
How Developers Use
Data Race Detection Tools

Caitlin Sadowski
Google, Inc.

supertri@google.com

Jaeheon Yi
Google, Inc.

jaeheon@google.com

Abstract
Developers need help with multithreaded programming. We
investigate how two program analysis tools are used by de-
velopers at Google: THREADSAFETY, an annotation-based
static data race analysis, and TSAN, a dynamic data race de-
tector. The data was collected by interviewing seven veteran
industry developers at Google, and provides unique insight
into how four different teams use tooling in different ways to
help with multithreaded programming. The result is a collec-
tion of perceived pros and cons of using THREADSAFETY
and TSAN, as well as general issues with multithreading.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—program analysis

General Terms Human Factors, Design

Keywords data race detection; type systems; dynamic anal-
ysis

1. Introduction
Multithreaded code is difficult to write, understand, and de-
bug [14]. Developers are faced with a variety of concurrency-
specific errors such as deadlocks and data races. Synchro-
nization policies may be poorly documented and incorrectly
inferred by new developers. In order to better support pro-
grammers who work with concurrency, a variety of program
analysis tools have been developed, both in research and in-
dustry. However, little is known about the tradeoffs industry
developers make when using concurrency program analysis
tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PLATEAU ’14, October 21, 2014, Portland, OR, USA..
Copyright is held by the owner/author(s).
ACM 978-1-4503-2277-5/14/10.
http://dx.doi.org/10.1145/2688204.2688205

In this paper, we report on the results of interviews with
developers about how they use two data race detection mech-
anisms: THREADSAFETY and TSAN. Both tools are used
widely at Google, by interested teams. Teams typically find
out about these tools via social mechanisms (e.g. an engineer
on a team who used them with a previous team) or internal
advertising. Engineers decide whether to try out or keep us-
ing the tools; there are not any requirements (e.g. by man-
agement) towards using either tool.

1.1 THREADSAFETY

THREADSAFETY is an annotation-based intra-procedural
static concurrency analysis that identifies data races caused
by inconsistent protection of a shared variable and violations
of lock acquisition ordering [24, 25]. This analysis was
originally implemented as a branch of gcc (under the name
annotalysis), but has been reimplemented in the Clang com-
piler; all current support is for the Clang version. THREAD-
SAFETY is publicly available, and is included by default
with Clang. The analysis is run by compiling an annotated
program with the -Wthread safety flag enabled.

Two core annotations, which we describe below, are
guarded by and acquired after:

• guarded by specifies a particular lock should be held
when accessing the annotated variable. Violations of this
locking policy may lead to data races.

• acquired after annotations document the acquisition
order between locks that can be held simultaneously by
a thread, by specifying the locks that need to be acquired
before the annotated lock. Violations of this locking pol-
icy may lead to deadlocks.

A code snippet which demonstrates these two annotations is
in Figure 1, along with sample compiler output. A full list of
available annotations can be found with the Clang language
extensions documentation [25].

These annotations have been in use at Google for a few
years. In a relatively small subsection of code at Google that
has thread safety annotations, one month of commit activ-
ity included 18 bug-fixing commits (not including commits



1 #include "thread_annotations.h"

2 #define GUARDED_BY(x) __attribute__((GUARDED_BY(x)))

3 #define ACQUIRED_AFTER(x) __attribute__((ACQUIRED_AFTER(x)))

4

5 Mutex mu1;

6 Mutex mu2 ACQUIRED_AFTER(mu1);

7

8 int x GUARDED_BY(mu1);

9 int a GUARDED_BY(mu2);

10

11 void foo()

12 {

13 mu2.Lock();

14 mu1.Lock();

15 if (x > 2)

16 a = x + 1;

17 else

18 a = x - 1;

19 mu1.Unlock();

20 mu2.Unlock();

21 }

Sample compiler output:

ex.cc: In function ’void foo()’:

ex.cc:12: warning: Lock ’mu1’ is acquired after lock ’mu2’ (acquired at line 14)

but is annotated otherwise

Figure 1. C++ code sample demonstrating use of guarded by and acquired after annotations.

which just fix the annotations) that cited THREADSAFETY
explicitly as the way the bug was found [23].

These annotations are based on the type annotations pre-
sented for a type system that detects data races [8]. One key
difference is that since not all source code may be annotated,
there is no soundness guarantee. In particular, THREAD-
SAFETY does not guarantee the absence of races. Specifi-
cally, it can only identify races that are on variables that have
been annotated with a guarded by annotation in which the
lock expression is resolvable.

1.2 TSAN

TSAN (ThreadSanitizer) is a dynamic concurrency analysis
that identifies data races [29]. TSAN has two versions: TSAN
V1 and TSAN V2. Both instrument a running program, and
both find the same kinds of errors.

TSAN V1 is implemented in Valgrind, a heavyweight
binary instrumentation framework [18]. It is based on two
well-known techniques: locksets [27] and happens-before [3].
By default, TSAN V1 uses both techniques in combination
to improve coverage and hence may report a false posi-
tive. TSAN V1 is publicly available and is an open source
project [31].

A code sample and associated error report (reproduced
here with permission from the TSAN V1 wiki [31]) is in
Figure 2. The error report points out the racy accesses on
line 48 and 53 in the sample code. Instructions on how to

interpret the rest of the error report are available on the
TSAN V1 wiki.

The recently developed TSAN V2 is a compiler-based in-
strumentation pass in LLVM [30]; it is also open source [32].
The TSAN V2 runtime is engineered for speed, and exhibits
slowdowns of roughly 5–15x (TSAN V1 exhibited slow-
downs of 20–300x). In contrast to TSAN V1’s hybrid algo-
rithm, TSAN V2 implements a pure happens-before algo-
rithm, and hence has no false positives.

TSAN regularly finds critical bugs, and is in wide use
across Google (previously TSAN V1 and currently TSAN
V2). One interesting incident occurred in the open source
Chrome browser. Up to 15% of known crashes were at-
tributed to just one bug [5], which proved difficult to un-
derstand – the Chrome engineers spent over 6 months track-
ing this bug without success. On the other hand, the TSAN
V1 team found the reason for this bug in a 30 minute run,
without even knowing about these crashes. The crashes were
caused by data races on a couple of reference counters. Once
this reason was found, a relatively trivial fix was quickly
made and patched in, and subsequently the bug was closed.

TSAN V2 was designed with lessons from TSAN V1 in
mind. Hence, TSAN V1 has been discontinued in favor of
TSAN V2. However, at the time of this study, teams were
still using TSAN V1. For the remainder of the paper, TSAN
will be used to refer to TSAN V1. Note that both tools are
run in the same way.



Excerpt from demo tests.cc test file:

42 Mutex mu1; // This Mutex guards var.

43 Mutex mu2; // This Mutex is not related to var.

44 int var; // GUARDED_BY(mu1)

45

46 void Thread1() { // Runs in thread named ’test-thread-1’.

47 MutexLock lock(&mu1); // Correct Mutex.

48 var = 1;

49 }

50

51 void Thread2() { // Runs in thread named ’test-thread-2’.

52 MutexLock lock(&mu2); // Wrong Mutex.

53 var = 2;

54 }

Sample tool output:

WARNING: Possible data race during write of size 4 at 0x6457E0: {{{

T2 (test-thread-2) (L{L3}):

#0 RaceReportDemoTest::Thread2 demo_tests.cc:53

#1 MyThread::ThreadBody thread_wrappers_pthread.h:341

Concurrent write(s) happened at (OR AFTER) these points:

T1 (test-thread-1) (L{L2}):

#0 RaceReportDemoTest::Thread1 demo_tests.cc:48

#1 MyThread::ThreadBody thread_wrappers_pthread.h:341

Address 0x6457E0 is 0 bytes inside data symbol "_ZN18RaceReportDemoTest3varE"

Locks involved in this report (reporting last lock sites): {L2, L3}

L2 (0x645720)

#0 pthread_mutex_lock ts_valgrind_intercepts.c:935

#1 Mutex::Lock thread_wrappers_pthread.h:147

#2 MutexLock::MutexLock thread_wrappers.h:286

#3 RaceReportDemoTest::Thread1 demo_tests.cc:47

#4 MyThread::ThreadBody thread_wrappers_pthread.h:341

L3 (0x645780)

#0 pthread_mutex_lock ts_valgrind_intercepts.c:935

#1 Mutex::Lock thread_wrappers_pthread.h:147

#2 MutexLock::MutexLock thread_wrappers.h:286

#3 RaceReportDemoTest::Thread2 demo_tests.cc:52

#4 MyThread::ThreadBody thread_wrappers_pthread.h:341

}}}

Figure 2. C++ code sample demonstrating use of TSAN.

2. Methodology
We conducted interviews with seven veteran industry devel-
opers at Google about the process of multicore program-
ming in C++. All participants had 8-30 years of experience
programming with concurrency, were based in the US, and
were male. Each interview lasted about an hour. The inter-
views were semi-structured, and were loosely based around
the following questions:

• How many years of experience do you have program-
ming with concurrency? How often do you write, read,
or debug concurrent code? How many years of C++ ex-
perience?

• Tell me about a couple bugs or problems that you found
with the help of THREADSAFETY/TSAN. About how
many bugs do you think it helped find?

• What do you see as major problems with the current
THREADSAFETY/TSAN implementation?

• For THREADSAFETY, do you think the annotation bur-
den is reasonable? What about the potential for false posi-
tives? Tell me a little about the productivity tradeoff when
using these annotations. What would you like to see as
the future of THREADSAFETY?

• How do you test/debug concurrent programs? Can you
think of any ways to improve this process? Other thoughts
on frustrating things with concurrent programming?

We then extracted themes from the interview data, by
coding the interview responses (Section 4). We took the in-
terview results and iteratively coded them to identify themes.
We both open-coded the results from one interview, and rec-
onciled the two codings so as to calibrate schemes and im-
prove internal validity [19, 28]. The remainder of the coding
was performed by one person and checked by the other.

Three of the participants had a predominately cross-team
role where they advised other teams on concurrency. For
the remaining four participants, we additionally asked about



team practices for THREADSAFETY and TSAN; we report
how four different teams used tooling in different ways to
help them with multithreaded programming in Section 3.

2.1 Investigators
Neither author of this paper is on the same team as any
of the interviewees. The second author is currently doing
work related to TSAN, but was not at the time of this study
(and is not involved with THREADSAFETY). The first author
worked on the the transition from gcc to Clang for THREAD-
SAFETY at the time of this study, but is currently not work-
ing on either tool.

2.2 Participant Recruitment
We only selected interviewees that had experience with
THREADSAFETY and were very experienced with multi-
threaded programming. No interviewees worked on either
THREADSAFETY or TSAN. Four of the participants were
representatives of teams that use THREADSAFETY. We
asked the maintainers of THREADSAFETY for leads to teams
that had emailed with questions about the tool. The remain-
ing three participants are only semi-affiliated with a specific
team and often act as concurrency expert consultants. We
identified these participants by asking Google developers
about concurrency experts.

2.3 Limitations
This study has a number of limitations that may hamper gen-
eralizability. It was performed at one company, with mem-
bers of only a few teams. We only were able to look at two
tools, focused on one language.

3. A Look at Four Teams
We asked members of four teams to describe how their team
was using THREADSAFETY and TSAN.

3.1 Team A
This team has nightly runs of TSAN, but uses THREAD-
SAFETY primarily for documentation purposes. They esti-
mate that approximately 1% of their code is annotated; the
most useful annotations for them are guarded by annota-
tions. By their estimate, they detect at least 1 race per 10
weeks with TSAN, and find this a clear win for continuing
to use the tool.

“When I write code, I add annotations where I think it is
useful.”

— Interview Participant

“We write enough concurrent code [so that] we are good at
writing code without races.”

— Interview Participant

3.2 Team B
This team recently added threading to their project. They
cite the static analysis as a key tool in adding threading
with confidence. They went through all their core libraries

and added annotations. In fact, they even wrote a tool which
analyzes source code for likely mutexes, and makes sure that
there is at least one annotation using every mutex. They also
run TSAN regularly to check for any missed data races.

“The whole team would be very positive about it [THREAD-
SAFETY]. It is excellent for the easy case. ”

— Interview Participant

3.3 Team C
This team experimented with adding the static annotations
to their project, but did not find any major bugs this way.
Currently their project contains some annotations but they
do not run the analyzer often. Their system is in a state where
the core synchronization is not changing very often. Because
of this, they did not find the payoff to be large enough to use
THREADSAFETY regularly. Also, they encountered some
bugs in the analysis implementation which stymied efforts
to annotate. They had never heard of TSAN.

“Given the relatively small amount of information it gave, I
am not sure it is worth it to run it regularly.”

— Interview Participant

“[The annotations are a] great thing to have...I would use
them for writing new code.”

— Interview Participant

3.4 Team D
This team has annotated portions of their codebase, but only
checks the annotations sometimes. They prioritize analysis
of tricky code, and only annotate and run the analysis when
they know there is a multithreading-related issue. They ran
up against expressibility limitations of the static annotations
when they tried to annotate their own custom locks, which
limited the applications of THREADSAFETY. They had not
heard of TSAN.

“Our experience with the tool [THREADSAFETY] is that
this is one of our few tools for gaining confidence that we
do not have multithreading bugs. Does not guarantee there
are no such problems.”

— Interview Participant

3.5 Discussion
When we started this project, we thought that there would
be one “right” way to use concurrency analyses at Google.
The interviews gave us an interesting picture of the different
ways that teams may chose to use static and dynamic con-
currency analyses. For THREADSAFETY, teams ranged from
occasionally using annotations for documentation purposes
to making a concerted effort not to ever commit unannotated
code. For TSAN, teams ranged from never having used the
tool to automating nightly runs.

4. Themes
We identified a variety of themes from the interview data fo-
cused on TSAN specifically, THREADSAFETY specifically,
or else both (General).



4.1 General
Finding and debugging concurrency errors is still hard.
Although developers were overall positive about both THREAD-
SAFETY and TSAN, both tools have limitations.

“We still get race conditions getting into production and
crashing things.”

— Interview Participant

That said, it was clear from the interviews that there
are best practices for multithreaded programming, including
using tooling such as THREADSAFETY and TSAN.

Reproducibility is very important. If a bug is repro-
ducible, developers are willing and able to fix concurrency
errors.

“If you can reproduce a bug quickly, we can fix it, even if
it is arcane and non-deterministic...We don’t have tools for
the once every 24 hours in a 100 machine cluster. ”

— Interview Participant

Team culture matters. Use of the tools needs to be sup-
ported by a team culture; individual programmers were un-
likely to use them consistently without this support.

There is a tradeoff between races and deadlocks.
Deadlocks are a bigger issue for some teams, and races are
for others. The difficult races are those that cause subtle
inconsistencies, or are not easily reproducible.

“Crash is easy, inconsistency is hard.”
— Interview Participant

Performance is hard to get right. One tradeoff not well
discussed in the documentation for the analysis tools is that
of performance. Holding locks across expensive operations
is a big problem. Also, it can be difficult to safely break locks
apart.

“Most of the time they get the locking right, but it is not
fast.”

— Interview Participant

Manual inspection is still a powerful tool. We noticed
that THREADSAFETY and TSAN were implicitly being com-
pared with a third tool: manual inspection. For infrequent
data races, careful manual inspection of suspect code, some-
times with the assistance of a concurrency expert, is the only
way that people were able to make traction. In fact, some-
times manual inspection is the best of all.

“I found more problems by hand going through the code.”
— Interview Participant

Developers build effective mental models from clear
documentation. The importance of good documentation
came up repeatedly in the interviews. Clear, strict, straight-
forward documentation was listed as really important, par-
ticularly for static analyses. Developers needed to build their
own mental models of how the tool worked in order to use it
effectively.

Low false positive rates are critical for adoption. An-
other theme that repeatedly emerged was the importance of
a low false positive rate. Developers find their own impres-
sion of the false positive rate of a tool, and take action based
on this impression. A lower false positive rate encourages
developers to be proactive – they may even fix extra bugs.

“We take this seriously because we have seen very little
false positives. We even fix it if it is not our code.”

— Interview Participant

Your true positive is my false positive. Interestingly,
what constitutes a false positive is a matter of perspective.
For example, while most participants considered the false
positive rate for THREADSAFETY to be very low, a cou-
ple of participants rated THREADSAFETY as having a much
higher false positive rate. These participants considered an
error message about missing annotations to be a false posi-
tive, even if the error message is correct. In other words, they
considered “bugs” in the annotations to be false positives,
since they were not indicative of bugs in the code. In con-
trast, researchers typically consider missing annotations to
be true positives; the annotations should correctly describe
the code.

Two (sometimes unexpected) causes of thread safety is-
sues came out during the interviews:

Code complexity is underestimated. Thread safety is-
sues occur in code which was perceived to be simpler than
it actually is; for example, code that has not been well re-
viewed or in which the shared state was unanticipated.

“Most thread safety issues are in code that does not have
any notion of thread safety.”

— Interview Participant

“Lots of bugs happen when we try to be cute.”
— Interview Participant

Dependencies and ownership can hinder fixes. One
particular challenge is when concurrency errors occur in
dependencies or with interactions between dependencies.
These situations can be challenging to fix, since the prob-
lematic code is not owned by the team that is running into
problems.

“We had a deadlock between two unrelated components
neither of which are ours.”

— Interview Participant

4.2 Dynamic
TSAN find common races and is easy to understand. Our
interviewees found TSAN to be better at common case races
and finding bugs in existing code than THREADSAFETY.
This tool was useful when testing code, although it requires
good test coverage. The developers also appreciated the pre-
cise error messages. The output from TSAN is easy to triage,
and developers only investigate potential races after closely
examining reports.



“If stack trace looks pretty serious and the warning is in
own code, then investigate further.”

— Interview Participant

4.3 Static
THREADSAFETY works well for the easy case, but has
trouble with harder idioms. THREADSAFETY helps find
some bugs, and is excellent for the easy case. There is a
surprising amount of code that fits into this easy case; for
example, functions which acquire a lock, access a shared
variable, then release that lock. It is often not ambiguous
where THREADSAFETY can be applied, although one team
we talked to did have to back out of an attempt to annotate
some low-level libraries after discovering portions of the
library which did not fit well with the THREADSAFETY
model.

“When it works it is just kind of trivial. Cases where it didn’t
just didn’t fit the model.”

— Interview Participant

THREADSAFETY helps with confidence and under-
standing. In general, developers found the annotation bur-
den to be low, and were willing to add them (at least par-
tially). Using the annotations gave developers confidence
in their concurrent code. The annotations most importantly
help programmers understand that the code is safe on a lo-
cal level. Furthermore, THREADSAFETY has high coverage
(when it applies). Most people did not encounter a lot of false
positives when running THREADSAFETY, unless you con-
sider having to change the annotations to be a false positive.
Once in place, the annotations could help developers think
less about the synchronization discipline. One developer we
talked to used the annotations to help develop code by run-
ning the analysis and adding suggested fixes until the pro-
gram compiled. When the synchronization discipline is rel-
atively straightforward (e.g. the case where you have a class
with a mutex and a shared variable as fields and you just
want to make sure the variable is consistently protected by
the mutex), this sort of analysis-driven development works
well.

THREADSAFETY provides enforceable documenta-
tion and discipline. The annotations provide documenta-
tion (particularly important for interfaces). Furthermore, the
documentation provided by the annotations was labeled as
strictly better than comments because it could in theory be
analyzed, even by teams which did not usually run the anal-
ysis. Writing the code with the annotations also forced de-
velopers to be aware of the concurrency structure.

“The thing about the static checking is that it causes people
to have discipline. They have to say what they are expecting
to have happen.”

— Interview Participant

Annotating legacy code is a lot of work. THREAD-
SAFETY requires extra work for legacy code; all libraries
need to be annotated. This annotation step involves a time
investment including extensive reading of the code in order
to annotate it correctly. Annotating was recognized as being
a lot of manual work, despite the fact that the annotation
burden was recognized as being relatively low. A robust
annotation inference system was on every team’s wishlist.

Some patterns are not expressible in THREADSAFETY.
There are also expressibility limitations to the annotation
language that prevent it from being universally applicable.
Sometimes it is difficult to write out where the mutex is. For
example, dynamic lock acquisition, distance between mutex
and the data it is protecting, or functions that are called with
differing locks.

Some patterns are changed to accommodate THREAD-
SAFETY. Using THREADSAFETY is sometimes clunky. The
annotations may change the way the code must be written
(in a way orthogonal to concerns such as readability) so
as to better accommodate them. There were also differing
opinions about the effort required to use the annotations.

“Most of the time we change the design to make it easier
to do the lock annotations. Not clear new design better or
worse.”

— Interview Participant

Also, some developers thought the annotations made the
source code cluttered. When both dynamic and static anno-
tations/assertions are used, the clutter may be magnified.

Limitations of THREADSAFETY affect its usability.
Bugs inside of THREADSAFETY and unclear annotations
(such as locks excluded, which denotes that the function
must not hold the specified lock) severely limit the analysis
usability. They can also lead to bad practices inside the
code such as adding locking in strange places to deal with
incorrect analysis.

“I found code where someone took a lock out on an object
in the destructor. This is not a good pattern! This was
an attempt to fix a timing bug, that will eventually bite
someone.”

— Interview Participant

Misusing annotations can also be problematic. Developers
may forget to add annotations. Also, incorrect annotations
on low-level libraries can have far-reaching effects [5].

5. Related Work
To the best of our knowledge, there has been little to no prior
work on how developers use concurrency-focused program
analysis tools. In this section, we briefly describe the greater
research context to THREADSAFETY and TSAN. We also
highlight a few papers that have looked at how developers
use analysis tools or debug concurrent programs.



5.1 Static Analyses for Data Race Detection
There is a long history of research on static race detection.
Here we briefly mention several well-known techniques.

Previous concurrency-focused type and effect systems
find races by encoding the synchronization discipline of a
program into the type system [1, 4]. Although type systems
scale better than other static analyses and can prove the ab-
sence of races, they require extensive developer annotations.
The annotations used in THREADSAFETY [23–25] are based
on a such a type system against races [1]; THREADSAFETY
makes the compromise that there may be false negatives, but
the annotation burden is more flexible.

Automatic approaches attempt to find races without the
aid of developer annotations. RACERX runs a static lock-
set algorithm using a flow-sensitive interprocedural analy-
sis [6]; a lockset is the set of locks held at a given memory
access, and a lockset algorithm checks if a consistent lockset
is held for a given memory access throughout the program.
RELAY also computes a static lockset, but uses relative lock-
sets in function summaries to improve scalability [33]. Both
RACERX and RELAY scale to analyze an operating system
kernel, but are unsound (may have false negatives). LOCK-
SMITH is a flow-sensitive, context-sensitive analysis for C
programs that implements a static lockset algorithm, and is
based on a sound type system [22]. CHORD uses a flow-
insensitive, context-sensitive analysis [17] for scalability and
conditional must-not aliasing [16] to ensure soundness (no
false negatives) for Java programs.

5.2 Dynamic Analyses for Data Race Detection
Dynamic race detection techniques can be largely divided
into happens-before approaches and lockset approaches. A
relatively small class of data race detectors aim to actually
catch data races in the act, e.g., through hardware watch-
points [7]. Modern happens-before [13] race detectors use
vector clock [15] representations to gain efficiency, and are
precise (no false positives). The FASTTRACK algorithm im-
proves efficiency further by optimizing the analysis on most
operations from O(n) to O(1), where n is the number of
threads [9]. Lockset race detectors enforce a lock-based syn-
chronization discipline, where each access to shared mem-
ory is expected to be consistently protected by a lock. Al-
though efficient, these detectors are typically imprecise (may
have false positives). The ERASER algorithm uses a state
machine to reduce the number of false positives [27]. Hybrid
techniques combine happens before and lockset approaches
to improve precision and efficiency [21, 34].

The TSAN algorithm is a happens-before algorithm,
and is implemented as a compiler instrumentation pass in
LLVM [30] for higher performance.

5.3 How Developers Use Analysis Tools
Formal studies that investigate how developers use program
analysis tools are practically non-existent. A recent study

looks at how Linux kernel developers respond to static anal-
ysis bug reports [12]. However, the kernel developers studied
did not actually use the analysis tool; they were presented
with bug reports in a questionnaire format. An older study
investigated whether static analysis can economically help
improve the quality of software products at a commercial
organization [35]. This report describes, at a high level, how
static analysis tools were used in the organization, in terms
of the development pipeline.

In addition, very little work has been done at the inter-
section of parallel programming and user evaluation: even
less with professional developers [26]. For his thesis, Scott
Fleming observed programmers debugging a multithreaded
server application that had been seeded with a concurrency
bug [10, 11]. Interestingly, several participants were able to
find and fix the flaw, but were not able to correctly describe
the design defect that caused the problem. However, these
programmers did not use data race detection tools to iden-
tify the errors.

6. Discussion and Conclusion
Every team we interviewed that was using THREADSAFETY
or TSAN explicitly said they thought it was a net positive,
despite any problems they had with the analysis. In general,
TSAN seemed to find more insidious bugs than THREAD-
SAFETY. On the other hand, THREADSAFETY was most
useful for gaining understanding of and confidence in con-
current code. However, since developers must fix warnings
from THREADSAFETY before checking in the code, it is dif-
ficult to assess how severe these problems would have been
had they been released to production. The biggest issues de-
velopers had with TSAN were the slow speed and lack of
coverage. The biggest issues developers had with THREAD-
SAFETY were the difficulty of annotating legacy code, ex-
pressibility limitations of the annotation language or anal-
ysis, and clutter or tedium caused by annotations. Interest-
ingly, some teams use partial sets of THREADSAFETY an-
notations to mitigate these issues.

There are many factors that may affect team adoption
of concurrency analysis tools. We found the team culture
had an impact on how developers thought of the analysis
tools. Also, different tools may be effective for legacy code
than for writing new code. For example, most developers we
talked to said they would want to use THREADSAFETY on a
new project, even if they were not willing to annotate all their
existing code to employ it now. Ways to migrate legacy code
smoothly onto new systems (e.g. annotation inference) could
be very valuable. For a prospective tool, having a low false
positive rate and good documentation is very important. The
tool performance directly impacts how often a tool is run,
and so a slow tool may find less bugs since it is run less
often. Developers valued annotations that were useful for
documentation, but did not like clutter. Ideally, annotation-
based analyses will involve few annotations that describe a



large amount of idioms concisely and powerfully. Helping
developers understand (and gain confidence in) concurrent
programs is just as important as finding new bugs in them;
there is an opportunity for better tooling and visualization
methods here.

Even simple production-quality tools may be really use-
ful; there are a lot of easy things to check that could be ver-
ified by robust tools, such as error-prone [2]. There were
also some tricky bugs that came up that we do not cur-
rently have good tooling for. For example, the race that oc-
curs once in every 24 hours in a 100 machine cluster, or the
deadlock that happened because of an unexpected interac-
tion between dependencies. Enriching standard debugging
information, such as by adding information about locking
to stack dumps, could make it easier to track down errors.
Developers were also very interested in extending THREAD-
SAFETY in various ways, such as to include inter-procedural
analysis, building an inference system, or enriching it with
the ability to write higher-level invariants about how combi-
nations of locks interact.

Concurrency analyses could explain bugs better (e.g. with
failure traces). Developers need to understand the errors
and believe they are errors, otherwise they may distrust and
abandon the tool. A few people suggested combined static
and dynamic analysis could improve upon both techniques;
for example, it may be possible to leverage annotations to
decide when lock acquires happen. Lastly, it may be possible
to extend the effectiveness of manual inspection for finding
concurrency bugs by performing a structured inspection, like
in heuristic evaluation [20].

“We wish we had something better, but we don’t want less.
The problem is too hard without it.”

— Interview Participant

Acknowledgments
We wish to thank Robert Bowdidge, Kostya Serebryany,
Timur Iskhodzhanov, Dmitry Vyukov, DeLesley Hutchins,
and our helpful reviewers for valuable information and feed-
back.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for Java. Transactions on Pro-
gramming Languages and Systems (TOPLAS), 28(2):207–
255, 2006.

[2] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan. Build-
ing useful program analysis tools using an extensible com-
piler. In Workshop on Source Code Analysis and Manipulation
(SCAM), 2012.

[3] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of
data race detection. In Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD), 2006.

[4] C. Boyapati, R. Lee, and M. Rinard. A type system for pre-
venting data races and deadlocks in Java programs. In Object-

Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2002.

[5] Chromium Team. Issue 15577. Available from
http://code.google.com/p/chromium/issues/

details?id=15577, 2012.
[6] D. R. Engler and K. Ashcraft. RacerX: Effective, static detec-

tion of race conditions and deadlocks. In ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[7] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In Operating
Systems Design and Implementation (OSDI), 2010.

[8] C. Flanagan and S. N. Freund. Type-based race detection for
Java. In Conference on Programming Language Design and
Implementation (PLDI), 2000.

[9] C. Flanagan and S. N. Freund. FastTrack: Efficient and pre-
cise dynamic race detection. In Conference on Programming
Language Design and Implementation (PLDI), 2009.

[10] S. D. Fleming. Successful Strategies for Debugging Concur-
rent Software: An Empirical Investigation. PhD thesis, Michi-
gan State University, 2009.

[11] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and
L. K. Dillon. A study of student strategies for the corrective
maintenance of concurrent software. In International Confer-
ence on Software Engineering (ICSE), 2008.

[12] P. J. Guo and D. Engler. Linux kernel developer responses
to static analysis bug reports. In USENIX Annual Technical
Conference, 2009.

[13] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[14] E. A. Lee. The problem with threads. Computer, 39(5):33–42,
2006.

[15] F. Mattern. Virtual time and global states of distributed sys-
tems. In Workshop on Parallel and Distributed Algorithms,
1989.

[16] M. Naik and A. Aiken. Conditional must not aliasing for static
race detection. In Symposium on Principles of Programming
Languages (POPL), 2007.

[17] M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for Java. In Conference on Programming Language
Design and Implementation (PLDI), 2006.

[18] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Confer-
ence on Programming Language Design and Implementation
(PLDI), 2007.

[19] B. Nicodemus and L. Swabey. Advances in Interpreting Re-
search: Inquiry in Action. John Benjamins Publishing Com-
pany, 2011.

[20] J. Nielsen. Heuristic evaluation. In J. Nielsen and R. L. Mack,
editors, Usability Inspection Methods, pages 25–62. Wiley,
1994.

[21] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race de-
tection. In Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2003.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. Context-sensitive
correlation analysis for detecting races. In Conference on
Programming Language Design and Implementation (PLDI),
2006.



[23] C. Sadowski. Usage of thread safety attributes. Available from
http://lists.cs.uiuc.edu/pipermail/cfe-dev/

2011-July/016144.html, 2011.
[24] C. Sadowski. Proposal for thread safety attributes for clang.

Available from http://lists.cs.uiuc.edu/pipermail/

cfe-dev/2011-June/015899.html, 2011.
[25] C. Sadowski and D. Hutchins. Thread-safety annotation

checking. Available from http://clang.llvm.org/docs/

LanguageExtensions.html#threadsafety, 2011.
[26] C. Sadowski and A. Shewmaker. The last mile: Parallel

programming and usability. In FSE/SDP Workshop on the
Future of Software Engineering Research (FoSER), 2010.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems
(TOCS), 15(4), 1997.

[28] C. B. Seaman. Qualitative methods in empirical studies of
software engineering. In IEEE Transactions on Software
Engineering, 1999.

[29] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data
race detection in practice. In Workshop on Binary Instrumen-

tation and Applications (WBIA), 2009.
[30] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and

D. Vyukov. Dynamic race detection with LLVM com-
piler. In International Workshop on Runtime Verification
(RV), 2011.

[31] ThreadSanitizer Team. ThreadSanitizer. Available from
http:// code.google.com/p/data-race-test, 2012.

[32] ThreadSanitizer Team. ThreadSanitizer v2. Available from
http://code.google.com/p/thread-sanitizer, 2012.

[33] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detec-
tion on millions of lines of code. In International Symposium
on Foundations of Software Engineering (FSE), 2007.

[34] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
detection of data race conditions via adaptive tracking. In
ACM Symposium on Operating Systems Principles (SOSP),
2005.

[35] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hude-
pohl, and M. A. Vouk. On the value of static analysis for fault
detection in software. In IEEE Transactions on Software En-
gineering, 2006.


