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Abstract

In automatic speech recognition on mobile devices, very of-
ten what a user says strongly depends on the particular context
he or she is in. The n-grams relevant to the context are often
not known in advance. The context can depend on, for exam-
ple, particular dialog state, options presented to the user, con-
versation topic, location, etc. Speech recognition of sentences
that include these n-grams can be challenging, as they are often
not well represented in a language model (LM) or even include
out-of-vocabulary (OOV) words.

In this paper, we propose a solution for using contextual
information to improve speech recognition accuracy. We utilize
an on-the-fly rescoring mechanism to adjust the LM weights of
a small set of n-grams relevant to the particular context during
speech decoding.

Our solution handles out of vocabulary words. It also ad-
dresses efficient combination of multiple sources of context and
it even allows biasing class based language models. We show
significant speech recognition accuracy improvements on sev-
eral datasets, using various types of contexts, without negatively
impacting the overall system. The improvements are obtained
in both offline and live experiments.

1. Introduction
The impact of quality of speech recognition on user experi-
ence on mobile devices has been significantly increasing with
increase in voice input usage. Voice input is used to perform
search by voice, give specific voice commands, or ask general
questions. The users expect their phones to keep on getting
smarter and to take into account various signals that would im-
prove the quality of communication with the device and overall
user experience.

In this effort, utilizing contextual information plays a great
role. The context can be defined in a number of ways. It can
depend on the location that the user is in, on the time of the day,
the user’s search history, the particular dialog state that the user
is in, the conversation topic, the content on the screen that the
user is looking at, etc. Very often the amount of information
about the context can be very small, consisting of only a few
words or sentences. However, if the context is relevant it can
significantly improve the speech recognition accuracy, if con-
sumed appropriately by the speech recogntion system.

In this paper we present a system that uses contextual in-
formation to improve speech recognition accuracy. Our solu-
tion works well for both large contexts and contexts consist-
ing of only several words or phrases. We use a framework for
biasing language models (LM) using n-grams as the biasing
context [1]. The n-grams and corresponding weights, calcu-
lated based on the reliability of the context, are represented as a

weighted finite-state transducer [2, 3], contextual model. We in-
troduce several approaches for creating contextual models from
the context, as well as methods for combining the score from
the main language model and the contextual model. In addi-
tion, we address the issue of handling out-of-vocabulary (OOV)
words present in the provided context, by using a class specific
language model, as described in section 2.

One can view this approach as a generalization of cache
models [4, 5, 6], which have been used to personalize language
models based on recent language produced by the individual
whose utterance is being recognized. Our approach derives
the biasing n-grams from varied sources beyond an individ-
ual’s prior utterances and makes use of more complex methods
for mixing with the baseline model than the fixed interpolation
or decay functions typically used with recency cache models
[4, 5]. See also the discussion of related work in [1].

We organize the paper as follows. In section 2 we present
the approach we used to perform on-the-fly n-gram biasing of
the language model towards context present in the contextual
model. In section 3 we present various approaches for creat-
ing a contextual model from the provided context. Finally, in
section 4, we describe the test sets used in our experiments and
present all of our experimental results.

2. Contextual language model biasing
In this section we describe the language model biasing frame-
work we use, and how it handles class-based language models
and OOVs.

2.1. General approach

We used the framework for biasing language models using n-
grams, introduced in [1]. In this framework, a small set of n-
grams is compactly represented as a weighted finite-state trans-
ducer [7]. An on-the-fly rescoring algorithm allows biasing the
recognition towards these n-grams. The cost from the main lan-
guage model G is combined with the cost from the contextual
model B as follows:

s(w|H) =

{
sG(w|H) if (w|H) /∈ B
C(sG(w|H), sB(w|H)) if (w|H) ∈ B ,

(1)
where sG(w|H) is the raw score from the main model G for

the word w leaving history state H and sB(w|H) is the raw
score for the biasing model. Observe that this approach only
modifies the LM scores of n-grams, Hw, for which the biasing
model provides an explicit score. This differs from regular lan-
guage model interpolation and is motivated by the fact that the
support of the biasing model is much sparser than that of the
main language model.

[1] offers the following alternatives for the operation C
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Figure 1: Example of a class grammar with decorators for the
“$CONTACTS” class.

used to combine the scores. The first approach corresponds to
using log-linear interpolation:

C′(sG(w|H), sB(w|H)) = α∗sG(w|H)+β∗sB(w|H). (2)

Since our costs are negative-log conditional probabilities, this
simply corresponds to linear interpolation in the log-domain.

Finally, [1] also provides a mechanism that restricts the bi-
asing to be applied only if it reduces the cost. In equation 3 we
define the positive biasing function which applies this restric-
tion:

C(sG(w|H), sB(w|H)) =

min(sG(w|H), C′(sG(w|H), sB(w|H))). (3)

Dynamic decoding of input speech is performed similarly to
what is described in [8]. Specifically, given a vocabulary V we
generate a lattice from the alphabet Σ = V ∪{ε}. Given a CLG
(a composition of the context-dependent phone model, lexicon,
and main language model), we perform time-synchronous de-
coding via beam search. As in [8], a pseudo-deterministic word-
lattice is built during decoding. It is at this point where we apply
the on-the-fly rescoring [9] with the contextual biasing model as
described in [1].

2.2. Biasing class-based language models

Our main language model is class-based [10, 11, 12]. Examples
of classes are address numbers, street names, dates, and contact
names. The last being an example of an utterance-dependent
user-specific class.

We might want to bias towards the whole class in some
context. For instance, we might want to bias towards “call
$CONTACTS” or “directions to $ADDRESSNUM $STREET-
NAME” instead of being limited to simply biasing towards
some instantiations of the classes (e.g. “call Michael” or “di-
rections to 111 Eight Avenue”).

Our language model consists of: (a) a top-level n-gram
language model over regular words and class labels and (b)
for each class c, a class grammar Gc over regular words that
might be utterance-dependent. All components are represented
as weighted automata. At run-time, this model is expanded on-
demand into a weighted automata G using the replacement op-
eration as described in [10]. In this approach, class-based bi-
asing is achieved by: (1) Modifying each class grammar to in-
sert decorators allowing us to keep track of whether words in
the hypothesis word lattice were generated by the top level LM
or by one of the class grammars. This corresponds to using
G′

c =< c> Gc </c> as class grammar for class c where
(<c>,</c>) is the decorator pair for c (see Figure 1). (2) Al-
lowing n-grams containing class labels in the contextual biasing
model. (3) Treating decorator-delimited phrases as their cor-
responding class-label during rescoring. This is achieved by
composition on-the-fly the word lattice with the transducer T
described Figure 2 and then applying the biasing model as de-
scribed in the previous section.
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Figure 2: Transducer T maps decorator-delimited phrases back
to the corresponding class label.

2.3. Handling out-of-vocabulary words

The contextual model might contain words that do not appear
in the base vocabulary of our base language model. We want to
be able to add these OOV words to our base LM at the unigram
state so that they can be hypothesized and rescored accordingly
by the contextual model.

We achieve this by leveraging class-based language model-
ing approach. We introduce a “$UNKNOWN” class that only
appears at the unigram state of the LM. At recognition time,
we extract the set of OOV words from the contextual model
for the considered utterance. We then create a “$UNKNOWN”
class grammar representing these words, as a monophone-to-
word transducer as described in [10]. In this instance, we do not
add decorators to the class grammars, since we want to rescore
the individual OOV words in the biased contexts and not the
“$UNKNOWN” class.

3. Constructing the contextual model
The context we use for biasing can consist of hundreds of
phrases or only a handful of phrases. Each phrase is a sequence
of one or more words. For example, the following phrases may
be used as the context for an utterance: “Hotels in Manhattan”,
“Holiday Inn”, “Cheap flights to New York City”.

When biasing, we want to allow partial matching to the con-
text. For example, given the context above, we might also want
to bias towards “Cheap hotels in New York”.

In general, if the size of the context is large enough that a
regular language model can be constructed from it, then one can
use the LM costs as biasing scores. (In that case, the interpola-
tion would be a standard interpolation between two LM costs.)
However, often the context available is too small for using this
approach. We developed methods that address this case.

In this section, we discuss how we select biasing n-grams
and their scores, given a set of context phrases such as above.

3.1. Extracting and scoring n-grams

We want to bias more heavily towards higher order (longer) n-
grams. This is because of two related reasons: The first is that
we want to reward longer exact matches between the context
and the recognition result. The second is that biasing towards
shorter n-grams has a larger negative effect on the recognition
of general (out of context) queries.

One simple scoring function that satisfies the above require-
ments is the length-linear function, where n is the length of
Hw. That is:

sB(w|H) = f1(length(Hw)) = (n− 1)p2 + p1 (4)

where p1 and p2 are parameters that control the strength of bias-
ing, their values depending on the quality of the context. These
parameters can be learned on a transcribed development data set
with context.



The length-linear function would assign the same score to
all n-grams of the same order. However, because the final cost
used by the recognizer is an interpolation of the biasing score
and the original LM cost, the effect of the biasing score depends
on the interpolation function.

Since we want to bias more heavily towards longer n-grams,
we would want sB(n) to be a decreasing function of n, i.e.
p2 < 0.

The main limitation of the length-linear function is that the
cost of various n-gram orders are interdependent. A slightly
more general function would assign independent scores to each
of the n-gram orders. In our system, we observed diminishing
gains beyond specifying scores for unigrams and bigrams only.
(Note that, similar to back-offs mechanism in LMs, the biasing
model will use the score of the lower order n-gram if the longer
one is absent.)

We define the unigram-and-bigram function as:

sB(w|H) = f2(length(Hw)) =

{
p1 : n = 1
p2 : n ≥ 2

(5)

The unigram-and-bigram function is more robust and easier
to interpret, compared to the length-linear function. We there-
fore used the unigram-and-bigram function in most of the ex-
periments presented in this paper.

3.2. Sentence boundaries

As mentioned, biasing towards unigrams can be detrimental to
the general query recognition performance. But what if some
or all of the context phrases contain only one word? For exam-
ple, in one of our test sets (confirmation) the context consists
of the phrases “yes”, “no”, and “cancel”. If we were to bias
towards these unigrams heavily, we may get recognition results
that contain repetitions of these words, such as “no no no . . . ”.

We can avoid this outcome by appending sentence bound-
ary tokens (“<S>” and “</S>” in our case) to each phrase in
the context, before extracting the biasing n-grams. Then, in the
above example, we would bias towards bigrams such as “<S>
no” and “no </S>” much more than we bias towards the uni-
grams.

4. Experimental results
In this section we describe our test sets, experimental setup, and
analyze the experimental results. All test sets used have been
anonymized.

4.1. Corpora

The experiments described below use various test sets in Amer-
ican English. All of the test sets were manually transcribed.
The context for some test sets is defined per utterance (e.g. test
set “Entities and location”), whereas for others the context is
constant for the whole test set (e.g. test set “Confirmation”).
Several experimenal setups were used to evaluate the positive
effect of relevant context and the negative effect (overtrigger-
ing) of irrelevant context. In the baseline setup, experiments are
run with no context provided. In order to evaluate the positive
effect of relevant context we use the following setups: (1) In
sets with per-utterance context, we attach to each utterance its
relevant context. (2) In sets with fixed context, the same context
is attached to every utterance

In order to evaluate the negative effect of relevant context
we use the following setups: (1) In sets with per-utterance con-

text, we attach to each utterance 100 irrelevant contexts ran-
domly selected from other utterances. We call this a negative
set. (2) In sets with fixed context, we attach the fixed context to
a set of utterances for which the context is irrelevant. We call
this an anti-set.

4.1.1. Entities and location

This test set contains 876 utterances. Each utterance con-
tains the name of an entity and/or the name of a location
e.g. “Directions to Sky Song in Phoenix, Arizona”. The
context is defined per utterance, and is a list of locations
and entities, e.g. {“Sky Song”, “Phoenix, Arizona”}.
Test set variants: entities pos, entities neg, entities baseline

4.1.2. Confirmation

This test set contains 1000 utterances. All queries correspond
to a state where the user is provided with the choice to con-
firm or cancel some action. The context is the same for all ut-
terance, and it consists of the words {“yes”, “no”, “cancel”}.
Test set variants: ync pos, ync baseline and anti ync. anti ync
is an anti-set consisting of 22k utterances not related to confir-
mation/cancellation states.

4.1.3. Hard n-grams

This testset consists of 2,704 utterances. All utterances in this
testset contain n-grams with high LM costs, for n ∈ [2, 7]. The
context, defined per utterance, is a list of high-cost n-grams.
Test set variants: costly pos, costly neg, costly baseline.

4.1.4. Class based (numeric)

This testset contains 816 utterances, each containing some type
of number in the transcript, e.g. “Set alarm for 5:30 p.m. to-
day”. The context is defined per utterance and consists of a
list of the transcripts with class members replaced by their class
symbol (e.g. “Set alarm for $TIME p.m. today”). The context
for each utterance contains the utterance’s modified transcript.
Test set variants: numeric, numeric baseline

4.1.5. Class based (contacts)

This testset contains 10670 utterances. All utterances corre-
spond to contact calling voice commands, e.g. “Call James
Brown”. Similar to numeric testset the context is created by
name class members being replaces by “$CONTACTS” in tran-
scripts.

4.2. Recognition accuracy with biasing

We measured the effect of biasing on our test sets using both of
the functions introduced in section 3.1. We then measured the
effects of each of the features that our biasing implementation
supports. Finally, we show how we can control the strength
of the biasing by varying a range of parameters of our biasing
score function.

Table 1 shows the effect of biasing versus the baseline (i.e.
no biasing). “bias 1” uses the length-linear scoring function,
and “bias 2” uses the unigram-and-bigram function. Both bias-
ing tests use the positive biasing interpolation function in equa-
tion (3), however “bias 1” uses (α, β) = (0.25, 1) whereas
“bias 2” uses (α, β) = (0, 1), which is effectively the same
as using min(sG(w|H), sB(w|H)) for interpolation. The val-
ues of α and β control the interpolation of main LM costs and
biasing scores based on equation (3).



Test set Baseline bias 1 bias 2
entities pos 8.9 7.2 7.2
entities neg 8.9 9.0 9.0
ync pos 18.8 10.4 11.0
anti ync 10.9 10.9 10.9
costly pos 12.9 4.2 6.1
costly neg 12.9 13.8 13.8
numeric 11.0 4.7 5.7
contacts 15.0 2.8 3.2

Table 1: WER(%) for baseline vs two biasing methods. bias
1: length-linear, (α, β) = (0.25, 1) and (p1, p2) = (0,−0.4).
bias 2: unigram-and-bigram, (α, β) = (0, 1) and (p1, p2) =
(7, 3).

Test set bias 2 bias 2.a bias 2.b bias 2.c
entities pos 7.2 7.2 7.3 7.4
entities neg 9.0 8.9 9.0 9.0
ync pos 11.0 15.0 11.6 11.0
anti ync 10.9 10.9 10.9 10.9
costly pos 6.1 6.5 6.7 6.1
costly neg 13.8 13.6 13.8 13.8
numeric 5.7 6.1 6.0 5.9
contacts 3.2 5.1 3.2 3.2

Table 2: The effect of biasing features on WER(%): bias 2:
With all features, same as in Table 1. bias 2.a: Without sentence
boundaries. bias 2.b: Without case variants. bias 2.c: Without
OOV support.

Table 2 compares the effect of having each of the following
features disabled:

bias 2.a. Add sentence boundaries to the context.

bias 2.b. Include upper/lower case variants of the context.

bias 2.c. Support OOV words in the context.

Disabling sentence boundaries has a particularly detrimen-
tal effect on our ync pos test set. It also negatively affects con-
tacts, numeric and costly pos test sets. As mentioned in sec-
tion 3.2, the reason is that in the ync pos test set, the context and
most of the expected transcripts are unigrams. Adding sentence
boundaries allows us to bias these contexts at the bigram level,
which can be safely biased more heavily. In contrast, trying
to achieve the same result by increasing unigrams bias would
result in a sharp increase in insertion errors.

Disabling case variants has a negative effect on the recog-
nition resuls for the test sets for which the context includes the
case variant less probable in the LM. The worst effect is on the
costly pos and numeric test sets. This feature does not have a
noticeable effect on the negative test sets, so it can be safely
turned on by default. The third feature, support for OOV words
in the context, reduces WER on test sets that include OOVs and
has no effect otherwise.

Finally, we present WER for our entities and location test
sets at a range of operating points (set of values for parameters
in the scoring function). This test set contains context phrases of
various lengths, case variants, and OOVs. In Table 3 the WER
for the positive and negative tests are shown side by side, for
various pairs of values of (p1, p2) in equation (5). The point
(0, 0) corresponds to baseline WERs as the context is ignored.

At the lowest level of biasing, (p1, p2) = (10, 5), the neg-
ative test is not affected (the WER is equal to baseline). How-
ever the positive WER is already better than the baseline. As

p1 p2
-1 0 1 5

-2 30.8 43.3 30.5 42.8 32.7 42.0 35.9 42.1
0 7.2 9.3 8.9 8.9 7.3 9.0 7.7 8.9
6 6.6 9.6 7.3 9.1 6.6 9.2 7.3 9.0

10 6.7 9.4 8.2 8.9 7.0 9.0 7.5 8.9

Table 3: WER(%) for entities pos (using regular font) and en-
tities neg (using italics) over a range of (p1, p2) values for the
unigram-and-bigram scoring function (equation (5)).

the strength of bias is increased, the WER for the negative test
increases monotonically, but the WER for the positive test set
decreases, up to a certain minimum, after which it also starts
increasing. This is because the context starts to cause errors in
the parts of the utterance that are not supposed to be biased. At
the extremely high biasing level of (-2, -1), both the positive and
negative tests are significantly worse than baseline.

The operating point of (7, 3) used in Table 1 and Table 2
is a relatively conservative operating point, which has minimal
effect on the negative test. This operating point was chosen to
balance positive and negative performance on several different
test sets. For the test set used in Table 3, a more aggressive
operating point of (6, 1) results in WERs 6.6% and 9.2%, re-
spectively, on the positive and negative tests (baseline is 8.9%).

4.3. Live biasing experiments

In order to further validate that our system improvements are
beneficial we ran a live experiment. In our experiment, a per-
centage of the production traffic is cloned and sent to two speech
recognition systems. We focused only on the traffic correspond-
ing to the confirmation dialog state, that is, the state in which
a user is asked to respond with one of the words “yes”, “no”,
“cancel”. The first system was used as the baseline while the
second used the biasing methodology described in this paper. In
the biasing system, for each of the utterances we used the fixed
biasing context consisting of three words described above.

During our experiment approximately 30,000 utterances
were processed by each system. This was done anonymously
and on-the-fly. We compared the performance of the two sys-
tems by using sentence accuracy as metric. Using the bias-
ing methodology and optimal operating point described in sec-
tion 4.2 resulted in a sentence accuracy increase of 8% relative.
This was significant with p < 0.1.

5. Conclusion
In this paper, we describe an approach for biasing speech recog-
nition towards provided contextual information. We analyze
various types of context, describe context preprocessing tech-
niques, and provide a solution to OOVs present in the context.
We also present biasing functions used to adjust LM scores
based on provided context. We conducted experiements using
several datasets with various types of contextual information
provided. The results obtained show that the proposed method-
ology can significantly improve speech recognition accuracy
when reliable contextual information is available. For exam-
ple, on our confirmation (ync) testset, WER relative reduction
of 44% is achieved on positive (ync pos) testset without any
WER changes on the negative test set (anti nyc). Furthermore,
we show that speech recognition gains are achieved withouth
causing overtriggering on queries not related to the context.
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