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Abstract

User interactions with mobile devices increasingly depend on
voice as a primary input modality. Due to the disadvantages
of sending audio across potentially spotty network connections
for speech recognition, in recent years there has been grow-
ing attention to performing recognition on-device. The lim-
ited computational resources, however, typically require addi-
tional model constraints. In this work, we explore the task of
on-device utterance verification, wherein the recognizer must
transcribe an utterance if it is in a target set or reject it as be-
ing out of domain. We present a data-driven methodology for
mining tens of thousands of target phrases from an existing
corpus. We then compare two common garbage-modeling ap-
proaches to utterance verification: a sub-word rejection model
and a white-listed n-gram model. We examine a deficiency of
the sub-word modeling approach and introduce a novel modi-
fication that makes use of common prefixes between targeted
phrases and non-targeted phrases. We show good performance
in the trade-off between recall and word error rate using both the
prefix and white-listed n-gram approaches. Finally, we evaluate
the prefix-based approach in a hybrid setting where rejected in-
stances are sent to a server-side recognizer.
Index Terms: automatic speech recognition, language model-
ing, utterance verification, OOV rejection, garbage modeling

1. Introduction
Word error rates of modern speech recognizers have improved
so dramatically in recent years that, for some, the main impedi-
ment to the everyday use of speech technology on their mobile
devices lies not in the quality of the transcription, but in the la-
tency and the reliability of the network connection used to trans-
mit the audio and receive results. Still, due to the limited com-
puting resources available on these devices and the complexi-
ties of recognizing continuous speech, large vocabulary speech
recognition is typically performed on a powerful servers in data
centers [1, 2].

In this work, we explore the ramifications of shifting some
of the recognition processing to the device. We examine two
use cases in particular. The first is a hybrid recognizer, along
the lines of [3, 4, 5], where a subset of voice search queries
are handled on-device and the remainder are passed along to
the more powerful server-side engine. The second is an offline-
only voice actions recognizer, containing command-and-control
style queries which could be executed without the aide of a net-
work connection.

The work described in this paper was performed while the first au-
thor was an intern at Google, New York.

We frame both problems in terms of utterance verification
(UV) [6], and transcription. In this context, the verification task
is to determine whether or not an utterance contains a phrase or
sentence that is among the (possibly quite large) set expected to
be recognized on-device. The verification process may be per-
formed implicitly during recognition or in a second step, but in
both cases the result of the overall recognition process is either
a transcript of the utterance or an indication that the utterance
has been rejected as being out-of-domain.

The problem of identifying extraneous speech has received
attention from many areas of the research community. The
explicit detection of out-of-vocabulary (OOV) words in large-
scale continuous speech recognition is known to improve ac-
curacy [7, 8]. Methods used for this task include the intro-
duction of garbage models [9, 8, 10] or the use of word con-
fidence models [11, 9, 12, 13]. Keyword spotting often uses
related techniques, at times incorporating the entire recognition
lattice to effectively ignore large swaths of non-keyword speech
[14, 15, 16]. In dialogue systems, on the other hand, the utter-
ance verification problem is occasionally attacked with multiple
domain-specific recognizers evaluated concurrently to classify
utterances based on a comparison and scoring of hypotheses
from different systems [17, 18, 19].

In this paper, we draw inspiration from the techniques de-
scribed above to scale the on-device utterance verification and
transcription tasks to tens of thousands of phrases. We com-
pare two possible solutions to this problem. We first explore
the use of explicit garbage models (e.g., a phone loop) to re-
ject utterances not in our target set. We describe the limita-
tions of the naive implementation of such sub-word models even
when higher-order phonotactics are employed. We then pro-
pose a fix to this approach that makes use of cross-over arcs
from the acceptance subgraph into the garbage model to dras-
tically improve performance. The second method we explore
consists of a standard n-gram language model, followed by ut-
terance verification through whitelisting of allowed phrases af-
ter recognition has ended. Both techniques are evaluated by
sweeping sentence-level posteriors to illustrate the trade-off be-
tween accuracy and recall. To perform these tasks we leverage
previous work in our lab regarding on-device speech recogni-
tion which focused on the development of an accurate, small-
footprint, large vocabulary speech recognizer targeted at dicta-
tion [20].

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss our data-driven methods for the mining of
target phrases. Section 3 presents various techniques for on-
device utterance verification and transcription. Section 4 dis-
cusses our experimental results in two domains: frequent voice
search queries and offline-compatible voice actions. Finally,
Section 5 concludes this paper with ideas for future work.



Targets Targeted queries (Q) Non-targeted queries (Q)

FREQUENT 820K (70K unique; 28K words) 2.5M (2.3M unique)
OFFLINE 865K (67K unique; 23K words) 32M (20M unique)

Table 1: Overview of the training sets used in the experiments
of Section 4. Each training set was gathered from a separate
sample of voice search query logs.

2. Mining Phrases
This work operates on the assumption that the (possibly infi-
nite) set of phrases under consideration can be broken down
into a finite targeted set of queries, Q, and the remainder Q.
The recognition task is then to transcribe Q accurately, while
merely identifying and rejecting utterances in which a phrase
from Q was spoken. The manner in which rejected utterances
are handled is likely to be application-specific. For instance,
one might ignore a rejected utterance entirely if a device is of-
fline, or, in the connected scenario, pass these utterances along
to a more capable ASR system. The focus of this work is on the
resource-constrained recognition of Q.

In this paper, we consider the set of voice search queries
received through various mobile devices. We instantiate Q and
Q using two different strategies. Note that we use Q to denote
a set of phrases independent of any data, while its instantiation
Q is associated with a set of empirical counts that can be gath-
ered and used when training a model. In the first strategy, we
exploit the fact that the most frequently occurring queries cover
the largest relative portion of voice search traffic. We therefore
take QFREQUENT to be the top-N distinct search queries and the
counts thereof. The goal might then be to deploy an on-device
recognizer that targets the head of the voice search query distri-
bution in hopes of robustly handling some portion of the voice
traffic.

While most of the top-N voice search queries require an ex-
ternal service (such as a search engine) to execute, some queries
can be executed locally on device. A watch, for example, should
not need an internet connection to carry out the “Set an alarm”
command. Thus, our second strategy explicitly selects those
queries, QOFFLINE that can be processed offline (e.g. command
and control).

For our experiments (Section 4) we utilize two training sets
as described in Table 1. To construct an estimation ofQFREQUENT,
we use the tail of the voice search distribution. QOFFLINE, on the
other hand, is constructed from the sampled queries that could
not be carried out offline. Since queries compatible with of-
fline execution are relatively rare, we must sample significantly
more data to acquire a similar number of targeted queries. Note,
however, that it is only the properties of Q that will come to
dominate the size of our models.

3. Rejection Modeling
The resource constraints of on-device recognition have led re-
searchers to explore alternate ways of modeling out-of-domain
speech. The authors of [3] and [5] describe on-device recog-
nizers supplemented with confusable words or phrases to act as
decoys, causing some utterances to be rejected. In the case of
[3], rejected phrases are passed along to a second, more pow-
erful network recognizer. With similar goals in mind, our work
opts for somewhat more scalable approaches that can make use
of training sets containing millions of utterances.
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Figure 1: Grammar with a generic garbage model for detecting
out-of-grammar phrases.

3.1. NAIVE Rejection Model

We first consider a naive reapplication of a garbage model com-
monly used to handle out-of-vocabulary words [8, 9, 10]. One
simple approach to adapting this model to the utterance verifi-
cation task is to create a graph with two paths out of the start
state, where one path goes through an acceptance grammar and
the other (rejection) path goes through a phonotactic garbage
model. A special token is added to the output of the rejection
paths to indicate that an utterance is out of domain. A schematic
representation of the FST is depicted in Figure 1.

In this work, GQ, is constructed from phrases in Q and
weighted according to their frequencies. Subsequently, a
phonotactic garbage model grammar, GQ, is constructed from
Q as follows. We map every z ∈ Q to the set of its possible
phoneme representations using the pronunciation lexiconL. We
proceed by using these phonetic transcripts and their counts as
a corpus for constructing the n-gram phonotactic garbage sub-
model GQ. Note that if we choose n = 1 for construction of
GQ, our garbage sub-model becomes a phone loop that incorpo-
rates phoneme frequency statistics. In order to support the use
of phoneme tokens in grammar G we extend the pronunciation
lexicon L with an identity lookup rule for each phone. GQ and
GQ are constructed separately and afterwards merged using the
FST union operation [21]. Construction of the CLG transducer
[22] then follows from the standard composition of the context-
dependency transducerC, the augmented pronunciation lexicon
L and the specially-crafted grammar G as described above.

3.2. PREFIX-based Rejection Model

We now describe an extension of the baseline garbage model
detailed above that integrates the acceptance and rejection sub-
graphs in a way that incorporates statistical information regard-
ing extraneous speech.

Given a training set consisting of the set of target phrases
Q, its complement Q, and their counts within the corpus from
which they were sampled, we constructG in two parts. A deter-
ministic grammar FST, GQ, is constructed just as in the NAIVE
case. Subsequently, the transitions into the phonotactic garbage
model, GQ, are constructed from Q as follows. For every utter-
ance z ∈ Q, we find its longest common prefix with the target
set Q, lcp(z,Q) = w

(z)
1 · · ·w

(z)
kz

. This identifies the location
of the transition from GQ into the rejection model, GQ. In par-
ticular, we traverse FST GQ following the path of consecutive
transitions π = t1 · · · tkz whose labels match w(z)

1 · · ·w
(z)
kz

.
Letting n[t] denote the destination state of transition t in the
FST, we add a transition from the end of our longest common
prefix, state n[tkz ], to the initial state of our phonotactic garbage
sub-model, GQ. The input label of this transition is ε and the
output label is a rejection token, indicating that the path is out-
of-domain. The cross-over transition is weighted proportional
to the count of the prefix in Q; taking into account the already
established probability mass of the transitions leaving that state.
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Figure 2: Finite-State Transducer of grammar G for the example that accepts only a single query “what is the time?”. Transition
weights are omitted for brevity.

Actual utterance Recognizer hypothesis

what is the time? <s> what is the time </s>
<hello>! <s> REJ

what <can you tell me>? <s> what REJ
what is <this>? <s> what is REJ

what is the time <in Madrid>? <s> what is the time REJ

Table 2: Example scenarios for different utterances and how
these are interpreted by the recognizer.

Finally, we use the remainder suffix sz = w
(z)
kz+1 · · ·w

(z)

|z| of z,
and the frequency statistics of z, as training data for the con-
struction of the phoneme-based n-gram garbage model in a sim-
ilar fashion as described above (Section 3.1).

It may be the case thatQ andQ do not have a high degree of
overlap in terms of their common prefixes, causing sparsity in
the cross-over transitions learned in this fashion. This motivates
us to use a type of additive smoothing. At every in-grammar
state in GQ we assume an unobserved count α crossing-over to
the rejection model, as described above.

The ideal behavior of this model is illustrated in the fol-
lowing toy example. Suppose we are given a large corpus C
split into the following training phrases: a single target sen-
tence, Q = {<s> what is the time </s> } and all the remain-
ing phrases Q = C \Q. Our goal is to construct a system that
correctly recognizes the query “what is the time?” and rejects
anything else (see Figure 2). Table 2 depicts some scenarios for
different utterances and how the recognizer might see them. The
first example generates a valid hypothesis, while the remaining
ones contain the rejection token. Note that in the case of the
last example, its prefix what is the time overlaps with a targeted
query.

As recognition proceeds, the decoder keeps track of candi-
date paths through the CLG transducer. Unlike in the NAIVE
model, where candidate paths are forced to remain in either the
acceptance or rejection subgraphs for the duration of the decod-
ing process, the PREFIX approach allows a path to cross over
into the garbage model when an unexpected phoneme sequence
occurs.

3.3. N-Gram WHITELIST Rejection

We can also adapt a regular n-gram model to the rejection task.
If we employ an n-gram model without rejection capabilities,
then the recognizer will generate a hypothesis even for non-
target phrases. We can adjust this behavior by maintaining a
white-list of target phrases. If the top hypothesis is a target
phrase, the transcript is passed along, otherwise the utterance
is rejected.

More precisely, we construct an n-gram model over the
phrases in Q and reduce its size by relative entropy pruning
[23]. Once recognition finished we apply white-list filtering.
This approach is somewhat similar to evaluating the n-gram
model and grammar GQ separately and rejecting the utterance
if their hypothesis differ [17, 18, 19].

3.4. Tuning & Posteriors

All of the methods described above require some degree of tun-
ing. In the case of the NAIVE and PREFIX methods, we found
it helpful to add a cost-multiplier β to the acceptance subgraph.
More precisely, every negative log-probability on the arcs of the
acceptance graph can be multiplied by β to decrease the relative
weight of acceptance over rejection. The n-gram approach, on
the other hand, requires decisions regarding the characteristics
of the training set and the pruning of the resulting model.

In all of the models described, an N-best list can be gener-
ated with a score for each hypothesis. Normalizing these scores
yields an approximate sentence-level posterior which can be
used as a proxy for confidence. A confidence threshold can
then be swept and WER can be plotted as a function of recall to
demonstrate the tradeoff between the accuracy and the coverage
of a model.

4. Experimental results
We evaluate the approaches described in the previous section
on two tasks. First, we use these techniques to model the head
of the voice search query distribution. For this experiment, we
train our models with data from QFREQUENT and QFREQUENT and
test on a 22K sample of voice search queries made through
phones. Second, we examine a scenario in which voice actions
from a smartwatch are recognized without the benefit of a net-
work connection. For this experiment, we train our models with
data from QOFFLINE and QOFFLINE and evaluate on a WATCH test
set containing a 12K utterance sample of voice search queries
made through smartwatches. For all experiments we use the 2.7
million parameter DNN acoustic model described in [20] and
a consistent set of decoding parameters known to allow for on-
device recognition in real-time.

Figure 3 plots word error rate on the PHONE test set against
recall of the frequent voice search queries in FREQUENT.
We evaluated the NAIVE approach using different phonotactic
garbage model complexities ranging from unigrams to trigrams
induced by the phoneme transcripts of QFREQUENT. Interestingly,
while the PREFIX technique performed significantly better over-
all, using the same technique of applying higher-order garbage
models did not yield gains; we therefore present only the uni-
gram garbage model with phone frequencies trained from suf-
fixes ofQFREQUENT. Finally, the 4-gram was trained onQFREQUENT

and pruned for the WHITELIST approach.
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Figure 3: Trained on FREQUENT evaluated on the PHONE test set.

Table 3: Performance metrics for hybrid system (FREQUENT)
on PHONE and WATCH test sets. The first three rows show statis-
tics for the resource-constrained PREFIX model, the utterances
handed-off to the NETWORK recognizer and the combined rec-
ognizer respectively. The last row depicts performance in a non-
hybrid setting.

Recognizer
PHONE WATCH

% WER SACC % WER SACC

PREFIX 14.6% 9.7 88.36% 16.7% 11.1 82.37%
NETWORK 85.4% 11.2 70.89% 83.3% 21.2 53.82%
Combined 100% 11.1 73.41% 100% 20.1 58.56%

NETWORK 100% 10.9 73.76% 100% 20.1 58.31%

Figure 4 shows the analogous curves for models trained on
OFFLINE data and applied to the WATCH test set. As in Figure 3
the sweeps are generated by varying a confidence threshold. For
the NAIVE and PREFIX models, β is fixed at a value of 1.46 de-
termined by running a preliminary sweep on a dev set. Simi-
lar trends occur here. The WHITELIST and PREFIX-based ap-
proaches perform similarly well, while the naive approach falls
short. In this case, however, a trigram was used for the n-gram
approach, resulting in a significantly smaller model.

We now turn our attention to the hybrid recognition sce-
nario, where rejected utterances are sent to a server-side rec-
ognizer. Such a setup might be particularly beneficial in slow
or spotty connections, where recognizing some utterances on-
device would significantly improve user experience. The hope
is that the server-side will still be able to transcribe QFREQUENT

and QOFFLINE, albeit at higher latency. Table 3 depicts the results
of a simulated evaluation of hybrid systems for both of our do-
mains. Impressively, the impoverished on-device models don’t
seem to be detrimental to the overall accuracy of a hybrid sys-
tem. Indeed, in each case it seems that we can recognize around
15% of the queries while barely effecting overall WER.

5. Conclusions
In this paper, we described multiple techniques for resource-
constrained, on-device utterance verification. An unsuper-
vised data-driven strategy was employed for selecting targeted
phrases from recognition logs. We compared a sub-word
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Figure 4: Trained on OFFLINE evaluated on the WATCH test set.

garbage modeling approach and introduced a novel method for
modeling extraneous speech based on common prefixes be-
tween the targeted and non-targeted phrases. We also explored
the use of a white-listed n-gram for the same task.

Evaluation was performed using transcribed anonymized
voice search traffic originating from smartphones and smart-
watches. On both sets we observe low word error rate at vary-
ing amounts of traffic. We showed that, even with significantly
smaller on-device models, it’s possible to build a hybrid system
that robustly handles some amount of traffic without the latency
or reliability concerns that accompany the use of a network con-
nection.

There are a number of clear paths to extending this work.
First, the addition of support for class-based language models
would expand the applicability of these techniques to domains
with generic concepts (e.g. time or numbers). Second, these
basic techniques could be extended with more sophisticated
smoothing techniques and confidence models to maximize the
recall at a particular WER. Finally, one interesting application
we have considered exploring is the on-device expansion of the
target set, perhaps leading to the implementation of a cache rec-
ognizer which handles a particular user’s common queries on
device.
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