
A Language-Based Approach to Secure Quorum Replication

Lantian Zheng
Google Inc.

zlt@google.com

Andrew C. Myers
Computer Science Department

Cornell University
andru@cs.cornell.edu

Abstract
Quorum replication is an important technique for building
distributed systems because it can simultaneously improve
both the integrity and availability of computation and stor-
age. Information flow control is a well-known method for
enforcing the confidentiality and integrity of information.
This paper demonstrates that these two techniques can be
integrated to simultaneously enforce all three major secu-
rity properties: confidentiality, integrity and availability. It
presents a security-typed language with explicit language
constructs for supporting secure quorum replication. The de-
pendency analysis performed by the type system of the lan-
guage provides a way to formally verify the end-to-end secu-
rity assurance of complex replication schemes. We also con-
tribute a new multilevel timestamp mechanism for synchro-
nizing code and data replicas while controlling previously
ignored side channels introduced by such synchronization.

1. Introduction
Distributed systems are ubiquitous and typically contain
host machines that may fail benignly (fail-stop) or ma-
lignly (Byzantine). A significant challenge for such sys-
tems is to enforce system-wide security policies. Informa-
tion flow control and replication are two distinct—but, we
argue, complementary—techniques for building secure dis-
tributed systems. Information flow control can enforce end-
to-end confidentiality and integrity policies, whereas repli-
cation is the standard technique to prevent failed hosts from
compromising the integrity and availability of distributed
systems. This paper introduces a new way to combine infor-
mation flow control and replication in distributed systems.
The result is a way to achieve strong assurance of end-to-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLAS ’14, July 29, 2014, Uppsala, Sweden.
Copyright c© 2014 ACM . . . $15.00.
http://dx.doi.org/10.1145/

end confidentiality, integrity and availability for distributed
systems.

To balance the requirements of availability and integrity
in distributed systems, it is necessary to replicate informa-
tion and computation across the distributed system, and to
coordinate this replication via distributed protocols. In par-
ticular, quorum replication [3, 4, 9] is a frequently used ap-
proach. Our new idea is to use the analysis of information
flow to reason soundly about the integrity and availability
offered by quorum replication. Compared to prior work on
quorum replication, this approach offers the advantage that
the replication strategy is based on high-level information
security policies, rather than on simplistic, uniform assump-
tions about host failures (e.g., that no more than a fixed num-
ber of host failures can occur).

To integrate information flow analysis and quorum repli-
cation, we demonstrate that the integrity and availability
guarantees of a quorum system can be analyzed elegantly
using a lattice-based label model. We develop the first type-
based dependency analysis that addresses the interaction of
integrity and availability created by distributed protocols that
aim to provide both properties. Previous work [2, 18] has
used information flow analysis to guide the use of replica-
tion in the secure partitioning framework [16], addressing
confidentiality and integrity but not availability; in fact, its
replication schemes can reduce availability.

Previous work on quorum replication has largely ignored
the possibility that information can leak via distributed pro-
tocols. We identify a new information channel related to the
timestamps that are needed to ensure data consistency in
quorum replication schemes. To prevent possible confiden-
tiality violations via this information channel, we propose a
novel scheme of multilevel labeled timestamps.

The rest of the paper is organized as follows. Section 2
introduces a security-typed imperative language with quo-
rum constructs. Its operational semantics formalizes quorum
replication. Section 3 describes the type system of the lan-
guage. This type system embodies a dependency analysis of
end-to-end security properties. Section 4 states the security
theorem: well-typed programs enforce noninterference and
are semantically secure. (See the appendix for proofs.) Sec-
tion 5 covers related work, and Section 6 concludes.

2. A language for replicated computation
We describe our approach in the context of Qimp, a simple
imperative language extended with constructs for replicated
storage and computation. Qimp is designed for the common
distributed computing paradigm in which a client host ma-
chine may use a set of server hosts to store data and per-
form computation. Server hosts may fail, so it is important
to use replication to ensure high integrity and availability.
Qimp models this replication explicitly.

2.1 Quorum replication vs. information flow control
Replicating data in quorum systems is a well-known tech-
nique for increasing availability and integrity [3, 4, 9]. A
quorum system is a collection of subsets of a set of hosts
where data is replicated. Availability is improved because a
read or write operation on replicated data is able to complete
even when only a suitable subset of the hosts (a quorum)
responds. Quorum replication has three major ingredients:

• A failure model that specifies which hosts can fail and
in what ways. Typically the failure model is specified in
terms of the maximum number of host failures that can
be tolerated, though other formalizations exist, such as
survivor sets [5] and fail-prone systems [9].
• Read and write protocols for reading and writing data

replicated in a quorum system.
• Quorum intersection constraints which require that quo-

rums overlap enough to ensure data consistency.

More recently, language-based information flow control
has been used to analyze end-to-end security properties of
replication [2, 18] from the following angles:

• Lattice-based security labels that offer an abstract and ex-
pressive way to model failures that affect integrity, avail-
ability, or confidentiality. Potential failures in distributed
systems can be modeled by assigning labels to hosts.
• Replicated computation that executes the same code on

different hosts and synthesizes the final result using mul-
tiple received responses.
• Dependency analyses, often formalized as security type

systems, that derive security constraints based on data de-
pendencies caused by information flow within programs.

There are parallels between these two lines of work on
building trustworthy distributed systems. Indeed, this paper
demonstrates for the first time that language-based informa-
tion flow control can be used to analyze quorum replication,
simultaneously enforcing confidentiality, integrity and avail-
ability. We show that quorum reads and writes can be viewed
as replicated computation and that the language-based ap-
proach can be instantiated to derive a quorum construct sim-
ilar to masking quorum systems [9].

2.2 Replicated computation in Qimp
A Qimp program is implicitly run on a trusted client host
machine. For simplicity, we assume the client host has no
local storage, so each memory locationmmust be replicated
onto a set of server hosts H . Replicated storage offers the
ability to query and update storage locations. For example,
the client can query all the server hosts in H for the contents
of locationm, allowing the correct value to be obtained even
if some hosts in H are compromised by an adversary.

Replicated computation is a natural generalization of
replicated storage. For example, we can view a query to
storage location m as a replicated computation because it is
equivalent to invoking (in parallel on each host in H) a re-
mote function that evaluates the dereference expression !m,
and then determining the value of !m based on the return
values from each replicated invocation. Similarly, to update
m with value v, the client host can ask the hosts in H to
evaluate (in parallel) the assignment expression m := v.

The Qimp language provides a generic construct for eval-
uating an expression e on multiple server hosts H and de-
termining the correct value of the expression based on the
values returned by those hosts. In general, it is possible that
some hosts in H may experience availability failures and
consequently not respond. Therefore, the client host must
be able to figure out the correct value of e using only the
responses from a subset of H . Such a subset is called a
quorum. Qimp requires that quorums be explicitly specified
when evaluating an expression e usingH . The host setH to-
gether with the set of all valid quorums Q1, . . . , Qn consti-
tute a quorum systemQ. The Qimp construct for replicating
computation has the following form:

remote e : τ [Q]

where τ is the type of the remote expression. Operationally,
to evaluate this expression, the client host instructs the hosts
inQ to evaluate e and return the result. The client host waits
until it receives responses from every host in some quorum
ofQ. Then the value of remotee : τ [Q] is determined based
on the return values from that quorum. Given a location m
replicated inQ, quorum read and write operations for m are
implemented in Qimp as follows:

Write: remotem := v : τ [Q]
Read: remote !m : τ ′[Q]

Consider a quorum write remote m := v : τ [Q]. To
provide availability, expression finishes evaluation after all
the hosts in some quorumQi complete the update. However,
this means that some hosts in H may hold an outdated value
of m, and they will return these outdated values when they
are asked to evaluate !m. In that case, the client needs a way
to distinguish an old value from the most recent value of m.
The natural solution is to use timestamps: when m := v
is evaluated on some host, the current timestamp is stored
with v as the value of m. Accordingly, the Qimp language

Host sets H,Q ⊆ H
Locations Q ::= 〈H;Q〉

Base labels l ∈ L
Labels ` ::= {lC , lI , lA}

Base types β ::= int | unit | τQ ref

Security types τ ::= β` | β`Q
Timestamps t ::= 〈l :n, n〉

Values v ::= x | n | () | m | v · t
Expressions e ::= v | !e | e1 + e2

| remote e : τ [Q]
| v := e | if e then e1 else e2
| let x = e in e′ | while e do e′

Figure 1. Syntax of the Qimp language

provides stamped values v · t, where t is the timestamp of v.
In general, !m evaluates to a stamped value v · t so that the
client host can determine the most recent value of m.

2.3 Syntax
The syntax of Qimp is shown in Figure 1. Except for the
remote expression and stamped values, Qimp is a sim-
ple, standard imperative language. In Qimp, values include
variable x, integer n, unit value () and memory location
m. Expressions include the dereference expression !e, ad-
dition e1 + e2, assignment v := e, conditional expression
if e then e1 else e2, while expression while e do e′ and
let expression let x = e in e′.

A type τ can be either a labeled base type β` or a located
type β`

Q with a location componentQ. Label ` specifies the
security requirements for any value with type β`. Values with
type β`Q are replicated in Q. A stamped value v · t has type
β`
Q if v has type β` and is replicated in Q.
A quorum system Q has the form 〈H;Q〉, where Q rep-

resents a list of quorums (subsets ofH). We write |Q| forH ,
and Qi ∈ Q for Qi ∈ {Q}, and h ∈ Q for h ∈ H .

Base types include integer type int, the unit type, and
reference type τQ ref. A memory location of type τQ ref

is replicated in Q.

2.3.1 Security labels
Qimp uses a unified label model introduced in previous
work [19], in which security levels are represented by base
labels from a lattice L, no matter which of confidentiality,
integrity and availability is considered.

Let l range over L, where l1 ≤ l2 denotes that l1 is a label
lower than or equal to l2. Let ⊥ be the lowest security level
in L and > the highest.

If a base label l is applied to a security property such as
confidentiality, the base label intuitively denotes how hard
it is for adversaries to compromise the underlying security
property. We model the adversary with a security level lA
that represents the security properties the adversary has the
inherent power to compromise. A security property labeled

with l will be compromised if l ≤ lA. For example, suppose
l is a confidentiality label on some data. Then the data has
high confidentiality if l 6≤ lA, meaning that the adversary
cannot directly read the data. Similarly, if l is the availabil-
ity (or integrity) label of some data, then l 6≤ lA means the
adversary cannot directly compromise its availability (or in-
tegrity). The goal of the security type system, then, is to en-
sure that the adversary cannot exploit existing computations
or construct new computations to indirectly compromise any
of these three security properties.

A security label ` contains three base labels lC , lI and lA,
respectively representing the confidentiality, integrity and
available levels. Suppose ` = {l1, l2, l3}. Then notations
C(`), I(`) and A(`) represent l1, l2 and l3, respectively. An
ordering relation v between security labels is used to track
information flows and data dependencies, wherev is defined
by the following rule:

C(`1) ≤ C(`2) I(`2) ≤ I(`1) A(`2) ≤ A(`1)

`1 v `2

For example, suppose e1 has security label `1 and e2 has
label `2. Then e1 + e2 has a label ` such that `1 v ` and
`2 v `, because the value of e1 + e2 depends on the values
of e1 and e2. Based on the above rule,C(`1)tC(`2) ≤ C(`)
because information about e1 and e2 can be learned from the
value of e1 + e2, while I(`) ≤ I(`1) u I(`2) because the
integrity of e1 + e2 is at most that of either e1 or e2.

A given host h also has a security label. We use C(h),
I(h) and A(h) to denote its confidentiality, integrity and
availability levels. If C(h) ≤ lA, the adversary can read data
on h; if I(h) ≤ lA, the adversary can change outputs of h; if
A(h) ≤ lA, the adversary can make h not respond.

For convenience, we use the following notation through-
out the paper.

• Cu(H), Iu(H) and Au(H) represent
d
h∈H(C(h)),d

h∈H(I(h)) and
d
h∈H(A(h)), respectively.

• τ t `′ represents β`t`′ if τ = β`.
• C(τ) represents C(`) if τ = β`.
• ` v τ represents ` v `′ if τ = β`′ .

2.3.2 Multilevel secure timestamps
The use of timestamps generates covert implicit information
flows. Timestamps are incremented as execution proceeds,
and therefore contain information about the path taken by
execution. An assignment statement needs to store times-
tamps on server hosts. In order for this to be secure, those
hosts must be trusted to learn whatever information may be
inferred from the timestamps. For example, consider a con-
ditional expression if e then e1 else e2. Suppose the time-
stamp is incremented for different times in e1 and e2. It is
then possible for a host to learn which branch is taken and
the value of e by examining the timestamp at run time. This
implicit information flow needs to be controlled.

The covert channel related to timestamps is not techni-
cally a covert timing channel, because it is based on observ-
ing timestamp values rather than actual execution time. Con-
trol of timing channels is largely an orthogonal problem, and
partially addressed in previous work [1, 12, 17].

The main challenge with controlling the implicit flows
caused by timestamps is similar to the label creep problem:
the security label of a timestamp keeps increasing along with
execution, and eventually the timestamp may become too re-
strictive to use. To address the challenge, we introduce multi-
level timestamps that carry multiple components, each track-
ing execution history at a particular confidentiality level. The
key property of a multilevel timestamp is that it can be in-
cremented at a given confidentiality level l such that its value
only depends on the part of execution path with a confiden-
tiality label less than or equal to l.

Abstractly, a multilevel timestamp scheme needs to de-
fine a labeled increment operation inc(t, l) that increments
timestamp t at label l, and an ordering relation between mul-
tilevel timestamps, which satisfy the following properties:

T-Security t1 ≈l t2 =⇒ inc(t1, l) = inc(t2, l)
T-Soundness t < inc(t, l)

where t1 ≈l t2 denotes that t1 and t2 are indistinguishable
at label l, meaning that all components having a label less
than or equal to l are equal in t1 and t2. The T-Security
property guarantees that the information that can be inferred
from inc(t, l) has a label less than or equal to l, and thus
inc(t, l) can be safely sent to host h with l ≤ C(h). The
T-Soundness property ensures that the timestamp is mono-
tonically increasing.

In Qimp, a multilevel timestamp t has the form 〈l :n, n′〉,
where l :n is a list of pairs l1 : n1, . . . , lk : nk such that
l1 ≤ . . . ≤ lk, and n1, . . . , nk are integers. The component
li : ni means that the timestamp has been incremented ni
times at label li. Sometimes it is useful to just increment t at
no particular confidentiality level. The unlabeled component
n′ is included for that purpose. For simplicity, we write 〈l :n〉
for 〈l :n, 0〉.

When a multilevel timestamp t is incremented at label l,
the component of t associated with l is incremented, and the
components of t that are high-confidentiality with respect to
l are discarded, because those components are not needed
to track time at the l level, and discarding them makes the
timestamp less restrictive to use while satisfying T-Security.
When comparing two timestamps, high-confidentiality com-
ponents are less significant than low ones, because they are
discarded during incrementation.

Suppose t = 〈l1 :n1, . . . , lk :nk, n
′〉. Then incrementing

t at level l is carried out by the following formula:

inc(t, l) =

{ 〈l1 :n1, . . . , li :ni + 1〉 if li = l u li+1

〈l1 :n1, . . . , li :ni, l u li+1 :1〉 if li 6= l u li+1

〈l1 u l :1〉 if l1 6≤ l

where li ≤ l, and li+1 6≤ l or k = i, and let lk+1 = >.

The ordering on timestamps is determined by the follow-
ing rules.

(l1 ≤ l2 and l2 6≤ l1) or (l1 = l2 and n1 < n2)

〈l : n, l1 : n1, . . .〉 < 〈l : n, l2 : n2, . . .〉

n1 < n2

〈l : n, n1〉 < 〈l : n, n2〉

In general, two multilevel timestamps may be incomparable.
For example, 〈l : 2〉 and 〈l′ : 3〉 are incomparable if l 6≤ l′

and l′ 6≤ l. However, this is not a problem for Qimp because
all the timestamps generated during the evaluation of a Qimp
program are comparable due to T-Soundness. With these
definitions, we can prove the following theorem.

Theorem 2.1. The multilevel timestamp scheme of Qimp
satisfies T-Security and T-Soundness.

In Qimp, the timestamp is incremented at label C(τ)
when remote e : τ [Q] is evaluated. So memory updates
in different remote expressions can be ordered. Memory
updates in the same remote expression are ordered by in-
crementing the unlabeled components of timestamps during
evaluation of assignments.

For a full example of multilevel timestamps in action,
consider evaluating the following expression at timestamp
〈lL :1〉.

let x = (if e then remote e1 : int{lH , l, l′}[Q] else 1)
in remote e′ : int{lL, l, l′}[Q

′]

Suppose e has a high confidentiality label, and lL and lH
represent low and high labels with lL ≤ lH . If the value of e
is positive, then remote e1 : int{lH , l, l′}[Q] is evaluated,
and the timestamp is incremented at level lH to become
〈lL : 1, lH : 1〉. Otherwise, the timestamp remains the same.
So after evaluating the conditional expression, the timestamp
is either 〈lL :1, lH :1〉 or 〈lL :1〉. When evaluating expression
remote e′ : int{lL, l, l′}[Q′], the timestamp is incremented
at level lL and the high level component is discarded. So
the timestamp becomes 〈lL : 2〉 regardless of which branch
of the conditional expression is taken. In addition, we have
〈lL : 1, lH : 1〉 < 〈lL : 2〉 and 〈lL : 1〉 < 〈lL : 2〉 as evidence of
T-Soundness.

2.4 Operational semantics
Figure 2 shows the small-step operational semantics of
Qimp. On host h, a Qimp expression is evaluated with the
memory state of h and the current timestamp. Thus, a local
evaluation step of Qimp is a transition from configuration
〈e, M, t〉 to another configuration 〈e′, M ′, t〉, written as
〈e, M, t〉 −→ 〈e′, M ′, t〉, or simply 〈e, M〉 −→ 〈e′, M ′〉
if t is not used in the evaluation.

An expression e is evaluated globally with respect to a
global memory stateM, which is a map from hosts to their
local memories. A global evaluation configuration needs to

track the current timestamp and the set of delayed evalu-
ations resulted from quorum replication. The evaluation of
remote e : τ [Q] may complete while some hosts in Q are
still in the middle of evaluating e, resulting in delayed eval-
uations.

Thus, a global Qimp evaluation configuration is a tu-
ple containing four components: expression e, memoryM,
delayed evaluations D and timestamp t. D maps a tuple
〈e, h, t〉 to an expression e′ or nil. If D[〈e, h, t〉] = e′, then
the evaluation of e at time t is delayed on host h and evalu-
ated to e′ so far. IfD[〈e, h, t〉] = nil, it means the evaluation
of e is not delayed on h.

A global evaluation step is a transition from configura-
tion 〈e,M, D, t〉 to another configuration 〈e′,M′, D′, t′〉,
written 〈e,M, D, t〉 −→ 〈e′,M′, D′, t′〉.

Rules (E1) through (E8) are local evaluation rules, and
rules (E9) through (E14) are global evaluation rules. Local
evaluation rules are mostly standard except for (E7). In (E7),
the memory location m to be updated is replicated on quo-
rum systemQ, and the existing value ofm is a stamped value
v′ · t′. Suppose t = 〈l :n, n′〉. Then we write btc for 〈l :n〉,
and t+1 for 〈l :n, n′+1〉. If the timestamp t is less than bt′c,
this is an old update to be ignored. Otherwise, the update is
new and shall be performed. The timestamp of the new value
is t′′ = max(t, t′) + 1, which increments the unlabeled com-
ponent of max(t, t′).

In rule (E9), a remote expression is expanded to the
following form:

remote e@h1, . . . , e@hn : τ [Q]

which denotes evaluations of e on hosts h1 through hn. The
expanded form makes it convenient to track each individ-
ual evaluation step at a host, as shown in rule (E10). Rule
(E9) also increments the timestamp at label C(τ), which
both ensures that a later update always has a larger time-
stamp and purges high-confidentiality information from the
timestamp. For each hi, the evaluation configuration starts
to track 〈e, hi, t′〉, mapping it to nil initially. The multi-
ple updates of D are represented by notation D[〈e, hi, t〉 7→
nil | hi ∈ Q].

Rule (E11) computes the final value of an expanded
remote expression. Suppose there exists a quorum Q of Q
such that all the hosts inQ already completed the evaluation:
that is, for each hi ∈ Q, ei is a value. Then the final value
of this expression is resolved based on the values returned
from Q and type τ :

v = resolve({vi@hi | hi ∈ Q}, τ)

where {vi@hi | hi ∈ Q} is an abbreviation for the set
of values {vj1@hj1, . . . , vjm@hjm} returned by Q =
{hj1, . . . , hjm}. The resolve function returns the most up-
to-date qualified value among vj1, . . . , vjm. A qualified
value is a value with sufficient integrity. More formally, a
value v is qualified with respect to τ , if it is returned by a set

(E1)
M(m) = v

〈!m, M〉 −→ 〈v, M〉

(E2)
n = n1 + n2

〈n1 + n2, M〉 −→ 〈n, M〉

(E3)
n > 0

〈if n then e1 else e2, M〉 −→ 〈e1, M〉

(E4)
n ≤ 0

〈if n then e1 else e2, M〉 −→ 〈e2, M〉

(E5) 〈let x = v in e, M〉 −→ 〈e[v/x], M〉

(E6)
〈while e do e′, M〉 −→
〈if e then let x = e′ in while e do e′ else (), M〉

(E7)

M(m) = v′ · t′ t′′ = max(t, t′) + 1
M ′ = (if t < bt′c then M else M [m 7→ v · t′′])

〈m := v, M, t〉 −→ 〈(), M ′, t〉

(E8)
〈e, M, t〉 −→ 〈e′, M ′, t〉

〈E[e], M, t〉 −→ 〈E[e′], M ′, t〉

(E9)

|Q| = {h1, . . . , hn} t′ = inc(t, C(τ))
D′ = D[〈e, hi, t′〉 7→ nil | hi ∈ Q]

〈remote e : τ [Q],M, D, t〉 −→
〈remote e@h1, . . . , e@hn : τ [Q],M, D′, t′〉

(E10)

〈ei,M(hi), t〉 −→ 〈e′i, M ′, t〉

〈remote . . . ei@hi . . . : τ [Q],M, t〉 −→
〈remote . . . e′i@hi . . . : τ [Q],M[hi 7→M ′], t〉

(E11)

∃Q ∈ Q ∀hi ∈ Q ei = vi
D′ = D[〈e, hk, t〉 7→ ek | hk 6∈ Q]
v = resolve({vi@hi | hi ∈ Q}, τ)

〈remote e1@h1, . . . , en@hn : τ [Q],M, D, t〉 −→
〈v,M, D′, t〉

(E12)

〈e′,M(h), t〉 −→ 〈e′′, M ′, t〉 M′ =M[h 7→M ′]
D[〈e0, h, t〉] = e′ D′ = D[〈e0, h, t〉 7→ e′′]

〈e,M, D〉 −→ 〈e,M′, D′〉

(E13)
〈e, M〉 −→ 〈e′, M〉

〈e,M, D, t〉 −→ 〈e′,M, D, t〉

(E14)
〈e,M, D, t〉 −→ 〈e′,M′, D′, t′〉

〈E[e],M, D, t〉 −→ 〈E[e′],M′, D′, t′〉

E[·] ::= [·] + e | v + [·] | if [·] then e1 else e2
| v := [·] | ! [·] | let x = [·] in e

Figure 2. Operational semantics of Qimp

of hosts with a combined (joined) integrity label as high as
I(τ). That is, there exists a subset H ′ of Q such that all the
hosts in H ′ return v and I(τ) ≤ It(H ′) holds.

If I(τ) 6≤ lA, then the adversary cannot fabricate a quali-
fied value of type τ , because it cannot compromise a set of
hosts with a combined integrity label as high as I(τ). There-
fore, a qualified value has sufficient integrity.

The most up-to-date qualified value is simply the quali-
fied value with the largest timestamp. If the returned values
are not stamped values, then any qualified value could be
viewed as the most up-to-date one. If no qualified value is
found, the most up-to-date value is returned by resolve func-
tion, and in this case the integrity of the value is known to be
compromised.

For hosts that are not in Q, the evaluation may not com-
plete yet. So D′ in the resulting configuration needs to track
those delayed evaluations by mapping 〈e, hk, t〉 to ek in D
for all hk that is not in Q.

Rule (E12) shows a delayed evaluation step. Suppose
〈e0, h, t〉 is mapped to e′ in D, and 〈e′,M(h), t〉 is eval-
uated to 〈e′′, M ′, t〉. Then 〈e0, h, t〉 is mapped to e′′ after
this evaluation step, while the global memory state becomes
M[h 7→M ′].

Rule (E13) shows an evaluation step on the client host,
which does not update memory.

A compromised host may evaluate expression e not based
on the rules in Figure 2. For simplicity, we assume that a
compromised host may conduct only two kinds of attacks.
First, it may conduct an integrity attack, returning an ar-
bitrary value as the result of e. Second, it may conduct an
availability attack, returning no value. These two attacks are
formalized as two additional evaluation rules (A1) and (A2).
In rule (A1), suppose I(hi) ≤ lA holds, then host hi is a low-
integrity host whose integrity may be compromised. Thus,
any expression ei to be evaluated on hi may result in an arbi-
trary value v. For simplicity, we assume v is still well-typed
(of type τQ). In rule (A2), host hi is a low-availability host
since A(hi) ≤ lA. Thus, host hi may become unavailable,
and the evaluation of ei cannot continue, which is simulated
by removing the term ei@hi.

(A1)
I(hi) ≤ lA

〈remote . . . ei@hi . . . : τ [Q],M, D, t〉 −→
〈remote . . . v@hi . . . : τ [Q],M, D, t〉

(A2)
A(hi) ≤ lA

〈remote . . . ei@hi . . . : τ [Q],M, D, t〉 −→
〈remote . . . ei−1@hi−1, ei+1@hi+1, . . . : τ [Q],
M,D, t〉

2.5 Examples
The simplicity of the Qimp language helps focus on the ba-
sic constructs for supporting quorum replication. However,
Qimp is expressive enough to illustrate some real-world dis-
tributed computations and their associated security issues.

2.5.1 Cloud storage
At its core, cloud storage is similar to a remote memory
whose value can be read and updated. The following code
simulates storing a value in the cloud and then retrieving it.
To make the code more readable, we use e1; e2 as syntactic
sugar for let x = e1 in e2 where x is fresh.

remotem := 42 : unit{⊥,>, l}[Q];
remote !m : int`[Q]

Suppose Q = 〈{h1, h2, h3}; {h1, h2}, {h2, h3}, {h1, h3}〉,
which means that m is replicated on three hosts and that
every update or read operation needs at least two hosts to
complete. We can imagine that h1, h2 and h3 represent three
independent cloud storage providers. Thus, replicating m in
Q can tolerate the availability failure of any single provider,
achieving higher availability than just storing the data at one
place.

It is common for cloud storage providers to keep data
access logs. Thus, accessing cloud storage has side effects,
generating implicit flows. Consider the following code.

let x = remote !m : int{lH , l, l′}[Q] in
if x then remote !m1 : τ [Q1] else
remote !m2 : τ [Q2]

where lL represents a low security level, and lH a high
level. The code returns the value of m1 or m2 depending
on the value of m. Suppose both m1 and m2 store low-
confidentiality data. So it seems that hosts in Q1 and Q2

may be low-confidentiality hosts. However, a host in Q1 or
Q2 may learn about the high-confidentiality value of m by
knowing whether !m1 or !m2 is evaluated. To control this
implicit flow, we require that the program counter label pc
of a remote expression running at Q satisfy the following
constraint:

C(pc) ≤ Cu(|Q|)

That ensures that all the hosts in Q have a confidentiality
level at least as high as C(pc).

2.5.2 Timed data deletion
Timed data deletion is often used to ensure confidentiality
of data stored remotely. For example, a popular mobile mes-
saging app allows users to back up their messaging histories
on remote servers, but backup data is deleted from remote
servers after a week. This practice is illustrated by the fol-
lowing code:

remotem := 42 : unit{⊥,>, lH}[Q];
while let x = remote !m1 : int{lL, lH , lH}[Q1] in

(remotem1 := x− 1 : unit{⊥,>, lH}[Q1]; x) do ();
remotem := 0 : unit{⊥,>, lH}[Q]

Supposem stores the backup data,m := 42 represents mak-
ing a new backup that happens to be 42, and m := 0 rep-
resents deleting the backup. The deletion happens after a
counter m1 counts down to 0. Besides using replication to

ensure integrity and availability of the backup data, another
security concern in this case is to ensure that deletion hap-
pens. This concern is represented by the high availability la-
bel lH of expression m := 0, meaning that the adversary
cannot affect whether this expression terminates. Intuitively,
we need to ensure both high integrity and availability of the
counter m1. This security requirement is captured by the
high integrity and availability labels of !m1.

3. Security typing
In Qimp, security is formalized in terms of noninterference
properties that are enforced through type checking. The type
system of Qimp ensures that any well-typed program satis-
fies the noninterference properties.

3.1 Secure quorum systems
Depending on the security labels of its hosts, a quorum
system can provide certain security guarantees for the data
stored in it, as formalized in the following definition.

Definition 3.1 (Secure replication). It is secure to replicate
data of type τ in quorum system Q, written Q ` τ , if Q ` τ
is derived by the following rule:

(Q1)

C(τ) ≤ Cu(|Q|) A(τ) ≤
⊔
Q∈Q(Au(Q))

∀Q1, Q2 ∈ Q, Q1 ∩Q2 ` I(τ)

Q ` τ

The three constraints in (Q1) respectively guarantee con-
fidentiality, availability and integrity of data replicated inQ.

The confidentiality constraint C(τ) ≤ Cu(|Q|) ensures
that all the hosts in Q have a confidentiality label at least as
high as C(τ) so that they are allowed to store data of type τ .

The availability constraint A(τ) ≤
⊔
Q∈Q(Au(Q)) is

based on that evaluating an expression inQ results in a value
as long as a quorum of Q complete the evaluation, and the
availability of Q is captured by label

⊔
Q∈Q(Au(Q)).

The integrity constraint requires that the intersection of
any two quorums in Q contains enough correct hosts so
that any quorum is able to determine the most up-to-date
value of a memory location replicated in Q. Here the notion
of “enough correct hosts” is defined in terms of labels and
writtenQ1∩Q2 ` I(τ). In general,H ` I denotes that a set
of hostsH can provide integrity guarantee for data replicated
in it up to level I . It is defined by the following rule:

(Q2)
H 6= ∅ ∀H ′ ⊆ H, I ≤ It(H ′) or I ≤ It(H −H ′)

H ` I

Rule (Q2) essentially says that H ` I iff either the set of
compromised hosts inH or the set of correct hosts inH have
a combined integrity as high as I . In other words, either the
adversary has the inherent capability to compromise data of
integrity label I , or the correct hosts in H have a combined
integrity label as high as I so that if they all agree on the
value of some data, then that value has integrity I .

3.1.1 Masking quorum systems
The label-based security constraints for quorum replication
can be instantiated to derive masking quorum system [9],
a quorum construct that tolerates failures specified as a fail-
prone system B (a collection of host sets {B1, . . . , Bn} such
that all the failed hosts are contained in someBi). A quorum
systemQ is a masking quorum system with respect to B if it
satisfies the following two properties:

• M-Consistency: ∀Q1, Q2 ∈ Q ∀B1, B2 ∈ B : (Q1 ∩
Q2)−B1 6⊆ B2

• M-Availability: ∀B ∈ B ∃Q ∈ Q : B ∩Q = ∅

First, we construct a label model consistent with the
fail-prone system. Let label l be a collection of host sets
{H1, . . . ,Hn}, meaning the underlying security property
is compromised if and only if all the hosts in some Hi

are compromised. Then lA = {B1, . . . , Bn}. Let lH =
{H | ∀Bi H 6⊆ Bi}. In a fail-prone system B, lA represents
a low security level, and lH represents a high security level.
For each host h, we have C(h) = I(h) = A(h) = {{h}}.
Given two labels l1 and l2, l1 ≤ l2 if for any H in l2, there
exists H ′ in l1 such that H ′ ⊆ H .

With this label model, we can prove that if Q is secure to
store data with high integrity and availability labels, then Q
is a masking quorum system.

Theorem 3.1. If Q ` int{l, lH , lH}, then Q is a masking
quorum system.

Proof. By contradiction. Assume M-consistency does not
hold. Then there exist Q1, Q2 ∈ Q and B1, B2 ∈ B such
that (Q1 ∩Q2)−B1 ⊆ B2. Therefore, there exists a subset
H of Q1 ∩Q2 such that H ⊆ B1 and Q1 ∩Q2 −H ⊆ B2,
which imply lH 6≤ It(H) and lH 6≤ It(Q1 ∩ Q2 − H).
Contradict Q1 ∩Q2 ` lH .

Assume M-Availability does not hold. Then there exists
B ∈ B such that B intersects with every Q in Q. Based
on the label model, we have

⊔
Q∈Q(Au(Q)) = {H | H ⊆

|Q|,∀Q ∈ Q : H ∩ Q 6= ∅}. Thus, B ∈
⊔
Q∈Q(Au(Q)).

However, for any H in lH , H 6⊆ B, which contradicts
lH ≤

⊔
Q∈Q(Au(Q)).

3.2 Typing rules
Let Γ represent a typing assignment, mapping references
and variables to types. A typing judgment of Qimp has the
form Γ ;Q ; pc ` e : τ , meaning that expression e evaluated
in quorum system Q has type τ with respect to Γ and the
program counter label pc. Note that the program counter
label captures the sensitivity of control flow. For simplicity,
a component in the typing environment of a typing judgment
may be omitted if the component is irrelevant. For example,
in rule (INT), the type of n has nothing to do with the typing
environment, and thus the typing judgment is simplified as
` n : int`. If expression e (such as a remote expression) is
not evaluated in a quorum system, then the quorum system

(INT) ` n : int`

(UNIT) ` () : unit`

(VAR)
C(Γ(x)) ≤ Cu(Q)

Γ ;Q ` x : Γ(x)

(LOC)
Γ(m) = τQ Q ` τ

Γ ` m : τQ ref`

(SV)
Γ ` v : τ

Γ ;Q ` v · t : τQ

(ADD)
Γ ;Q ` ei : int`i i ∈ {1, 2}

Γ ;Q ` e1 + e2 : int`1t`2

(DEREF)
Γ ; pc ` e : τQ ref` ` v τ

Γ ;Q ; pc `!e : τQ

(ASSIGN)
Γ ;Q ` v : τQ ref` Γ ;Q ; pc ` e : τ pc t ` v τ

Γ ;Q ; pc ` v := e : unit{⊥,>, A(τ)}

(IF)

Γ ;Q ; pc ` e : int` ` v τ
Γ ;Q ; pc t ` ` ei : τ i ∈ {1, 2}

Γ ;Q ; pc ` if e then e1 else e2 : τ

(WHILE)

Γ ;Q ; pc ` e : int` Γ ;Q ; pc t ` ` e′ : unit`′

l ≤ I(pc) u I(`) uA(`′) uA(`)

Γ ;Q ; pc ` while e do e′ : unit{⊥,>, l}

(LET)

Γ ;Q ; pc ` e : τ Γ, x :τ ;Q ; pc ` e′ : τ ′

A(τ ′) ≤ A(τ)

Γ ;Q ; pc ` let x = e in e′ : τ ′

(EVAL)
Γ ;Q ; pc ` e : τQ C(pc) ≤ C(τ) ≤ Cu(|Q|)

Γ ; pc ` remote e : τ [Q] : τ

(EVAL2)

∀i ∈ {1, . . . , n}. Γ ;Q ; pc ` ei : τQ

C(pc) ≤ C(τ) ≤ Cu(|Q|)
Γ ; pc ` remote e1@h1, . . . , en@hn : τ [Q] : τ

(SUB)
Γ ;Q ; pc ` e : τ τ ≤ τ ′

Γ ;Q ; pc ` e : τ ′

Figure 3. Typing rules of Qimp

component of the typing environment is represented by ∅.
The typing rules are shown in Figure 3.

Rules (INT), (UNIT), (ADD) are standard. Rule (VAR)
adds a confidentiality check to ensure that all the hosts in Q
have a confidentiality label as high as that of x.

Rule (LOC) checks reference values. Reference m has
type τQ ref` if Γ(m) = τQ. In addition, Q ` τ ensures
that Q is secure enough to store data of type τ .

Rule (SV) checks stamped values. If v has type τ , then
v · t has type τQ.

Rule (DEREF) is used to check the dereference expres-
sion !e. Suppose e has type τQ ref`. Then !e has type τQ.
The constraint ` v τ is required because the value of !e de-
pends on the value of e.

Rule (ASSIGN) checks the assignment expression. We
require pc t ` v τ so that information about the pro-
gram counter and about the reference itself cannot be leaked
through side effects of this expression. The availability of
v := e depends on the availability of e. Thus, the type of this
expression is unit{⊥,>, A(τ)}.

In rule (IF), the branches e1 and e2 are checked with
program counter label pc t ` because which branch to take
depends on the value of e.

Rule (WHILE) is used to check the while expression
while e do e′. The while expression always has a unit type.
The availability of the expression depends on the availability
of both e and e′, and the integrity of e because the value of
e determines whether the loop ends. In addition, the loop
may be infinite, so whether the evaluation terminates de-
pends on the integrity of the program counter. Therefore, the
constraint l ≤ I(pc) u I(`) uA(`′) uA(`) is required.

Rule (LET) is used to check expression let x = e in e′.
At run time, e′ is evaluated with x being replaced by the
value of e. Thus, e′ is checked with x bounded to the type
of e. The availability of the let expression depends on the
availability of e, and thusA(τ ′) is less than or equal toA(τ).

Rule (EVAL) checks expression remote e : τ [Q]. In this
rule, e has type τQ. In practice, a value returned from a
host is not necessarily a stamped value. For example, if e
is an assignment expression, then the return value would be
(). The returned values from remote evaluations are always
consumed by the resolve function, which works the same
way if non-stamped values are treated as stamped values
with the smallest timestamp 〈〉. This treatment simplifies
rule (EVAL) and is formalized as a subtyping rule below.
The constraint C(τ) ≤ Cu(|Q|) ensures that hosts in Q are
allowed to receive timestamp inc(t, C(τ)). The constraint
C(pc) ≤ C(τ) ensures incrementing the timestamp at a
level at least as high as C(pc) so that information about
the program counter is properly protected by the multilevel
timestamp.

Rule (SUB) is standard. The subtyping rules of Qimp are
shown as follows:

(S1)
` v `′

β` ≤ β`′
(S2) τ ≤ τQ

Rule (S1) is standard for a security type system. Rule (S2) is
mainly for simplifying rule (EVAL).

This type system satisfies subject reduction.

Definition 3.2 (Γ ` M). M is well-typed with respect to
Γ, written Γ ` M, if for any m ∈ dom(Γ), Γ(m) = τQ

implies that for any h ∈ Q,M[h][m] has type τQ.

Definition 3.3 (Γ ` D). D is well-typed with respect to Γ,
written Γ ` D, if for any e′ such that D[〈e, h, t〉] = e′,
Γ ` e′ : τ .

Theorem 3.2 (Subject reduction). Suppose Γ ; pc ` e :
τ , and Γ ` M, and Γ ` D, and 〈e,M, D, t〉 −→
〈e′,M′, D′, t′〉. Then Γ ; pc ` e′ : τ , and Γ ` M′ and
Γ ` D′.

Proof. By induction on the derivation of Γ ; pc ` e : τ .

4. Noninterference
This section formalizes the noninterference results of Qimp,
which state that a well-typed Qimp program satisfies the
noninterference properties with respect to confidentiality,
integrity and availability.

Intuitively, confidentiality noninterference means that
running a program with two inputs that are indistinguishable
at the low confidentiality level will generate outputs indistin-
guishable at the low confidentiality level. The following def-
initions formalize the indistinguishability relations of mem-
ories and delayed evaluation configurations with respect to
low confidentiality. The confidentiality noninterference of
Qimp is formalized in Theorem 4.1.

Definition 4.1 (Γ ` M1 ≈C≤lA M2). For all m, if Γ(m) =
τQ and C(τ) ≤ lA, then for any two quorums Q1 and Q2

of Q, vi = resolve({Mi[h][m] | h ∈ Qi}, Γ(m)) for
i ∈ {1, 2}, and v1 = v2.

Intuitively, Γ ` M1 ≈C≤lA M2 means that for any low-
confidentiality reference m, the values of m are the same in
M1 andM2.

Definition 4.2 (D1 ≈lA D2). Two delayed evaluation con-
figurations D1 and D2 are equivalent, written D1 ≈lA D2,
if for {i, j} = {1, 2}, 〈e, h, t〉 ∈ dom(Di) and C(h) ≤ lA
imply 〈e, h, t〉 ∈ dom(Dj).

Theorem 4.1 (Confidentiality noninterference). Suppose
Γ ; pc ` e : int`, and C(`) ≤ lA,M1 ≈C≤lA M2, and for
i ∈ {1, 2}, 〈e,Mi, ∅, t0〉 −→∗ 〈vi,M′i, Di, ti〉 without
(A1) or (A2) steps. Then v1 = v2, t1 ≈lA t2 and D1 ≈lA D2.

Proof. See Appendix A.

The above theorem assumes that the evaluations of e do
not include (A1) and (A2) steps. Note that rules (A1) and
(A2) have no confidentiality constraints, and active attack
steps based on them may affect low-confidentiality data and
effectively be treated as distinguishable low-confidentiality
inputs. Thus, assuming the lack of such steps is a simple way
to ensure low-confidentiality inputs are indistinguishable,
which is the prerequisite of confidentiality noninterference.
The theorem still holds if there are (A1) and (A2) steps, but
those steps do not produce low-confidentiality effects.

The integrity noninterference of Qimp is formalized in
Theorem 4.2.

Definition 4.3 (Γ ` M1 ≈I 6≤lA M2). For all m, if Γ(m) =
τQ and I(τ) 6≤ lA, then for any two quorums Q1 and Q2

of Q, vi = resolve({Mi[h][m] | h ∈ Qi}, Γ(m)) for
i ∈ {1, 2}, and v1 = v2.

Theorem 4.2 (Integrity noninterference). Suppose Γ ; pc `
e : int`, and I(`) 6≤ lA, and M1 ≈I 6≤lA M2, and
〈e,Mi, ∅, t0〉 −→∗ 〈vi,M′i, Di, ti〉 for i ∈ {1, 2}. Then
v1 = v2.

Proof. See Appendix A.

In the context of distributed protocols such as quorum
read/write, availability is often formulated as a liveness
property: all requests eventually end under all possible fail-
ure scenarios that the protocols are designed for. In contrast,
the end-to-end availability guarantee of Qimp cannot be for-
mulated as a liveness property, because that would entail
solving the halting problem. Instead we follow the same
approach as in the previous work [19] and define the end-to-
end availability guarantee as a noninterference property: the
adversary cannot affect whether high-availability programs
terminate.

Theorem 4.3 (Availability noninterference). Suppose Γ ; pc `
e : int`, and A(`) 6≤ lA, and M1 ≈I 6≤lA M2, and
〈e,M1, ∅, t0〉 −→∗ 〈v1,M′1, D1, t1〉 without (A1) or
(A2) steps. Then the evaluation of 〈e,M2, ∅, t0〉 always
terminates, that is, 〈e,M2, ∅, t0〉 −→∗ 〈e′′,M′′2 , D′′, t′′2〉
implies 〈e′′,M′′2 , D′′, t′′2〉 −→∗ 〈v2,M′2, D2, t2〉 for
some 〈v2,M′2, D2, t2〉.

Proof. See Appendix A.

5. Related Work
Language-based information flow control techniques [13]
can enforce noninterference, including in concurrent and
distributed systems [12, 14]. But this work does not address
availability and assumes a trusted computing platform. The
Jif/split system [16, 18] dealt with untrusted hosts and in-
troduced secure program partitioning and automatic replica-
tion of code and data. The Swift system [2] also uses auto-
matic replication to improve integrity. However, these sys-
tems cannot specify or enforce availability, and there is no
correctness proof for their (comparatively simple) replica-
tion mechanisms. The Fabric system [8] enforces confiden-
tiality and integrity without relying on a trusted platform, but
does not support replication or address availability.

In previous work [19], we extend the decentralized la-
bel model [11] to specify availability policies and present a
type-based approach for enforcing availability policies in a
sequential program. This paper examines the distributed set-
ting to permit formal analysis of the availability guarantees
of quorum replication schemes.

Walker et al. [15] designed λzap, a lambda calculus that
exhibits intermittent data faults, and use it to formalize the

idea of achieving fault tolerance through replication and
majority voting. However, λzap describes a single machine
with at most one integrity fault.

Quorum systems [3, 4, 9? , 10] are a well studied tech-
nique for improving fault tolerance in distributed systems.
Quorum systems achieve high data availability by provid-
ing multiple quorums capable of carrying out read and write
operations. If some hosts in one quorum fail to respond, an-
other quorum may still be available. The integrity guarantee
of quorum systems is usually formalized as regular seman-
tics [6] under simple, symmetric assumptions about the num-
ber of hosts that can fail. Our work offers new capabilities.
First, it allows the construction of quorum systems based on
non-uniform security labels assigned to hosts. Security guar-
antees are formalized as noninterference properties. Second,
hosts in the quorum system can provide more general com-
putation rather than just storage. Third, we control the covert
channels created by the quorum protocols themselves.

The Replica Management System (RMS) [7] computes
a placement and replication level for an object based on
programmer-specified availability and performance param-
eters. However, RMS does not consider attacks on integrity
(Byzantine failures) or on confidentiality.

6. Conclusions
This paper is the first attempt to study quorum replication us-
ing a lattice-based label model and a security-typed language
Qimp. It provides the first noninterference result for the com-
monly used technique of quorum replication: end-to-end se-
curity assurances of quorum constructs and protocols can be
formalized as noninterference properties and provably en-
forced by the type system of Qimp. The language-based ap-
proach also enriches the understanding of quorum replica-
tion from the perspective of high-level information flow poli-
cies, unifying analysis of all three aspects of security (con-
fidentiality, integrity and availability). The new mechanism
of multilevel timestamps is essential to controlling the infor-
mation channels created by keeping replicas synchronized.
These results suggest that other distributed protocols may be
analyzed along similar lines, supporting the secure construc-
tion of a wider range of distributed systems.

Acknowledgments
This work and its presentation here has benefited from
many insightful suggestions, including from Lorenzo Alvisi,
Michael Clarkson, Stephen Chong, Heiko Mantel, Danfeng
Zhang, Chinawat Isradisaikul, and anonymous reviewers.
This work was supported by NSF grant CCF-09644909,
ONR grant N00014-13-1-0089, and MURI grant FA9550-
12-1-0400, administered by the U.S. Air Force. The views
and conclusions here are those of the authors and do not
necessarily reflect those of any of these funding agencies.

References
[1] Johan Agat. Transforming out timing leaks. In Proc. 27th

ACM Symposium on Principles of Programming Languages
(POPL), pages 40–53, January 2000.

[2] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In Proc. 21st ACM
Symp. on Operating System Principles (SOSP), October 2007.

[3] D. K. Gifford. Weighted voting for replicated data. In
Proc. Seventh Symposium on Operating Systems Principles,
pages 150–162, Pacific Grove, CA, December 1979. ACM
SIGOPS.

[4] M. Herlihy. A quorum-consensus replication method for ab-
stract data types. ACM Transactions on Computer Systems,
4(1):32–53, February 1986.

[5] Flavio Junqueira and Keith Marzullo. Designing algorithms
for dependent process failures. In Proceedings of the Work-
shop on Future Directions in Distributed Computing, pages
24–28, 2003.

[6] Leslie Lamport. On interprocess communication. Distributed
Computing, 1(2):77–101, 1986.

[7] Mark C. Little and Daniel McCue. The Replica Manage-
ment System: a scheme for flexible and dynamic replication.
In Proc. 2nd International Workshop on Configurable Dis-
tributed Systems, pages 46–57, Pittsburgh, March 1994.

[8] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas
Waye, and Andrew C. Myers. Fabric: A platform for se-
cure distributed computation and storage. In Proc. 22nd ACM
Symp. on Operating System Principles (SOSP), pages 321–
334, 2009.

[9] Dahlia Malkhi and Michael Reiter. Byzantine quorum sys-
tems. In Proc. 29th ACM Symposium on Theory of Comput-
ing, pages 569–578, El Paso, Texas, May 1997.

[10] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin.
Small byzantine quorum systems. In International Confer-
ence on Dependable Systems and Networks (DSN02), June
2002.

[11] Andrew C. Myers and Barbara Liskov. Protecting privacy us-
ing the decentralized label model. ACM Transactions on Soft-
ware Engineering and Methodology, 9(4):410–442, October
2000.

[12] Andrei Sabelfeld and Heiko Mantel. Static confidentiality en-
forcement for distributed programs. In Proc. 9th International
Static Analysis Symposium, volume 2477 of LNCS, Madrid,
Spain, September 2002. Springer-Verlag.

[13] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1):5–19, January 2003.

[14] Geoffrey Smith and Dennis Volpano. Secure information
flow in a multi-threaded imperative language. In Proc. 25th
ACM Symposium on Principles of Programming Languages
(POPL), pages 355–364, January 1998.

[15] David Walker, Lester Mackey, Jay Ligatti, George Reis, and
David August. Static typing for a faulty lambda calculus.
In ACM SIGPLAN International Conference on Functional
Programming, September 2006.

[16] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and
Andrew C. Myers. Secure program partitioning. ACM Trans-
actions on Computer Systems, 20(3):283–328, August 2002.

[17] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers.
Language-based control and mitigation of timing channels. In
Proc. SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), pages 99–110, 2012.

[18] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using replication and partitioning to build secure
distributed systems. In Proc. IEEE Symp. on Security and
Privacy, pages 236–250, May 2003.

[19] Lantian Zheng and Andrew C. Myers. End-to-end availability
policies and noninterference. In Proc. 18th IEEE Computer
Security Foundations Workshop, pages 272–286, June 2005.

A. Noninterference proof
The noninterference result for Qimp is proved by extending
the language to a new language Qimp∗, which uses a bracket
construct to syntactically capture the differences between
executions of the same program on different inputs.

Intuitively, each evaluation configuration in Qimp∗ en-
codes two Qimp configurations. The operational semantics
of Qimp∗ is consistent with that of Qimp in the sense that
evaluation of a Qimp∗ configuration is equivalent to the eval-
uation of two Qimp configurations it encodes. The type sys-
tem of Qimp∗ can be instantiated to ensure that a well-typed
Qimp∗ configuration satisfies certain invariants. In particu-
lar, if the invariant represents some equivalence relation cor-
responding to noninterference, subject reduction of Qimp∗

then implies a noninterference result for Qimp. For exam-
ple, if the invariant is that the low-confidentiality parts of
two Qimp configurations are equivalent, the subject reduc-
tion of Qimp∗ implies the confidentiality noninterference of
Qimp.

A.1 Syntax extensions
The syntax extension of Qimp∗ includes bracket constructs,
which compose two Qimp terms and capture the differences
between two Qimp configuration. In particular, a timestamp
may also contain bracket constructs.

Values e ::= . . . (v, v)
Expressions e ::= . . . (e, e)

Timeticks η ::= n | (n, n)

Timestamps t ::= 〈l :η, η〉

Bracket constructs cannot be nested; their subterms must be
Qimp terms. Given a Qimp∗ expression e, let beci represent
the Qimp expressions that e encodes. The projection func-
tions satisfy b(e1, e2)ci = ei and are homomorphisms on
other expression forms. A Qimp∗ local memory M maps
references to Qimp∗ values that encode two Qimp values.
Thus, the projection function can be defined on memories
too. For i ∈ {1, 2}, dom(bMci) = dom(M), and for any
m ∈ dom(M), bMci(m) = bMi(m)ci. A Qimp∗ global
memory M is a pair of Qimp memories (M1,M2). Sim-
ilarly, a delayed evaluation configuration D in Qimp∗ is a
pair of Qimp configurations (D1, D2).

(E1)
M(m) = v

〈!m, M〉i −→ 〈bvci, M〉i

(E7)

bMci(m) = v′ · t′ t′′ = max(t, t′) + 1
M ′ = (if t < bt′c then M else M [m 7→i v · t′′])

〈m := v, M, t〉i −→ 〈(), M ′, t〉i

(E15)
〈if (v1, v2) then e1 else e2, M〉 −→
〈(if v1 then be1c1 else be2c1 |
if v2 then be1c2 else be2c2),M〉

(E16)

|Q| = {h1, . . . , hn} t′ = inc(t, C(τ))
D′i = Di[〈beci, hj , bt′ci〉 7→ nil | 1 ≤ j ≤ n] i ∈ {1, 2}

〈remote e : τ [Q],M, (D1, D2), t〉 −→
〈remote bec1@h11, . . . , bec1@h1n, bec2@h22, . . . ,
bec2@h2n : τ [Q],M, (D′1, D′2), t′〉

(E17)

i ∈ {1, 2} ∃Qi ∈ Q ∀hij ∈ Qi eij = vij
bD′ci = bDci[〈e, hk, btci〉 7→ eik | hk 6∈ Qi]
vi = resolve({vij@hij | hij ∈ Qi}, τ)
v = (if v1 = v2 then v1 else (v1, v2))

〈remote e11@h11, . . . , e2n@h2n : τ [Q],M, D, t〉 −→
〈v,M, D′, t〉

Figure 4. The operational semantics of Qimp∗

Since a Qimp∗ term effectively encodes two Qimp terms,
the evaluation of a Qimp∗ term can be projected into two
Qimp evaluations. An evaluation step of a bracket expres-
sion (e1, e2) is an evaluation step of either e1 or e2, and ei
can only access the corresponding projection of the mem-
ory. Thus, the configuration of Qimp∗ has an index i ∈
{•, 1, 2} that indicates whether the term to be evaluated is
a subterm of a bracket term, and if so, which branch of
a bracket the term belongs to. For example, the configura-
tion 〈e, M, t〉1 means that e belongs to the first branch of a
bracket, and e can only access the first projection of M . We
write “〈e, M, t〉” for “〈e, M, t〉•”, which means e does not
belong to any bracket.

The operational semantics of Qimp∗ is shown in Figure 4.
It is based on the semantics of Qimp and contains new evalu-
ation rules (E15)-(E17) for manipulating bracket constructs.
Rules (E1) and (E7) are modified to access the memory pro-
jection corresponding to index i. The rest of the rules in
Figure 2 are adapted to Qimp∗ by indexing each configu-
ration with i. In rules (E9)-(E11), the index i is in {1, 2},
as rules (E16) and (E17) cover the • case. The following
adequacy and soundness lemmas state that the operational
semantics of Qimp∗ faithfully encodes the evaluation of two
Qimp terms:

Lemma A.1 (Soundness). Suppose 〈e,M, D, t〉 −→
〈e′,M′, D′, t′〉 in Qimp∗. Then there exists evaluation
〈beci, bMci, bDci, btci〉 −→∗ 〈be′ci, bM′ci, bD′ci, bt′ci〉
for i ∈ {1, 2} in Qimp.

Proof. By inspection of the evaluation rules.

Lemma A.2 (Adequacy). If there exists Qimp evaluation
〈ei,Mi, Di, ti〉 −→∗ 〈vi,M′i, D′i, t′i〉 for i ∈ {1, 2},
and there exists e and t in Qimp∗ such that beci = ei
and btci = ti. Then 〈e, (M1,M2), (D1, D2), t〉 −→∗
〈v,M′, D′, t〉 such that bvci = vi and bt′ci = t′i.

Proof. By induction on the structure of e.

A.2 Typing rules
The type system of Qimp∗ includes all the typing rules in
Figure 3 and has an additional rule for typing the bracket ex-
pression. Essentially, a bracket expression represents the dis-
tinguishable parts of two evaluations. Therefore, the security
label of this expression and the program counter label must
not satisfy the indistinguishability constraint, which we call
the ζ-invariant. For confidentiality, the ζ-invariant is low-
confidentiality, implying low-confidentiality parts are indis-
tinguishable. For integrity, the ζ-invariant is high-integrity.
An ζ-invariant must satisfy the condition that ζ(`′) and ` v
`′ imply ζ(`).

(BRACKET)

Γ ;Q ; pc ` ei : τ i ∈ {1, 2}
¬ζ(τ) ¬ζ(pc)

Γ ;Q ; pc ` (e1, e2) : τ

A.3 Subject reduction
Definition A.1 (Γ ` M). M is well-typed with respect
to Γ, written Γ ` M , if dom(Γ) = dom(M) and ∀m ∈
dom(Γ). Γ ;Q `M(m) : Γ(m).

Lemma A.3 (Local subject reduction). Suppose Γ ;Q ; pc `
e : τ , and Γ ` M , and 〈e, M, t〉i −→ 〈e′, M ′, t〉i, and
i ∈ {1, 2} implies ¬ζ(pc). Then Γ ;Q ; pc ` e′ : τ and
Γ `M ′.

Proof. By induction on the derivation of 〈e, M, t〉i −→
〈e′, M ′, t〉i. Most cases are straightforward.

• Case (E15). Since e′ is a bracket expression, we just need
to prove ¬ζ(τ). Because Γ ;Q ; pc ` e : τ , we have
¬ζ(τ) by rules (BRACKET) and (IF).

Suppose M is a Qimp memory. Let M(m) denote the
resolved value ofm based on all the local values ofm inM.

Definition A.2 (Γ ` 〈M, D, t〉). SupposeM is (M1,M2)
and D is (D1, D2). 〈M, D, t〉 is well-typed with respect to
Γ, written as Γ ` 〈M, D, t〉, if the following conditions
hold.

• For any m such that Γ(m) = τQ, Γ ` Mi[h][m] : Γ(m)
holds, and ζ(τ) impliesM1(m) =M2(m).
• If 〈e,M, D, t〉i −→ 〈e,M′, D′, t〉i, then for any m ∈

dom(Γ), Mi(m) = bM′ci(m). In other words, no de-
layed evaluations can change the resolved value of a
memory location.

• If ζ(τ) is C(τ) ≤ lA, then D1 ≈lA D2, and btc1 ≈lA btc2.

Theorem A.1 (Subject reduction). Suppose Γ ;Q ; pc `
e : τ , and Γ ` 〈M, D, t〉, and 〈e,M, D, t〉i −→∗
〈e′,M′, D′, t′〉i where e and e′ are not expanded remote

expressions, and i ∈ {1, 2} implies¬ζ(pc). Then Γ ;Q ; pc `
e′ : τ and Γ ` 〈M′, D′, t′〉.

Proof. By induction on the first step and length of evaluation
〈e,M, D, t〉i −→∗ 〈e′,M′, D′, t′〉i.

• Case (E9). e is remote e′′ : τ [Q]. Since e′ is not an ex-
panded remote expression, the last step of the evaluation
must use rule (E11). In this case, we have i ∈ {1, 2},
and thus ¬ζ(pc). So if m is updated during the evalua-
tion, then ¬ζ(Γ(m)). Therefore, the first two conditions
for Γ ` 〈M′, D′, t′〉 immediately hold. Suppose ζ(τ)
is C(τ) ≤ lA. Then ¬ζ(pc) is C(pc) 6≤ lA. Therefore,
C(h) 6≤ lA holds for any host h in Q. Thus, bD′c1 ≈lA
bD′c2. Moreover, bt′ci = inc(btci, C(τ)) increments
at label C(τ), which satisfies C(τ) 6≤ lA. Therefore,
btc1 ≈lA btc2 implies bt′c1 ≈lA bt′c2. By Lemma A.3
and induction on the evaluation length, Γ ;Q ; pc ` e′ : τ .
• Case (E12). By Γ ` 〈M, D, t〉.
• Case (E13). By Lemma A.3.
• Case (E14). By induction.
• Case (E16). e is remote e′′ : τ [Q]. As in case (E9), the

last step of the evaluation uses rule (E17). There exists a
quorum Qi in each of the two encoded Qimp evaluations
such that all the hosts inQi complete evaluating be′′ci. So
we can consider only the evaluations in Q1 and Q2. The
goal is to prove that e′ is a non-bracket value v if ζ(τ)
holds. To prove that, we construct a Qimp∗ evaluation
out of the local evaluations at Q1 and Q2. The key is
to construct a Qimp∗ memory that captures the local
memories of Q1 and Q2. First, we construct a Qimp
memory Mi out of the local memories at Qi. For any
m such that Γ(m) = τQ, we have

Mi(m) = resolve(v@h | h ∈ Qi, τ)

Then M is constructed as follows,

M(m) =

{
M1(m) if M1(m) = M2(m)
(M1(m), M2(m)) if M1(m) 6= M2(m)

It is clear thatM is well-typed, becauseM is well-typed,
which implies that for any m such that ζ(Γ(m)), the
resolved values of m inM1 andM2 are the same.
By Lemma A.2, we have 〈e′′, M, t〉 −→∗ 〈v, M ′, t〉.
By Lemma A.3, Γ ;Q ; pc ` v : τ .
For any m that is updated during the evaluation, all the
hosts in Q1 and Q2 update m with value bM ′ci(m). If
ζ(Γ(m)), then M ′(m) = v′ is not a bracket value, that
is bv′c1 = bv′c2. By Q ` Γ(m), we have M′1(m) =
M′2(m) = v′.
Let Di = bDci and D′i = bD′ci. Suppose ζ(`) is C(`) ≤
lA. For any h ∈ |Q|, if C(h) ≤ lA, then C(pc) ≤ C(τ) ≤

lA, and C(Γ(x)) ≤ lA for any x appearing in e, which
imply bec1 = bec2 and bt′c1 = bt′c2. By rule (E16),
dom(D′i) = dom(Di) ∪ {〈beci, hi, bt′ci〉 | hi ∈ |Q|},
and thus D1 ≈lA D2 implies D′1 ≈lA D′2.
By rule (E17), D′i = Di[〈e, hk, bt′ci〉 7→ eik | hk 6∈ Qi].
For any new delayed evaluation at eik, if it steps forward
by 〈eik, Mk, bt′ci〉i −→ 〈e′k, M ′k, bt′ci〉i, then M ′k(m)
is either the same as or has a smaller timestamp than
M ′(m). Therefore, steps of new delayed evaluations will
not affect the resolved value of any reference.
Since t′ = inc(t, C(τ)), it is clear that btc1 ≈lA btc2
implies bt′c1 ≈lA bt′c2. So we have Γ ` 〈M′, D′, t′〉.

A.4 Confidentiality noninterference
Theorem A.2 (Confidentiality noninterference). Suppose
Γ ; pc ` e : int`, and C(`) ≤ lA, and M1 ≈C≤lA M2,
and for i ∈ {1, 2}, 〈e,Mi, ∅, t0〉 −→∗ 〈vi,M′i, Di, ti〉
without (A1) or (A2) steps. Then v1 = v2, t1 ≈lA t2 and
D1 ≈lA D2.

Proof. Let ζ(`) be C(`) ≤ lA, and M = (M1,M2). By
Lemma A.2, we have 〈e,M, ∅, t0〉 −→∗ 〈v,M′, D′, t〉
such that vi = bvci and ti = btci for i ∈ {1, 2}. Since
M1 ≈C≤lA M2, we have Γ ` 〈M, ∅, t0〉. By Theorem A.1,
Γ ` v : int` and Γ ` 〈M′, D′, t〉. By ζ(`), we have
v1 = bvc1 = bvc2 = v2. Γ ` 〈M′, D′, t〉 implies t1 ≈lA t2
and D1 ≈lA D2.

A.5 Integrity noninterference
Lemma A.4 (Subjection reduction with A1). Let ζ(`) be
I(`) 6≤ lA. Then the subject reduction of Qimp∗ still holds
with evaluation rule (A1), which formalizes integrity attacks.

Proof. With evaluation rule (A1), we just need to reconsider
the case of a remote evaluation that begins with (E16) and
ends with (E17). There still exist quorums Q1 and Q2 that
complete the evaluation. However, some low-integrity hosts
in Q1 and Q2 may be compromised and invoke rule (A1)
during the evaluation. So instead of constructing a Qimp∗

memory using local memories of all hosts in Q1 and Q2, we
just consider the high-integrity hosts in Q1 and Q2. Suppose
Hi are the set of high-integrity hosts inQi, then we construct
the Qimp∗ memory M just using local memories in H1 and
H2. The key point is that H1 and H2 are enough to resolve
any reference replicated on Q. Based on rule (Q1), the in-
tersection between H1 and any quorum Q contains enough
high-integrity hosts. Therefore, M is still well-typed. Simi-
larly, H1 and H2 can ensure that any reference updated dur-
ing the evaluation can be resolved to the correct value. So
the rest of the subject reduction proof just holds.

Theorem A.3 (Integrity noninterference). Suppose Γ ; pc `
e : int`, and I(`) 6≤ lA, and M1 ≈I 6≤lA M2, and

〈e,Mi, ∅, t0〉 −→∗ 〈vi,M′i, Di, ti〉 for i ∈ {1, 2}. Then
v1 = v2.

Proof. Let ζ(`) be I(`) 6≤ lA. By Lemma A.4 and the same
argument as in the proof of Theorem A.2.

A.6 Availability noninterference
Theorem A.4 (Availability noninterference). Suppose Γ ; pc `
e : int`, and A(`) 6≤ lA, and M1 ≈I 6≤lA M2, and
〈e,M1, ∅, t0〉 −→∗ 〈v1,M′1, D1, t1〉 without (A1) and
(A2) steps. Then the evaluation of 〈e,M2, ∅, t0〉 always
terminates.

Proof. In Qimp, there are two ways that an evaluation may
not terminate. First, there is an infinite loop. Second, a re-
mote evaluation does not terminate because not enough hosts
in the quorum system are available.

Like in the Aimp language [19], the typing rules of Qimp
ensure that low-integrity inputs cannot affect availability.
Therefore, by M1 ≈I 6≤lA M2 and that e terminates when
being evaluated withM1, we have that e cannot get into an
infinite loop while being evaluated withM2.

Assume 〈e,M2, ∅, t0〉 does not terminate. Then it must
be the case that some remote evaluation does not ter-
minate. Suppose 〈e,M2, ∅, t0〉 −→∗ 〈E(remote e′ :
τ [Q]),M′2, D′, t′〉, and 〈remote e′ : τ [Q]),M′2, D′, t′〉
does not terminate. By subject reduction, remotee′ : τ [Q] is
well-typed. By rules (LOC), (DEREF) and (EVAL), Q ` τ
must hold. By induction, we can prove that the availability
label of any sub-expression of e must be at least as high as
the availability label of e. Therefore, we have A(τ) 6≤ lA.
So there exists a quorum Q in Q such that A(h) 6≤ lA for
any host h in Q. So the remote evaluations of e′ on Q will
terminate. By rule (E11), 〈remote e′ : τ [Q],M′2, D′, t′〉
terminates, which results in a contradiction. So the origi-
nal assumption does not hold, and 〈e,M2, ∅, t0〉 always
terminates.

