is effective.

This result implies that half-way measures are insuf-
ficient for diagnosing collective impact failures. We
must both model relationships (PML) and explore joint
failures (Jointk). Localization suffers if either choice is
wrong. For example, Shrink [13] uses PTL with Jointk
even though it targets IP networks which may have po-
tentially many failover paths. Finding 6 suggests that
Shrink would do better to replace PTL with PML.

8. Gestalt

The insights from the analysis above led us to develop
Gestalt. It combines ideas from existing algorithms and
also includes a new state space exploration method.

For the system model, Gestalt uses a hybrid between
DTL and PML that combines the simplicity of DTL
(fixed number of levels, deterministic edges) with the
expressiveness of PML (ability to capture complex com-
ponent relationships). Our model has three levels, where
the top level corresponds to system components that
can fail independently and the bottom level to transac-
tions. An intermediate level captures collective impact
of system components. Instead of encoding probabilistic
impact on the edges, the intermediate node encodes the
function that captures the nature of the collective impact.
The domain of this function is the combinations of states
of the parent nodes, and the range is the impact of each
combination on the transaction. Figure 9(a) shows how
Gestalt models the example in Figure 2a. The interme-
diate node I encodes the collective impact of R1 and R2.
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Algorithm 1: Pseudocode for Gestalt
1: Hall = {};
2: For each hitRatio in 1,0.95, · · ·0 do
3: Hcurr = (); //current hypothesis
4: Ounexp = Oall ; //unexplained observations
5: Hall += GenHyp(1, Ounexp, hitRatio, Hcurr);
6: Return Hall

GenHyp(i, Ounexp, hitRatio, Hcurr)
1: Hreturn = {Hcurr };
2: Cnew = NewCandidates(hitRatio, Ounexp);
3: For each c in Cnew
4: hypnew = (hyp, c);
5: If (i == k)
6: Hreturn += hypnew;
7: Else
8: Oexp = ExpObs(hypnew,Ounexp);
9: Hreturn += GenHyp(i+1, Ounexp − Oexp, hitRatio,

hypnew);
10: Return Hreturn

NewCandidates(hitRatio, Ounexp)
1: Cnew = {};
2: For each c in CandidatePool
3: If (HitRatio(c) ≥ hitRatio)
4: Cnew += c;
5: scoremax = MaxScore(Cnew, Ounexp);
6: scorenoise = Noisethresh × |Ounexp |;
7: For each c in Cnew
8: If (Score(c) < scoremax − scorenoise)
9: Cnew −= c;

10: Return Cnew

The function represented by I is shown in the figure,
which shows values only for pup (pdown=1–pup).

While for this example, PML too has only three levels,
Figure 9(b) illustrates the difference between PML and
Gestalt. Here, to reach S, C spreads packets across R1
and R2, and R2 spreads across R3 and R4. Figures 9(c)
and 9(d) show PML and Gestalt models for this network.

Another difference between PML and our model is
how we capture single components with uncertain im-
pact on a transaction (e.g., a DNS server whose responses
may be cached). Gestalt models these with 3 levels too.
An intermediate node captures the uncertainty from the
component’s state to its impact on the transaction. It may
deem, for instance, that the transaction will succeed with
some probability even if the component fails.

As scoring function, we use FailureSuccess because of
its robustness to noise and covering relationships (Find-
ings 2 and 3). By explicitly modeling uncertainty (unlike
DTL), the combination of our model and FailureSucess
is robust to uncertainty as well (Finding 1).

For state space exploration, we develop a method that
has the localization accuracy of Jointk and the low com-
putational overhead of Gsc. It is based on the following
observations. Gsc is susceptible to covering relationships
because many failure combinations can explain the ob-
servations and Gsc explores only a subset, ignoring oth-
ers (Finding 5). Gsc is susceptible to noise because noise
can make it pick a poor candidate and rule out other pos-

sibilities (Finding 3). The diagnostic accuracy of Jointk
for collective impact failures stems from the fact that it
explores combinations of at most k failures; exploring a
smaller number does not help (Finding 6). But because
its exploration is fully combinatorial, it has a high com-
putational overhead.

Our new exploration method is shown in Algorithm 1.
It takes two parameters as input. The first is Noisethresh,
the percentage of observation noise expected in the net-
work, which can be estimated from historical data. Given
ground truth (post resolution) about a failure and the
transaction logs, the percentage of transactions that can-
not be explained by the ground truth reflects the level of
observation noise. In Lync, we found this to be around
10%. The second parameter is k, the maximum number
of simultaneous failures expected in the network. It can
also be gleaned from historical failure data.

The candidate failures that we explore are single com-
ponent failures and combinations of up to k components
with collective impact. This candidate pool explicitly
accounts for collective impact failures (making them di-
agnosable, unlike in Gsc). It is also much smaller than
the pool considered by Jointk which includes all possi-
ble combinations of up to k failures. The output of the
exploration is a ranked list of hypotheses, where each
hypothesis is a set of at most k candidates from the pool.

These sets are computed separately for different
thresholds of hit ratio [17]. The hit ratio of a candidate
is the ratio of number of failed versus total transactions
in which the component(s) participated. Iterating over
candidates in decreasing order of hit ratios gives us a
systematic way of exploring failures while focusing on
more likely failures first because actual failures are likely
to have larger hit ratios. Hit ratios are not used in the
scoring function.

For a given hit ratio threshold, the hypothesis sets are
built iteratively (i.e., not all possible sets are considered)
in k steps. We start with the empty set. At each step,
each set is forked into a number of child sets, where each
child set has one additional candidate than the parent set.

The child candidates are computed as follows. Let
Ounexp be the set of observations whose status cannot be
explained by the parent set (i.e., the status does not match
what would be predicted by the system model). Initially,
when the parent set is empty, this set equals Oall , the
set of all observations. Then, we first compute the score
of each candidate in the entire pool with hit ratio higher
than the current threshold. This computation uses the
scoring function (FailureSuccess) and is done with re-
spect to Ounexp. Candidates more likely to explain the as
yet unexplained observations will have higher scores.

If there were no observation noise, candidates with
the maximum score can be used as child candidates be-
cause they best explain the remaining unexplained ob-
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(a) Gestalt model for Figure 2a (b) Another example
network

(c) PML for
Fig. 9(b)

(d) Gestalt model for Figure 9(b)

Figure 9: Modeling in Gestalt

servations. But due to noisy observations, the score of
actual failures may go down and the score of some other
candidates may go up. By focusing only on candidates
with the maximum score, we run the risk of excluding
actual failures from the set, like Gsc.

We thus cast a wider net; the width of the net is
proportional to expected noise. The score of the ac-
tual culprit can be expected to reduce due to observa-
tion noise by scorenoise = Noisethresh × |Ounexp|. The
selected candidates are those with scores higher than
scoremax − scorenoise, where scoremax is the maximum
score across all candidates. This reduces chances of
missing actual failures. Noisethresh and k enable Gestalt
to explore the continuum between Gsc and exhaustive
search. Noisethresh set to 0 mimics Gsc (but handles
covering relationship), and Noisethresh set to 100 mimics
Jointk.

9. Gestalt Evaluation

We now evaluate Gestalt and compare it to 3 exist-
ing algorithms that use very different techniques. We
start with Lync and use the algorithms to diagnose real
failures using real transactions available in system logs.
Based on information from days prior to the failures we
diagnose, we set Noisethresh=10% and k=2 for Gestalt.

Original
recovery delay
(days, hh:mm)

#
potential
failed
comps

Gestalt
diagnos-
tic
rank

Gestalt
run time
(mm:ss)

1 0,01:50 196 11 4:02
2 0,00:50 625 7 2:59
3 0,01:55 552 6 0:05
4 0,22:05 608 9 0:05
5 1,23:45 521 7 0:12
6 0,10:55 655 6 0:21
7 14,06:25 676 12 2:43
8 0,01:45 571 13 1:06
9 0,20:15 562 13 0:23
10 0,08:20 455 3 1:03

Table 5: Statistics for a sample of real failures in Lync.

Figure 1(a) shows the results for a number of failures
seen in a two month period (the actual failure count is
hidden for confidentiality). The legend shows the median
running time for the algorithms on a 3 GHz dual-core
PC. We see that SCORE and Pinpoint perform poorly.
Gestalt and Sherlock perform similarly, but the running
time of Gestalt is lower by more than an order of magni-
tude. This is despite the fact that we ran Sherlock with
Joint2. Using Joint3, recommended in the original Sher-
lock paper [6], would have taken ∼ 20 hours per failure.

Table 5 provides more details for ten sample failures
in the logs. We see that the time it took for the operators
to manually diagnose these failures, reflected in the orig-
inal recovery delay, was very high. The median time was
around 8 hours, though it took more than a day for two
failures. The primary reason for slow recovery time was
the large diagnosis time due to the number of network
components that had to be manually inspected3. The ta-
ble lists the number of components involved in failing
transactions as an estimate of the number of possible
components that might need to be checked. Of course,
using domain knowledge and expertise, an operator will
only check a subset of these components; but the esti-
mate underscores the challenge faced by operators today.
We see that using Gestalt, the operator will have to check
only 3-13 components before identifying the real culprits
compared to 196-655 components for manual diagnosis,
significantly reducing diagnosis time. The run time for
Gestalt to whittle down the list of suspects by 1-2 orders
of magnitude is at most a few minutes.

We next consider simulated failures in the Exchange
network. Figures 10(a) and 10(b) show results for diag-
nosing one and two component simulated failures. We
again used Joint2 for Sherlock and k=2 and Noisethresh=0
for Gestalt. As expected based on our earlier analysis,
Score does very well for single failure scenarios, but
suffers in two-failure scenarios due to covering relation-

3In Lync, once a problem was diagnosed, service was restored
quickly by repair or diverting transactions around the failed
component.
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(a) Single failure (b) 2 simultaneous failures (c) 3 simultaneous failures (d) 4 simult. failures, 1% noise

Figure 10: Diagnostic efficacy of different algorithms with Exchange network with different number of failures.

ships. Sherlock and Gestalt do well for both cases, but
Sherlock takes two orders of magnitude more time.

In order to experiment with more simultaneous fail-
ures and Joint3, we reduced the size of the Exchange
network by half (to 67 components). Figures 10(c)
and 10(d) show the results for three failures and for four
failures with 1% observation noise. In the latter case,
we run Gestalt with Noisethresh=1%. We see that Gestalt
matches Sherlock’s diagnostic accuracy for three fail-
ures, with running time that is two orders of magnitude
faster. For four failures, Gestalt has better diagnostic
accuracy than Sherlock because it accounts for noise.
Its running time is still better by 20x, even though noise
makes it explore more failure combinations.

We omit results for Abilene, but we found them to be
qualitatively similar to those above. Gestalt had better di-
agnostic efficacy than SCORE and Pinpoint for all cases.
Gestalt matched Sherlock’s accuracy for most cases and
exceeded it in the presence of noise and more than three
simultaneous failures. Its running time was 1-2 orders of
magnitude lower than Sherlock.

10. Conclusion

We presented Gestalt, a fault localization algorithm
that borrows the best ideas from prior work and includes
a new state space explorer that represents a continuum
between greedy, low-accuracy exploration and combina-
torial, high-overhead exploration. The result is an algo-
rithm that simultaneously provides high localization ac-
curacy and low overhead for a range of networks. Its
design is guided by an analysis framework that anato-
mizes the design space of fault localization algorithms
and explains how the design choices of existing algo-
rithms interact with key characteristics of real networks.
Beyond the specific algorithm it helped develop, we hope
this framework takes a modest step towards understand-
ing the gestalt of fault localization.
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