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• We devise an exponentially segmented pattern model for the hostload prediction.
• We devise a Bayes method and exploit 10 features to find the best-fit combination.
• We evaluate the Bayes method and 8 other well-known load prediction methods.
• The experiment is based on Google trace with over 10 k hosts and millions of jobs.
• The pattern prediction with Bayes method has much higher precision than others.
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a b s t r a c t

We design a novel prediction method with Bayes model to predict a load fluctuation pattern over a
long-term interval, in the context of Google data centers. We exploit a set of features that capture the
expectation, trend, stability and patterns of recent host loads. We also investigate the correlations among
these features and explore themost effective combinations of featureswith various training periods. All of
the predictionmethods are evaluated usingGoogle tracewith 10,000+heterogeneous hosts. Experiments
show that our Bayes method improves the long-term load prediction accuracy by 5.6%–50%, compared
to other state-of-the-art methods based on moving average, auto-regression, and/or noise filters. Mean
squared error of pattern prediction with Bayes method can be approximately limited in [10−8, 10−5

].
Through a load balancing scenario, we confirm the precision of pattern prediction in finding a set of
idlest/busiest hosts from among 10,000+ hosts can be improved by about 7% on average.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Accurate prediction of the host load in a Cloud computing data
center is essential for achieving service-level agreements (SLA’s).
In particular, effective prediction of host load can facilitate the
proactive job scheduling or host load balancing decisions. This, in
turn, can improve resource utilization, lower data center costs (if
idle machines are shutdown), and improve the job performance.

Comparedwith traditional Grids [16] andHPC systems, the host
load prediction in Cloud data centers is arguably more challenging
as the Cloud host load has much higher variance. This stems from
differences in the workloads on top of such platforms. Unlike the
scientific applications commonly used in Grid or HPC platforms,
Cloud tasks tend to be shorter and more interactive, including
(instant) keyword, image, or email search. In fact, by comparing
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the load traces of aGoogle data center [18,33,24] and theAuverGrid
cluster [3,30],we observe that Cloud task lengths are only [

1
20 ,

1
2 ] of

Grid task lengths.We find that this difference leads tomore drastic
and short-term load fluctuation in Clouds compared toGrids [9,10].

Most prior work in Cloud Computing has focused primarily
on the application workload characterization versus long-term
host load prediction. For instance, there are several works on the
characterization of task placement constraints [28], task usage
shape [37], and their impacts to host load [24].

Most prior prediction work in Grid Computing or HPC sys-
tems [6,7,1,11,38,34,31,35] has focused mainly on using moving
averages, auto-regression, andnoise filters. These predictionmeth-
ods have been evaluated with traces of load in Grids or HPC sys-
tems. When applied to bursty Cloud workloads, they have limited
accuracy. Moreover, these works do not attempt to predict the
long-term future load fluctuation pattern (e.g., the load changes
over consecutive time intervals).

In this paper, we design an effective Cloud load prediction
method that can accurately predict the host load fluctuation
pattern over a long-term period up to 16 h in length. We focus
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on two critical metrics, CPU and memory, highlighted in [24]. Our
approach is to use a Bayesian model for prediction as it effectively
retains the important information about the load fluctuation
and noise. We evaluate our prediction method, not only using
a detailed 1-month load trace of a Google data center with
10,000+machines, but also based on an emulated 1-year host load
for each machine.

In particular, our contributions are listed below:

• What we predict: we accurately predict both mean load over
a future time interval (up to 16 h), and the mean load over
consecutive future time intervals (which we refer to as a
pattern).

• How we predict. We craft novel features used for the Bayesian
prediction that capture the important and predictive statistical
properties of host load. These properties include the expecta-
tion, stability, trends, and patterns of host load. We determine
which of these features are complementary to one another and
improve the predictive power of the Bayesian model.

• How we evaluate and compare: our evaluation is done using
a 1-month load trace of a Google data center with over
10,000 machines. We compare comprehensively our Bayesian
prediction methods with 8 other baseline and state-of-the-art
methods that use a variety of techniques, including moving
averages, noise filters, and auto-regression. For the long-term
load prediction, our Bayesian method outperforms others by
5.6%–50% on average. The mean-squared error (MSE) of the
Bayesianmethod for a single interval is 0.0014, and for a pattern
is about 10−5 or lower. Through a load balancing scenario, we
confirm the precision of pattern prediction in finding a set
of idlest/busiest hosts from among totally 10 k hosts can be
improved by about 7% on average.

The rest of the paper is organized as follows. In Section 2, we
formulate the Cloud load prediction problem as a pattern predic-
tionmodel. In Section 3, we present the overall design of the Bayes
classifier and propose 10 candidate features used as the evidence
for predictionwith an in-depth analysis of theirmutual correlation.
In addition to our Bayes method, we rigorously implement many
other solutions (includingmodels based onmoving averages, auto-
regression, andnoise filters) for comparison.Wepresent the exper-
imental results based on Google’s load trace data in Section 4 and
discuss related work in Section 5. Finally, we conclude the paper
with our future work in Section 6.

2. Prediction formulation

Our predictive study is based on the load measurements of a
Google data center. Google [18] traced over 670,000 jobs and over
40 million task events at minute resolution across over 10,000
machines in a production system in 2011 over a one-month period.
Users submit jobs to a batch scheduler, where each job consists of a
set of tasks and a set of resource constraints (on CPU and memory,
for example). The batch scheduler in turn allocates those tasks to
hosts. Load on the hosts is a function of the incoming workload at
the batch scheduler and its scheduling strategy.

Our objective is to predict the fluctuation of host load over a
long-term period. First, at a current time point t0, we would like
to predict the mean load over a single interval, starting from t0.
Second, we would like to predict, the mean load over consecutive
time intervals. We propose a new metric, namely exponentially
segmented pattern (ESP), to characterize the host load fluctuation
over some time period. For any specified prediction interval, we
split it into a set of consecutive segments, whose lengths increase
exponentially. We predict the mean load over each time segment.

We show in Fig. 1an example of ESP. We denote the total
prediction interval length as s. The first segment (denoted by s1) is
Fig. 1. Illustration of exponentially segmented pattern. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 2. Induction of segmented host load. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

called baseline segment with length b, starts from the current time
point t0 and ends at t0 + b. The length of each following segment
(denoted by si) is b · 2i−2, where i = 2, 3, 4, . . . . For example,
if b is set to 1 h, the entire prediction interval length s could be
equal to 16 (=1 + 1 + 2 + 4 + 8) h. For each segment, we predict
the mean host load. The mean values are denoted by li, where
i = 1, 2, 3, . . . . From this example, it is clear that the prediction
granularity is finer in the short-term than in the long-term. This
is useful for two reasons. In general, the short-term load is easier
to predict precisely than the long-term load. This is because of the
higher correlation of host load found among short consecutive time
segments. Also, tasks in Cloud systems are typically short (less than
1 h) in length. So, users or schedulers would value the prediction
of short-term load fluctuations more than the long-term ones.

As illustrated above, our aim is to predict the vector of load
values (denoted by l = (l1, l2, . . . , ln)T ), where each value
represents the mean load value over a particular segment.

To predict load, a predictor often uses recent load samples. The
interval that encloses the recent samples used in the prediction is
called evidence interval or evidence window.

Transformation of pattern prediction

According to our prediction model formulated previously, the
prediction of each segmented mean load is the key step of the
whole process. Since the host load always appears with high
correlation between the adjacent short-term intervals but not for
the non-adjacent ones, it is straight-forward to predict the load in
the successive intervals based on the evidence window. Hence, we
convert the segment representation formulated above into another
one, where each interval to predict is adjacent to the evidence
window.

In the new representation,we only need to predict a set ofmean
host loads for different lengths of future intervals, each starting
from the current time t0. We denote the mean load levels of the
prediction intervals as η1, η2, . . . , ηn, where ηi+1 = 2 · ηi. The
target is to predict such a vector, η = (η1, η2, . . . , ηn)

T , rather than
the vector l. In fact, the vector l can be converted from η through
the following induction. We use an example to show the idea, as
shown in Fig. 2.
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Suppose that the current moment is t0, and we have already
predicted two mean load values (ηi−1 and ηi, the blue dotted-
line segment) over two different intervals, [t0, ti−1] and [t0, ti],
respectively. Then, by making the areas of the two shaded squares
(S1 and S2) equal to each other, we can easily derive the mean
load value in [ti−1, ti]. The transformation is shown in Formula (1),
where li is the predicted mean load in the new segment [ti−1, ti],
corresponding to the red solid-line segment in Fig. 2.

li = ηi +
ti−1 − t0
ti − ti−1

(ηi − ηi−1). (1)

Taking into account ti = 2ti−1 and t0 = 0, we can further
simplify the Formula (1) as Eq. (2).

li = 2ηi − ηi−1. (2)
This new representation is useful for two reasons. First,

it simplifies and generalizes predictor implementation; any
predictor that can predict load over a single load interval can be
converted to predict a load pattern. Second, it gives the resource
or job management system the option of predicting different load
intervals starting at the current time point, or consecutive load
intervals, without any additional overheads. Transforming from
one representation to another is trivial in terms of complexity.

We show the pseudo-code of our Cloud load pattern prediction
method in Algorithm 1.

Algorithm 1 Pattern Prediction Algorithm
Input: baseline interval (b); length of prediction interval (s = b · 2n−1,
where n is the number of segments to be split in the pattern prediction);
Output: mean load vector l of Exponentially Segmented Pattern (ESP)
1: for (i = 0 → n−1) do
2: zi = b · 2i;
3: ϖi =

zi
2 ; /*ϖi is the length of the evidence window*/

4: Predict the mean load ηi, whose prediction length is equal to zi,
based on a predictor - Predictor(ϖi,zi);

5: end for
6: Segment transformation based on Equation (2): ηηη → l ;

Basically, there are two key steps in the Pattern Prediction
algorithm, namely, mean load prediction (lines 1–5) and segment
transformation (line 6). Note that each prediction interval always
starts from the current moment, unlike the segments defined in
the first representation l (Fig. 1). In next section, we focus on the
mean load prediction based on the Bayes Classifier [5,13,32] with
our elaborately designed features.

3. Mean load prediction based on Bayes model

The fundamental idea is to generate the posterior probability
from the prior probability distribution and the run-time evidence
of the recent load fluctuations, according to a Bayes Classifier. We
first describe howweconstruct the Bayesmodel and then intensely
discuss 10 key features designed.

3.1. Bayes classifier

The Bayes Classifier [5,13,32] is a classic supervised learning
classifier used in data mining [14]. Bayesian classification consists
of five main steps: (1) determine the set of target states (denoted
as the vector W = (ω1, ω2, . . . , ωm)T , where m is the number
of states), and the evidence vector with h mutually-independent
features (denoted as χ = (x1, x2, . . . , xh)T ); (2) compute the prior
probability distribution for the target states, P(ωi), based on the
samples; (3) compute the joint probability distribution p(χ |ωi) for
each stateωi; (4) compute the posterior probability based on some
evidence, according to Formula (3); (5)make the decision based on
a risk function λ(ωi, ω̇i), where ωi and ω̇i indicate the true value
Fig. 3. Illustration of evidence window and target load states.

and predicted value of the state, respectively.

P(ωi|xj) =
p(xj|ωi)P(ωi)

m
k=1

p(xj|ωk)P(ωk)

. (3)

Based on different risk functions, there are two main ways for
making decisions, namely Naïve Bayes Classifier (abbreviated as
N-BC) [32,13] and Minimized MSE (MMSE) based Bayes Classifier
(abbreviated as MMSE-BC) [5]. Their corresponding risk functions
are shown in Formula (4) and Formula (5) respectively.

λ(ω̇i,ωi) =


0 |ω̇i − ωi| < δ
1 |ω̇i − ωi| ≥ δ

(4)

λ(ω̇i,ωi) = (ω̇i − ωi)
2. (5)

According to the different risk functions, the predicted value
of the state (ωi) is determined by Formula (6) and Formula (7)
respectively. It is easy to prove that the former leads to theminimal
error rate and the latter results in the minimal MSE [5], where the
error rate is defined as the number of wrong decisions over the
total number of tries.ωi = argmax p(ωi|xj) (6)

ωi = E(ωi|xj) =

m
i=1

ωip(ωi|xj). (7)

Based on the above analysis, the target state vector and
the evidence feature vector are the most critical for accurate
prediction. In our design, we split the range of host load values
into small intervals, and each interval corresponds to a load level
(or load state). The number of intervals in the load range [0, 1]
is denoted by r , which is set to 50 in our experiment. So there
are 50 load states in total, [0, 0.02), [0.02, 0.04), . . . , [0.98, 1]. As
shown in Algorithm 1, the length of the evidence window is set
equal to half of the prediction interval length, which maximizes
accuracy, based on our experimental results. The whole evidence
window will also be split into a set of equally-size segments. If
the prediction interval length is 8 h, the evidence window length
will be set to the recent past 4 h. 48 (= 4×60

5 ) successive load
values (if the sample interval is 5 min) in this period will serve as
the fundamental evidence, based on which we can extract many
interesting features for the Bayes prediction. We use Fig. 3 to
illustrate the discretized evidence window and target load states.
In this example, the prediction interval length is assumed to be 4 h,
so the evidence window length is 2 h and there are 24 load values
in the evidence window. In next section, we will present how to
extract the features from the load values in the evidence window.

3.2. Features of load fluctuation

Through the analysis of Google’s one-month trace, we extract 9
candidate features to be used as the evidence in the Bayes model,
each of which can partially reflect recent load fluctuation. In this
section, we first present these features, and then discuss their
mutual correlation.
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We denote the load vector in the evidence window as e =

(e1, e2, . . . , ed)T , where d is the number of the samples in the
evidence window, also known as window size. The elements in the
vector are organized from the most recent one to the oldest one.
For example, e1 indicates the newest sample that is closest to the
current moment. We summarize the 10 features as follows.

• mean load (Fml(e)): the mean load is the mean value of the load
vector e, as shown in Eq. (8). Its value range is [0, 1] in principle,
andwe split such a range into r even fractions, each correspond-
ing to a load level (or type). For instance, r is set to 50 in our ex-
periment, so there are 50 levels (or types) to characterize the
recent mean load level, [0, 0.02), [0.02, 0.04), . . . , [0.98, 1].
For this feature, its valuemust be one of the 50 levels, construct-
ing partial evidence for the Bayes Classifier.

Fml(e) =
1
d

d
i=1

ei. (8)

• weighted mean load (Fwml(e)): weighted mean load refers to the
linear weighted mean value of the load vector e, as shown in
Eq. (9).

Fwml(e) =

d
i=1

(d − i + 1)ei

d
i=1

i

=
2

d(d + 1)

d
i=1

(d − i + 1)ei. (9)

Rather than the mean load feature, the weighted mean load
weights the recent load values more heavily than older ones.
Similar to the mean load feature, the value range of this feature
is also within [0, 1], which will also be split into 50 levels to
choose, serving as the partial evidence for the succeeding Bayes
prediction.

• fairness index (Ffi(e)): the fairness index [20] (a.k.a., Jain’s fair-
ness index) is used to characterize the degree of the load fluc-
tuation in the evidence window. The fairness index is defined
in Formula (10).

Ffi(e) =


d

i=1
ei

2

d
d

i=1
e2i

. (10)

Its value is normalized in [0, 1], and a higher value indicates
more stable load fluctuation. Its value is equal to 1 if and only if
all the load values are equal to each other. Since the target state
in our model is the mean load value of the future prediction in-
terval, the mean load feature seems more important than the
fairness index, which will also be confirmed in our experiment.
However, in some situations, e.g., when the load in prediction
interval changes similarly to the training period to a certain ex-
tent, fairness index could effectively improve the prediction ef-
fect, to be shown later.

• noise-decreased fairness index (Fndfi(e)): the noise-decreased
fairness index is also computed using the fairness index for-
mula. However, one or two load values that may signifi-
cantly degrade the whole fairness index, would be excluded
in the computation of fairness index. Via our experiment over
Google’s trace, we found that the degree of load fluctuation
can be split into 5 levels, whose fairness index values range
in [0, 0.4), [0.4, 0.65), [0.65, 0.9), [0.9, 0.97) and [0.97, 1] re-
spectively. In our implementation, if the original fairness index
changes across different rangeswhen removing one or two host
load values, the excluded load values would be deemed load
outliers, which will be considered noises.

• type state (Fts(e)): the type state feature is used to characterize
the load range in the evidence window and the degree of jitter.
Specifically, as aforementioned, there are r = 50 types split in
the load range. The type state feature is defined as a two-tuple,
denoted by {α, β}, where α and β refer to the number of types
involved and the number of state changes respectively.

• last load (Fll(e)): the last load is referred to as the most recent
load value in the evidence window e. Like the mean load fea-
ture, the value range of the last load is also in [0, 1], thus there
are r different levels for this feature, and r is set to 50 in our
experiment.

• first–last load (Ffll(e)): the first–last load feature is used to
roughly characterize the changing trend of the host load in the
recent past. It is also a two-tuple, denoted as {τ , ι}, indicating
the first load value and the last one recorded in the evidence
window. Obviously, this is just a rough feature which needs to
be combined with other features in practice.

• N-segment pattern (FN-sp(e)): we also characterize the segment
patterns based on the evidence window. The evidence win-
dow is evenly split into several segments, each of which is re-
flected by the mean load value. For example, if the window
size is 48, the 4-segment pattern is a four-tuple, whose ele-
ments are the means of the following load values respectively,
[e1, e12], [e13, e24], [e25, e36], and [e37, e48].

So far, we have presented 10 features to be used in the Bayes
model. (Note N-segment pattern can be deemed three features
with N = 2, 3, and 4 respectively.) Some of them, however,
are mutually correlated, which violates the condition of Bayes’
theorem that the features used in Formula (3) should be mutu-
ally independent. For example, the fairness index feature and the
noise-decreased fairness index feature could be closely correlated,
implying that they cannot be used meanwhile. We list the linear
correlation coefficients in Table 1. We observe that some correla-
tion coefficients (such as Ffi & Fndfi) can be as high as 0.99, while
those of the intuitively non-correlated features (such as Fts & Ffll)
are below 0.85 and even down to 0.15.We also observeN-segment
pattern features are always extremely correlated mutually.

Much research on the independence constraint of Bayes
Classifier [12,13,32] shows that the optimal situation might still
happen when a few features are correlated to a certain extent.
Hence, we set the compatibility of the features in Table 2, based
on the Formula (11), where Comp(Fx, Fy) and Corr(Fx, Fy) refer
to the compatibility and correlation coefficient of two features
respectively.

Comp(Fx(e), Fy(e)) =


Y Corr(Fx(e), Fy(e)) ≤ 0.84
N Corr(Fx(e), Fy(e)) ≥ 0.96. (11)

Two features are considered incompatible iff their correlation co-
efficients are greater than 0.96, and compatible iff their coefficients
are less than 0.84.

There are only 143 viable combinations of the features, based
on the following analysis in terms of the compatibility table. Since
there are 10 features (Fml, Fwml, Ffi, Fndfi, Fts, Fll, Ffll, F2-sp, F3-sp, F4-sp)
in total, the number of their combinations is at most 210. Yet,
many of the combinations are not viable according to the Table 2.
For instance, Fml and Fwml should not be used together. By
observing this table, all of 10 features can be classified into 5
groups, {Fml, Fwml, F2-sp, F3-sp, F4-sp}, {Ffi, Fndfi}, {Fts}, {Fll}, and {Ffll}.
The elements in the same group cannot be used meanwhile in
one combination. So, the numbers of compatible combinations
(denoted by NCC) for the five groups are 6, 3, 2, 2, and 2
respectively. Hence, the total number of compatible combinations
can be computed as follows.
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Table 1
Linear correlation of the features.

Fml Fwml Ffi Fndfi Fts Fll Ffll F2-sp F3-sp F4-sp

Fml 1 0.98 0.46 0.46 0.15 0.69 0.82 0.990 0.990 0.990
Fwml 0.98 1 0.45 0.45 0.15 0.75 0.81 0.967 0.968 0.968
Ffi 0.46 0.45 1 0.99 0.3 0.30 0.36 0.467 0.467 0.467
Fndfi 0.46 0.45 0.99 1 0.3 0.30 0.36 0.464 0.464 0.464
Fts 0.15 0.15 0.3 0.3 1 0.15 0.17 0.167 0.167 0.167
Fll 0.69 0.75 0.30 0.30 0.15 1 0.84 0.706 0.707 0.707
Ffll 0.82 0.81 0.36 0.36 0.17 0.84 1 0.830 0.831 0.831
F2-sp 0.99 0.97 0.46 0.46 0.17 0.71 0.83 1 0.999 0.999
F3-sp 0.99 0.97 0.46 0.46 0.17 0.71 0.83 0.999 1 0.999
F4-sp 0.99 0.97 0.46 0.46 0.17 0.71 0.83 0.999 0.999 1
Table 2
Compatibility of the features.

Fml Fwml Ffi Fndfi Fts Fll Ffll FN-sp

Fml N N Y Y Y Y Y N
Fwml N N Y Y Y Y Y N
Ffi Y Y N N Y Y Y Y
Fndfi Y Y N N Y Y Y Y
Fts Y Y Y Y N Y Y Y
Fll Y Y Y Y Y N Y Y
Ffll Y Y Y Y Y Y N Y
FN-sp N N Y Y Y Y Y N

NCC(10 features) = NCC(Group 1) · NCC(Group 2) · NCC
(Group 3)·NCC(Group 4)·NCC(Group 5) = 6×3×2×2×2 = 144.

By excluding the casewhere no feature is selected, there are 143
viable combinations of the features, all of which will be evaluated
in our experiment under the Bayes model.

4. Performance evaluation

4.1. Algorithms for comparison

In addition to our Bayes estimator, we also implemented
eight other load prediction methods. These baseline solutions are
extensively studied in the load prediction domain.
• Last-state based method (last-state): the last recorded load value

in the evidencewindowwill be used as the predictedmean load
for the future period.

• Simple moving average method (SMA): the mean load value of
the evidence window will serve as the prediction for the future
mean load.

• Linear weighted moving average method (Linear_WMA): the
linear weighted mean load (based on Formula (9)) will be
considered as the mean load prediction for the future.

• Second-order moving average method (Sec-Order_MA) [2]: the
second-order moving average (denoted as M(2)

t , where t refers
to the current time point) is defined in Formula (12), where
N =

d
2 and d means evidence window length.

M(2)
t =

N
t=0

M(1)
t , where M(1)

t =

N
i=1

et+i

N
. (12)

If the future host load follows a linear trend with the evidence
window, the load state at future time point t + T (denoted as
X(t + T )) could be estimated by Formula (13).

X(t + T ) = at + bt · T ,

where

at = 2M(1)
t − M(2)

t

bt =
2

N − 1
(M(1)

t − M(2)
t ).

(13)

In the experiment, we use X(t + 1) and X(t +
s
2 ) to be the

predicted state value of the future s-step length. In the following
text, the corresponding two prediction results are denoted as
‘‘secOrder-MA-1’’ and ‘‘secOrder-MA-s/2’’ respectively.

• Exponential Moving Average method (EMA): this predicted value
(denoted S(t) at time t) is calculated based on the Formula (14),
where e1 is the last load value and α is tuned empirically to
optimize accuracy.

S(t) = α · e1 + (1 − α) · S(t − 1). (14)

• Prior probability based method (PriorPr): this method uses the
load value with highest prior probability as the prediction for
the future mean load, regardless of the evidence window.

• Auto-regression method (AR): the classic AR method is per-
formed according to the Formula (15), where X(t), p and εt re-
fer to the predicted value, the order and the white noise at time
point t respectively.

X(t) =

p
i=1

ϕiei + εt . (15)

In general, the AR method can only predict the load value for
the next moment, while previous works [36,35] extended it
to the long-term point prediction by applying the AR method
recursively on the predicted values. Based on our prediction
model, the mean value of the AR-based predicted values at
different time points in the prediction interval will serve as the
prediction value.

• Hybridmodel proposed in [36] (HModel): thismethod integrates
the Kalman filter [21] and Savitzky–Golay smoothing filter [25]
with auto-regression. There are four steps in the load predic-
tion: (1) use the Kalman filter to eliminate noise in the evidence
window; (2) smoothen the curve by using a Savitzky–Golay fil-
ter; (3) compute the AR coefficients and predict the usage val-
ues for future time points, by recursively calling the ARmethod;
(4) smoothen the AR-predicted values by a Savitzky–Golay fil-
ter and estimate the confidencewindow. In our experiment, we
also calculate the mean load of the predicted values as the pre-
diction result.

We optimize the coefficients for the baseline algorithms in
Table 3.

4.2. Method of training and evaluation

Each evaluation involves two duration, a training period and
a test period. The training period is used to fit the models, for
instance, for computing the prior probability (P(ωi) in Formula
(3)) and the conditional probability (p(xj|ωk) in Formula (3)) and
estimating auto-regressive coefficients and noise covariance for
the auto-regression method and HModel. The test period is used
to validate the prediction effect of different methods.

For the baseline algorithms, the length of the evidence interval
(or the evidence window length) is always set to the half of the
prediction interval length. This is becausewe found empirically via
the Google trace that this maximizes the prediction accuracy for
the baseline algorithms.
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Table 3
Optimized parameters for the baseline methods.

Key parameters Values

EMA α 0.95

AR Order of AR 7

Hybrid model

Order of AR 4
Degree of SGFilter 4
Covariance of Kalman Filter’s process-noise (Q ) 0.00001
Covariance of Kalman Filter’s measurement noise 0.0282
The experiments can be categorized into three situations. They
differ based on whether there are sufficient number of load
samples in the training period. In the first situation (referred to
as evaluation type A), we set the training period to be [day 1, day
25] and test period to be [day 26, day 29]. We found that the
distribution of features of host load in the training period are likely
different from those in the test period, which is due to the lack of
enough training data.

In the second situation (referred to as evaluation type B), we
emulate the scenario where we have enough training data to
observe the repeated load fluctuations. In this case, the distribution
of features between the training and test periods are more similar.
The training period is changed to be [day 1, day 29] accordingly.
Note that the load forecasting is still performed based on the
posterior probability calculated by the Bayes predictor.

In the third situation (referred to as evaluation type C), we
emulate the case with a large number of samples in the training
period. In particular, we characterize the probability distribution of
task arrival rate, task execution length and task usage on different
resources. Then, we emulate the task schedule/execution events
by randomly reproducing the tasks for each host based on the
corresponding probability distributions. We finally compute the
hostload series for each host over one year. We find the emulated
one-year hostload exhibits with fairly similar features to the
hostload computed based on the original one-month Google-trace.
The training period is set to [day 1, day 330], while the test period
is [day 331, day 360].

4.3. Metrics for accuracy

In terms of evaluating prediction accuracy, we use twometrics.
We desire to minimize the mean squared error (MSE) between the
predicted load values and the true values in the prediction interval.
We denote the true mean values in the segments by L1, L2, . . . , Ln.
Then, the value of MSE can be calculated with Formula (16), where
s1 = b, si = b · 2i−2

∀ i ≥ 2, s =
n

i=1 si, and n is the total number
of the segments in the prediction interval.

mse(s) =
1
s

n
i=1

si(li − Li)2. (16)

Second, we measure the success rate, which is defined as the
ratio of the number of accurate predictions to the total number of
predictions. A prediction is deemed accurate if it falls within some
delta of the real value. We use a delta of 10%. In general, the higher
the success rate, the better, and the lower the MSE.

4.4. Experimental results

We evaluate the mean load prediction before evaluating the
pattern prediction, because the latter can be derived from the
former.

4.4.1. Evaluation of mean host load prediction
A. Experiments with evaluation type A.

For evaluation type A, we first compare the prediction ef-
fects when using different risk functions (either Formula (4)
or Formula (5)) and traversing all compatible combinations
of the evidence features, under our designed Bayes Classifier
model. Based on our previous analysis, there are 143 compat-
ible combinations of our designed features. We denote them
via the binary numerical system according to the following or-
der, {Fml, Fwml, Ffi, Fndfi, Fts, Fll, Ffll, F2-sp, F3-sp, F4-sp}. For example,
1000000000 denotes the single feature Fml, and 1010101000 in-
dicates the combination of the four features Fml, Ffi, Fts, and Ffll. Due
to the heavy computation in traversing all 143 combinations, we
sampled 2000 hosts in Google’s trace. In this test, we discretize the
host loads using two-minute sample intervals.

We select top 5 and bottom 5 combinations based on the
success rate and MSE. In Fig. 4, we present the range of the
evaluation results via rectangles, where the bottom-edge, middle
black line, and upper-edge refer to the minimum, mean, and
maximum values respectively. The top 5 (bottom 5) combinations
are selected, with either the 5 highest (5 lowest) success rates or 5
lowest (5 highest) MSEs respectively.

In Fig. 4, we can see that the best feature combination is
always 1000000000, while the worst one is always 0000100000,
regardless of the prediction interval length. We can also observe
that the N-segment pattern feature (N = 2, 3, or 4) is neither
in the top five nor bottom five. In addition, since most of the top
five and bottom five feature combinations almost always contain
the feature Fml and fts respectively, we can conclude Fml plays the
greatest positive effectwhile Fts plays themost significant negative
effect.

Moreover, it is also observed that the prediction of MMSE-BC
is always more accurate (with higher success rate or lower MSE)
than that of N-BC. This can be explained as follows: MMSE-BC
adopts the mathematically expected value of the predicted load,
which has the highest probability of being located in the real load
level. In contrast, N-BC selects the level with the highest posterior
probability as the prediction result, which may be significantly
skewed from the expected value. From the above analysis, we
can conclude the best strategy under the Bayes Classifier is using
MMSE-BC with the single feature Fml.

We comprehensively compare MMSE-BC to other prediction
methods, with respect to the success rate andMSE respectively, by
using 11 K hosts in the Google trace. Fig. 5 shows the cumulative
distribution function (CDF) of the success rate andMSE for different
prediction methods. It is clear that MMSE-BC’s prediction effect on
the CPU-load is better than all the other approaches. Specifically,
its advantage becomes more prominent with the increase of
prediction length (see Fig. 5(a), (c) or (b), (d)). Our statistics show
that the MMSE-BC’s success rate is higher than that of the second
best solution (Linear-WMA) by 5.6% and 7.8% in the mean load
prediction with 6.4 h-ahead and 12.8 h-ahead length respectively,
and also higher than other approaches by up to 50%.

The reason why Bayesian prediction outperforms other meth-
ods is its features, which capture more complex dynamics (such as
trends, predictability, and expectation). Last-State performs poorly
because of irregular fluctuations in load. Prior-Probability per-
forms poorly because the distribution of load values is roughly uni-
form, and there is no load value that is superior to others. While
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(a) Success rate (6.4 h). (b) MSE (6.4 h).

(c) Success rate (12.8 h). (d) MSE (12.8 h).

Fig. 4. Success rate & MSE of Bayes classifier with different prediction length s.
moving averages performwell in general, they cannot capture fea-
tures to adapt to loaddynamics. For example, second-ordermoving
average method assumes future load changes with a linear trend,
while the true loadmay not change like that. The prediction effects
of AR and HModel are far worse than other moving average strate-
gies (e.g., SMA and Linear-WMA), because they both use recursive
AR steps thatmay cause cumulative prediction errors. Experiments
showaworse effect underHModel that uses filtering, since it filters
useful information about load dynamics.

We compare the CDFs of Prediction Methods w.r.t. memory
host load in Fig. 6. Since the memory load does not fluctuate as
drastically as CPU, the MMSE-BC and all moving average solutions
workwell, with the average success rate up to 93% and the average
MSE down to 0.004 respectively. However, AR and HModel still
suffer with a low success rate and highMSE in predicting themean
memory load of long-term intervals.

So far, we have evaluated our Bayes Classifier based on the
evaluation type A. We conclude that the MMSE-BC with the single
feature Fml performs the best among all of strategies, for the
evaluation type A.
B. Experiments with evaluation type B.

We evaluate the solutions based on evaluation type B, where
the load fluctuation in the test period is similar to that of training
period to a certain extent. The discretized interval of the host loads
is set to 5 min and the prediction length is set to 8 h and 16 h
respectively.

We traverse all 143 combinations and observe that the best
feature combination is {Fml, Ffi, Fts, Ffll} instead of the single feature
Fml. The results about the probability density function (PDF) of
success rate and MSE can be found in our previous work [10].
Experiments show that the MMSE-BC under the four features
(abbreviated as MMSE-BC(4F)) is surprisingly good. Its mean
success rate is up to 0.975 and the average MSE is about 0.0014,
significantly outperforming Linear-WMA or the MMSE-BC based
on the single feature Fml, whose values are about 0.68 and 0.017
respectively.

The different prediction results between MMSE-BC(4F) and
MMSE-BC(Fml) across the two evaluation types ismainly due to the
different sets of samples. The host load in one is dissimilar to that
in the test period, while the other one has the similar distribution.
With more historical trace data, the test period should be more
consistent with the training period, which can be confirmed in the
evaluate type C.
C. Experiments with evaluation type C.

In the above text, we compare the prediction effects under
different mean hostload prediction methods, based on the original
trace with insufficient load samples or the ideal case with
hypothetically sufficient load samples in the training period. In
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(a) Success rate (s = 6.4 h). (b) MSE (s = 6.4 h).

(c) Success rate (s = 12.8 h). (d) MSE (s = 12.8 h).

Fig. 5. CDF of prediction (CPU load with evaluation type A).
(a) Success rate (s = 6.4 h). (b) MSE (s = 6.4 h).

Fig. 6. CDF of prediction (memory load with evaluation type A).
this part, we evaluate the mean hostload prediction effect, in the
situation with a relatively large amount of load samples given in a
11-month training period.

We emulate one-year hostload series for 11 k hosts, based
on various probability distributions about task events and usage
reported in the original one-month Google trace. On each host,
thousands of tasks are reproduced based on the probability
distributions characterized, with respect to task arrival rate, task
execution length and task resource utilization.

Specifically, we find that the cumulative distribution function
(CDF) of task arrival interval on each host matches the exponen-
tial distribution mostly among well-known distributions, which
means the task arrival rate follows a Poisson-similar process.
Fig. 7(a) and (b) shows the distribution of task arrival interval and
task execution length respectively. In Fig. 7(a), we also present the
maximum likelihood based distribution curves based on different
distribution functions. Fig. 7(b) shows themass and count disparity
of task length. It is observed that the task length follows a Pareto-
similar distribution, where majority of tasks are of short execu-
tion length. Specifically, 94% of the tasks only account for 6% of the
summed execution length and 6% of the tasks account for 94% of
the execution length.

In our one-year hostload emulation, there are two steps to
reproduce a Google task. (1) task arrival emulation: we list all of
task arrival intervals for each host based on the one-month trace
and randomlymake selections over time. (2) task usage emulation:
we extract the usage trace for each task in the one-month Google
trace, and randomly select one task upon a task arrival. Such a one-
year hostload emulation for the 10 k+machines is fairly close to the
real situation, with respect to the mean hostload value, variance of
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(a) Task arrival interval. (b) Task length.

Fig. 7. Distribution of task properties.
(a) Mean value. (b) Variance.

(c) Noise. (d) ACF.

Fig. 8. CDF of hostload measurements (original trace vs. emulation).
hostload, noise and auto-correlation function (ACF) of the hostload
series. We present the evaluation of the emulated hostload vs. the
real hostload in Fig. 8.

We evaluate all the prediction methods with the one-year
hostload series. We set the training period and test period to
the first 11 months and the last month respectively. We still
set the evidence window length to the half of prediction length,
since this results in the best prediction effect as observed. We
not only investigate the best-fit feature combination under Bayes
Model, but also compare our Bayes method to other well-known
prediction methods.

C.1. Investigation of best-fit feature combination.
We evaluated the compatible combination of 10 features,

Fml, Fwml, Ffi, Fndfi, Fts, Ffll, Fll, Fll2, Fll4, and Fll8. The first 7 features
refer to mean load, weighted mean load, fairness index, noise-
decreased fairness index, type state, first-last load (a.k.a., both-
ends), and last-load respectively. Fll2 (Fll4, Fll8) computes the mean
of the last two (four, eight) hostload values in the evidencewindow
as one feature. For the simplicity of representation, we denote
the 10 features as m, w, f , n, t, b, l1, l2, l4, and l8 respectively.
Fig. 9 presents the prediction accuracies based on different feature
combinations under the BayesModel, using the emulated one-year
hostload series. Through Fig. 9(b), it is observed that the best-fit
feature combination is BC-mfl1 = {Fml, Ffi, Fll}. It is far better than
the two feature combinations ({Fml} and {Fml, Ffi, Fts, Ffll})—the best
choices in evaluation type A and B.
C.2. Comparison of Bayes method to other methods.

We compare the prediction effect of the Bayes method to those
of other well-known prediction methods, as shown in Fig. 10 (ev-
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(a) Success rate = [0, 1]. (b) Success rate = [0.63, 0.73].

Fig. 9. Mean load prediction effect under Bayes model.
(a) Success rate. (b) MSE.

Fig. 10. Mean load prediction effect (Bayes model vs. others).
idence window length = 1.6 h, prediction length s = 3.2 h). We
evaluate all of the methods with the emulated one-year host load
over 11 k hosts and characterize the distribution of success rate
and MSE. It is observed that for the 11 k hosts, the success rate of
Bayesmethod (with the combination of three features {Fml, Ffi, Fll})
is better than that of the second one (Linear-WMA) by 4.13% on av-
erage. By comparing to Fig. 5(a) (average success rate = 1.5%),
we confirm that the prediction effect can be improved a lot by
leveraging multiple features on longer training period with more
samples. In addition, the lowest success rates under Bayesmethod,
Linear-WMA, SMA, lastLoad, expSmooth-WMA, and secOrder_MA-
1 are 50.91%, 45.97%, 44.91%, 33.6%, 35.14%, and 37.35% respec-
tively. This means Bayes method gets at least 50.91%

45.97% − 1 = 10.8%
improvement compared to other approaches, at the worst case.

4.4.2. Evaluation of pattern prediction effect
Finally, we evaluate the prediction effect of our pattern

prediction model (Algorithm 1), by performing the pattern predic-
tion every 2 min over Google’s trace. The total number of pattern
prediction events in the test period (day 26–day 29) is about
11 000×

4×86400
120 ≈ 31.7million. We first evaluate the overall pre-

diction errors and present the snapshot of prediction effect with
Bayes method. And then, we further evaluate the precision in pre-
dicting idle/busy hosts for the purpose of load balancing.
A. Overall prediction errors and snapshots.

The mean prediction error is computed by Formula (17), where
the notations are defined as the same as in Formula (16). Based on
our experiments, the mean errors on majority of machines can be
limited under 2× 10−5. The MSE of MMSE-BC(Fml) is near to 10−5,
and MMSE-BC(4F)’s is about 10−6 with high probability. That is,
Bayes Classifier outperforms other methods on pattern prediction,
in that other methods suffer from remarkable errors. More details
can be found in our previous work [10].

e(s) =
1
s

n
i=1

si |li − Li| . (17)

We also illustrate the pattern prediction of Algorithm 1, based
on the Bayes method with the single feature Fml. The experiment
is performed using evaluation type A, with two hosts that have
different levels of load fluctuation. In Fig. 11, we show that the
predicted segment load matches on average the true load. In
particular, the dark blue, jittery line represents the true host load.
The y-value of each horizontal line represents the predicted load
value over some segment. The duration of this segment is given by
the horizontal segment length. The segment color gives the order
of magnitude of the MSE. For clarity, we randomly chose a subset
of segments to illustrate in the figure, based on different orders of
magnitude (OM) of theMSE. Note that the horizontal line segments
shown do not indicate the mean load predictions, but the ones
derived from Formula (1) (i.e., li shown in Fig. 1). We observe that
the line segments (black or red lines) with MSE of about 10−5 or
lower are quite close to the real fluctuation of the host load (the
dark blue curve).
B. Prediction precision in context of load balancing.

We evaluate different predictionmethods in the context of load
balancing scenario. Load balancing is widely used for improving
the resource usage in distributed systems, and precisely finding
a set of idle or busy hosts based on a threshold is a preliminary
condition for efficient load balancing. We perform the node
searching every twominutes in the one-month experiment, aiming
to find 1 k idlest hosts and 1 k busiest hosts from among the totally
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(a) Load with wide amplitude. (b) Load with narrow amplitude.

Fig. 11. Snapshot of pattern prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Find 10% idle hosts (CPU). (b) Find 10% busy hosts (CPU).

(c) Find 10% idle hosts (MEM). (d) Find 10% busy hosts (MEM).

Fig. 12. CDF of prediction in the context of load balancing.
10 k hosts, with respect to CPU and memory usage respectively.
The prediction period is always set as the future segment interval
[96 min, 192 min] compared to the current moment. We present
the precision in finding the 10% of idlest/busiest hosts in Fig. 12. It
is clearly observed that the best solution is our Bayes method with
the three features {Fml, Ffi, Fll}. In particular, the average precisions
of Bayes method in predicting 10% idlest hosts with respect to
CPU and memory usage, are higher than those of the linear-WMA
method by 7.8% and 6.4% respectively.

5. Related work

At present, most of work on workload characterization and
prediction for Cloud systems mainly focus on tasks’ placement
constraints [28], tasks’ usage shapes [37] or task workload pre-
diction [17]. Sharma et al. [28] carefully studied the performance
impact of task placement constraints based on the resource utiliza-
tion from the viewof tasks,while Zhang et al. [37] designed amodel
that can accurately characterize the task usage shapes in Google’s
compute clusters. Barnes et al. [4] introduced a regression-based
approach for predicting the parallel application’s workload, and
the prediction errors are between 6.2% and 17.3%. Ganapathi
et al. [17] adopted a statistical model, namely Kernel Canonical
Correlation Analysis (KCCA), to model and predict the workload
for map-reduce jobs [8] based on Hadoop Distributed File System
(HDFS) [29]. Li et al. [23] proposed a CloudProphet framework to
predict the application performance, in terms of the trace gener-
ated by a prototype. Jackson et al. [19] provided a performance
analysis of HPC applications on the AmazonWeb Service platform.

Although there exist some host load prediction methods pro-
posed [6,7,1,11,38,34,31,36,35], most are designed for traditional
distributed systems such as Grid platforms. Carrington et al. [6], for
example, predict the load values based on convolution that maps a
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scientific application’s signature (a set of fundamental operations)
onto a machine profile. Dabrowski et al. [7] perform the host load
prediction by leveraging the Markov model via a simulated envi-
ronment. Akioka, et al. [1] combine theMarkovmodel and seasonal
variance analysis to predict the host load values only for the next
moment (next discretized time point) on a computational Grid.
There also exist some regression based methods (such as polyno-
mial fitting [38] or auto-regression [11]) in the Grid host load pre-
diction work.

Cloud host load observed via Google’s trace has more drastic
fluctuation and higher noise than that in Grid systems [9].
Based on our experiments, the improved AR method that is
recursively performed on predicted values for long-term mean
load prediction suffers quite low prediction accuracy, due to
the accumulated prediction errors. The HModel [36] also suffers
significant prediction errors, since it not only relies heavily on the
load values recursively predicted by AR method but filters noises
by filtering methods. Hence, it is necessary to revisit Cloud host
load prediction such as Google’s.

Some load predictionmethods are proposed for adapting Cloud
systems. Khan et al. [22] proposed a model to capture the CPU
workload auto-correlation within and across data centers, also
by leveraging Hidden Markov Model (HMM). The effectiveness of
their method, however, strongly relies on the assumption that
the host loads are predictable such that the time series must
follow some repeatable patterns. Moreover, their method is fairly
complex and time-consuming, because it needs to iteratively
analyze the (auto)correlation within and across multiple time
series. Saripalli et al. [27] adopted a cubic spline Interpolation to
predict the load trend and used a hotspot detection algorithm for
sudden spikes. As confirmed in their experiment, such a method
can only predict short-term future host load with a reasonable
accuracy. This is due to the fact that the Cloud host load usually
fluctuates with large noises and variable patterns, such that no
fixed linear models like curve-fitting [15] or auto-regression could
always fit it well. Prevost et al. [26] aimed to predict the number of
requests for NASA data centers, mainly by auto-regressive filter,
which cannot fit long-term Google host load prediction due to
significantly larger noises based on our experiments.

In this paper, we propose a more flexible and effective
host load prediction in Cloud data centers. In order to predict
the fluctuation patterns for the long-term future period, we
comprehensively studied 10 features extracted from a moving
evidence window under Bayes model, and explored the best-fit
choices for different cases. We address 3 advantages about the
Bayes method: (1) through probability theory, Bayes method can
retain important information like noise, rather than filtering them,
such that the predicted states can be consistent with the true
noisy load values; (2) Bayes method is pretty flexible, because it
is not limited to any linear model [38,11,15] or load fluctuation
pattern [22,7,1] and the features can be combined based on
different cases and user demands; (3) Bayes method suffers quite
low computation complexity (and small disk space size) as it just
needs to compute (and keep) a set of probability values related
to load fluctuation features. Through Google trace, the Bayes
method significantly outperforms other methods (including auto-
regression, moving average, noise-filtering) from the perspective
of success rate and mean squared error (MSE).

6. Conclusion and future work

We design a Cloud load prediction method, and evaluate
it using Google’s one-month trace and one-year host loads
emulated based on consistent probability. Our objective is to
predict the load fluctuation patterns for long-term prediction
intervals. We first reduce the pattern prediction to a set of mean
load predictions, each starting from the current time and being
with different prediction lengths. Then, we design a mean load
prediction approach by leveraging Bayesmodelwith 10 interesting
features. We explore the best-fit combinations of the features
with different sufficient levels of samples. To the best of our
knowledge, this is the first attempt to make use of the Bayes
model to predict the host load, especially for the long prediction
length in Cloud data centers. With Google’s large-scale trace, our
designed Bayes method outperforms other solutions by 5.6%–50%
in the long-term prediction. With insufficient samples, the best-
fit feature combination is the one with the single mean load
features.Withmore samples, more features selected appropriately
(e.g., {Fml, Ffi, and Fll} and {Fml, Ffi, Fts, and Ffll}) can prominently
improve the prediction accuracy. Such an improvement is
regardless of how drastic the host load fluctuates. The MSE of
predicting the load fluctuation patterns for the long-term interval
is usually low within the range [10−8, 10−5

]. Through a load
balancing scenario, we confirm the pattern prediction’s precision
in finding a set of idlest/busiest hosts from among totally 10 k hosts
can be improved by about 7% on average.
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