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Abstract Maximal flows reach at least a 1/2 approximation of the maximum flow in
client-server networks. By adding 1 additional time round to any distributed maximal
flow algorithm we show how this 1/2-approximation can be improved on bounded-
degree networks. We call these modified maximal flows ‘locally fair’ since there
is a measure of fairness prescribed to each client and server in the network. Let
N = (U,V,E,b) represent a client-server network with clients U , servers V , net-
work links E, and node capacities b, where we assume that each capacity is at
least one unit. Let d(u) denote the b-weighted degree of any node u ∈ U ∪ V ,
Δ = max{d(u)|u ∈ U} and δ = min{d(v)|v ∈ V }. We show that a locally-fair maxi-

mal flow f achieves an approximation to the maximum flow of min{1, Δ2−δ

2Δ2−δΔ−Δ
},

and this result is sharp for any given integers δ and Δ. This results are of practical
importance since local-fairness loosely models the steady-state behavior of TCP/IP
and these types of degree-bounds often occur naturally (or are easy to enforce) in real
client-server systems.

Keywords Distributed flow algorithms · Oblivious routing · Network algorithms ·
Maximal flow

1 Introduction

Using a maximal flow to approximate the maximum flow is attractive for client-server
networks since (i) it can be computed without global information, (ii) it can be com-
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puted quickly, and (iii) it reaches a 1/2-approximation of the maximum through-
put. For example, maximal flows are the basis for the ‘Restricted Adversary’ routing
(Awerbuch et al. 2005) and the ‘Aggressive Increase’ routing algorithm (Annexstein
et al. 2007)—both of which are locally-adaptive algorithms that reach constant-
competitiveness in O(log(Δ)) distributed time rounds where Δ is the maximum
client degree in the network. Other examples of distributed maximal flow algorithms
include the ‘BipartiteMatch’ and ‘LowDegreeMatch’ distributed algorithms (Hanck-
owiak et al. 1998) which compute a maximal flow on n-node client-server networks
in polylog(n) and O(Δ) time rounds, respectively.

In general, a maximal flow on an arbitrary client-server network cannot do better
than a 1/2-approximation of the maximum flow. However, maximal flows generally
outperform this approximation in practice. For example, it was shown (Annexstein et
al. 2007) that the aforementioned ‘Restricted Adversary’ and ‘Aggressive Increase’
distributed maximal-flow algorithms reach better than 75% and 90%, respectively, of
the optimal throughput on a variety of bipartite graphs (Cherkassky et al. 1998). On
the other hand, there exist extremal graphs for which these algorithms can only attain
the 1/2 lower bound of maximal flows. The question is, under what set of conditions
does a maximal flow perform well?

In this paper, we show that we can do much better than a 1/2-approximation if the
network satisfies certain degree conditions and the maximal flow f is locally-fair.
More precisely, let N = (G = (U ∪ V,E), b) be a client-server network, where G is
a bipartite graph with node set U ∪ V and edge set E representing the topology of
the network, i.e., uv ∈ E if and only if a communication link has been established
between client u and server v, and b is a capacity weighting of the nodes U ∪ V .
(For a client u, b(u) represents the demand of client u.) A flow f is a weighting
of E with nonnegative real numbers such that, for each x ∈ U ∪ V , f (x) ≤ b(x),
where f (x) = ∑

xy∈E f (xy). The size of a flow f , which we denote by size(f ), is
the total flow over all the edges, i.e., size(f ) = ∑

e∈E f (e). A maximum flow is one
that maximizes size(f ). A maximal flow is one such that for each uv ∈ E, either
client u or server v is saturated, where a node x ∈ U ∪ V is saturated with respect
to f , if f (x) = b(x).

1.1 Locally-fair flows

First consider the case where each client sends at most one unit of flow, i.e.,
b(u) = 1, u ∈ U . In this case, if a server were to reserve an equal portion of its capac-
ity for each neighborhood client u, then u would receive its “fair” share of the server’s
capacity equal to b(v)/d(v), where d(v) is the degree of v. We consider flows f that
are “client locally fair” in the sense that, either client u is saturated (is fully satisfied),
or u sends a flow to each neighborhood server v, which is at least as great as its fair
share of v’s capacity (i.e., at least b(v)/d(v)). This definition extends to the gen-
eral case, where clients may have non-unit capacities, except that fair share becomes
b(u)b(v)/d(v), where d(v) becomes the b-weighted degree db(v). For x ∈ U ∪ V ,
the b-weighted degree of x is the total capacity over all nodes in the neighborhood
of x, i.e., db(x) = ∑

xy∈E b(y). For convenience, in the remainder of this paper we
will denote db(x) simply by d(x).
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In this paper we consider flows, which we call “locally-fair”, that are not only
locally fair to the clients as described above, but satisfy the additional condition that,
if a client u is saturated and does not send its fair share of v’s capacity to server v,
then v receives at least its fair share of u’s demand (i.e., at least b(u)b(v)/d(u)).

Definition 1 A flow f is locally-fair if, for each edge uv ∈ E, f (uv) ≥ min{ b(u)b(v)
d(u)

,
b(u)b(v)

d(v)
} and if the client u is unsaturated, f (uv) ≥ b(u)b(v)

d(v)
.

The following proposition shows that locally-fair flows always exist.

Proposition 1 Let N = (G = (U ∪ V,E), b) be a client-server network. Then, there
always exists a locally-fair flow f .

Proof Let μ be the edge-weighting given by μ(uv) = min(
b(u)b(v)

d(u)
,

b(u)b(v)
d(v)

). Clearly,
μ satisfies the capacity constraints on the nodes, i.e., is a flow in the network. For any
client that is not saturated, i.e. a client u for which

∑
uv∈E μ(uv) < b(u), increase

the weight on each of its outgoing edges uv up to b(u)b(v)/d(v) (or less) until the
client is saturated or until all edges have been exhausted. The resulting flow f is
locally-fair. �

Based on the proof of Proposition 1 a locally-fair flow can be computed in an
distributed setting using only a few communication steps.

Locally-fair flow (LFF) algorithm

Input: Distributed client-server network N = (G = (U ∪ V,E), b)

Output: Distributed locally-fair flow f in N

1. for each server v ∈ V do in parallel
server v sends the values b(v) and d(v) to each client u in
its neighborhood

2. for each client u ∈ U do in parallel
client u assigns initial flow values min{b(u)b(v)/d(u), b(u)b(v)/d(v)}
for each edge uv

while client u not saturated
client increases flow values on each edge uv up to the
value b(u)b(v)/d(v)

Note that any extension of f is necessarily locally-fair. Using more rounds, the
initial flow generated by algorithm LFF can be extended to a locally-fair maximal
flow by computing a maximal flow g using any distributed maximal flow algorithm
(Annexstein et al. 2007; Hanckowiak et al. 1998) with respect to the residual capaci-
ties (where the residual capacity of node x ∈ U ∪V is b(x)−f (x)) and increasing the
flow on edge e by g(e). On an n-node client-server network, these distributed maxi-
mal flow algorithms are O(Δ) and O(polylog(n)), respectively. We can also obtain a
locally-fair maximal flow by repeatedly calling LFF with residual capacities.
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Locally-fair maximal flow (LFMF) algorithm

Input: Distributed client-server network N = (G = (U ∪ V,E), b)

Output: Distributed locally-fair maximal flow f in N

1. call LFF to obtain a distributed flow f

2. while there exist an edge uv where both u and v are unsaturated
call LFF with capacity b(x) replaced with residual capacity
r(x) = b(x) − f (x),

x ∈ U ∪ V , to obtain a distributed flow fr and add this flow to f

After the first round each client u sends a flow of f (uv) to each neighborhood
server v and increases this flow by fr(uv) after each subsequent round. Algorithm
LFMF is actually a special case of an aggressive increase algorithm as described in
Annexstein et al. (2007), under the slightly more general condition that clients may
have non-unit capacities, and with the additional demand that f (uv) ≥ μ(uv) for all
uv ∈ E. Algorithm LFMF performs at most ΔV rounds where ΔV denotes the max-
imum (un-weighted) degree of a server. To see this observe that the flow f output
by LFF has the property that each server s is either saturated, or at least one neigh-
borhood client of s is saturated. This follows from the fact that unsaturated clients
send their fair-share to s and therefore s would be saturated by f if all neighborhood
clients were unsaturated.

The following proposition shows that Algorithm LFMF is very close to maximal
after O(logΔU) rounds, where ΔU denotes the maximum (un-weighted) degree of a
client.

Proposition 2 After performing 2 log2(ΔU/ε) + 4 rounds the flow f generated
by algorithm LFMF is a 1

1+ε
-approximation to a locally-fair maximal flow, i.e.,

size(f ) = ( 1
1+ε

)size(g) for some locally-fair maximal flow g.

The proof is given in Appendix.
In this paper we consider the following natural degree constraints, which are prac-

tical in a distributed setting and enforceable without global communication, for which
algorithm LFMF achieves much better than a 1/2-approximation.

(Δ, δ) Dual-Bounded Network A network such that every client has b-weighted de-
gree at most Δ and every server has b-weighted degree at least δ.

Our main result is the following theorem.

Theorem 1 Let N = (G = (U ∪V,E), b) be a (Δ, δ)-dual-bounded network, where
b(x) ≥ 1 for all x ∈ U ∪ V , and let f be any locally-fair maximal flow. If δ ≥ Δ then
f is a maximum flow; otherwise, f achieves an approximation to a maximum flow of

at least Δ2−δ

2Δ2−δΔ−Δ
. Further, this result is sharp for any given integers δ and Δ.



430 J Comb Optim (2011) 22:426–437

Given a fraction p, it immediately follows from Theorem 1 that a p-approximation
is achieved if

δ ≥ Δ2(2p − 1) − Δp

Δp − 1

For example, suppose Δ = 10. Then a .9-approximation is achieved if δ ≥ 8.875.

2 Related work on tight bounds for maximal flows

As far as we know, Theorem 1 is the first tight bound on maximal flows besides the
aforementioned 1/2-bound. There is work (Cardinal et al. 2005) which is similar in
spirit in that a bound is given for the approximation that a maximal flow yields for
the vertex covering problem.

Similar to our work is that of Czygrinow et al. (2004) which presented an al-
gorithm for extending a maximal matching to achieve a 2/3-approximation to the
maximum matching. In this work, the authors used the method of removing short
augmenting paths in order to improve the matching size. However, instead of requir-
ing 1 additional round of distributed computation the algorithm in that work required
an additional polylog(n) additional time rounds where n is the number of nodes in
the graph.

3 Dual bounds

In this section, we prove Theorem 1 which relates the size of a locally-fair flow to the
maximum flow in terms of the dual-bounds Δ and δ.

First, we provide the following lemma which guarantees that every server v ∈ N

receives at least b(v)min(1, δ/Δ) flow.

Lemma 1 In a locally-fair flow every server v ∈ V receives flow at least
min{ δ

Δ
b(v), b(v)}.

Proof Pick any server v. If d(v) ≥ Δ then each incoming edge uv carries flow of
b(u)b(v)/d(v) and the total incoming flow to v is b(v) and the server is saturated.
Otherwise, each incoming edge uv carries flow at least b(u)b(v)/Δ which sum to at
least b(v)min(1, δ/Δ). �

Corollary 1 In a network N , if δ ≥ Δ, then a locally-fair flow is maximum and has
size equal to the total capacity of the servers, s.

The corollary follows immediately from Lemma 1.
Now we will prove Theorem 1 which is repeated here:

Claim 1 Let N = (G = (U ∪ V,E), b) be a (Δ, δ)-dual-bounded network, where
b(x) ≥ 1 for all x ∈ U ∪ V , and let f be any locally-fair maximal flow. If δ ≥ Δ then
f is a maximum flow; otherwise, f achieves an approximation to the maximum flow

of at least Δ2−δ

2Δ2−δΔ−Δ
. Further, this result is sharp for any given integers δ and Δ.
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Proof Let f be any locally-fair maximal flow having size φ = ∑
e∈E f (e). If δ ≥ Δ,

then by Corollary 1, f is a maximum flow. Therefore, we can assume that δ < Δ in
the rest of the proof.

We will prove the theorem by lower-bounding the flow of first the servers and then
the clients. First, the flow of the servers is examined. For convenience, we partition
the clients U and servers V into the following sets:

– W the unsaturated clients
– X the saturated clients (also the client-complement of W )
– Y the neighborhood of W , i.e. N(W)

– Z the server-complement of Y

For any set S, we denote as fS the size of the flow entering (or leaving) the
set S, i.e., fS = ∑

x∈S,xy∈E f (xy). For convenience, hereafter we refer to flow size
as “flow” whenever the usage is unambiguous. Using this notation, the flow entering
the servers is given by:

φ = fV = fY + fZ

Note that all servers in Y = N(W) are necessarily saturated since (1) clients in
W are unsaturated by definition and (2) any maximal flow induces a vertex cover of
saturated clients and saturated servers. Thus, the flow size can be rewritten as:

fV = b(Y ) + fZ

where b(Y ) is the total capacity of the servers in set Y , i.e. b(Y ) = ∑
y∈Y b(y).

Using Lemma 1, every server z ∈ Z must receive flow at least δ
Δ

b(z). Summing
over all z ∈ Z, then, the flow size fZ is at least b(Z) δ

Δ
. Thus, the flow size into the

servers, fV , satisfies the following inequality:

fV ≥ b(Y ) + b(Z)
δ

Δ
(1)

Now, we examine the flow leaving the client set U . The flow leaving the clients,
fU , is given by:

φ = fU = fX + fW = b(X) + fW

since all nodes in X are saturated by definition.
The flow fW is equivalent to the flow entering the server set Y restricted to the

clients in W . By definition of a locally-fair flow, since every client in W is unsaturated
then each client w ∈ W will always send flow at least b(w)b(y)

d(y)
for each y ∈ N(w).

First, let us define the notation that dW (y) is the b-weighted degree of node y

restricted to the set W , e.g. dW (y) = ∑
w∈N(y)∩W b(w). Using this notation we have

the following inequality:

fW ≥
∑

y∈Y

b(y)
dW (y)

d(y)
=

∑

y∈Y

b(y)
dW (y)

dW (y) + dX(y)
≥

∑

y∈Y

b(y)
1

1 + dX(y)

where the last inequality holds since all b-values are at least 1 and Y is the neighbor-
hood of W .



432 J Comb Optim (2011) 22:426–437

Thus, we can rewrite the bound on total client flow, fU , as:

fU ≥ b(X) +
∑

y∈Y

b(y)
1

1 + dX(y)
≥ b(X) + b(Y )2

b(Y ) + ∑
y∈Y b(y)dX(y)

where the second line follows from the arithmetic mean-harmonic mean (AM-HM)
inequality.

The sum
∑

y∈Y b(y)dX(y) can be bounded using the definitions of Δ and δ:

∑

x∈X

b(x)Δ ≥
∑

x∈X

(b(x)dY (x) + b(x)dZ(x)) =
∑

y∈Y

b(y)dX(y) +
∑

z∈Z

b(z)dX(z)

This result implies that
∑

y∈Y b(y)dX(y) ≤ b(X)Δ − b(Z)δ and so provides an
upper bound on the sum.

So, in a locally-fair flow, the client flow is bounded by the following inequality:

fU ≥ b(X) + b(Y )2

b(Y ) + b(X)Δ − b(Z)δ
(2)

Combining this result with the previous bound for the server flow, we have these
two inequalities:

φ = fU ≥ b(X) + b(Y )2

b(Y ) + b(X)Δ − b(Z)δ

φ = fV ≥ b(Y ) + b(Z)
δ

Δ

Setting w = b(W), x = b(X), y = b(Y ), and z = b(Z), by Lemma 2 (see

Appendix) the value of the locally-fair maximal flow f is at least min(1, Δ2−δ

2Δ2−δΔ−Δ
)

times the maximum flow m and the first statement of the theorem is proved.
For the second statement of the theorem, that the given bound is tight, consider

the following. For any combination of integers Δ,δ create a unit capacity network
and divide the clients and servers each into two sets W,X and Y,Z. For convenience,
denote w = |W |, x = |X|, y = |Y |, and z = |Z|.

Set w = y and x = z. Let each client u ∈ W have one outgoing edge, each client
u ∈ X have Δ outgoing edges, each server v ∈ Y have Δ in-edges, and each server
v ∈ Z have δ in-edges. Match each client u ∈ W to a unique server v ∈ Y and let each
client u ∈ X have Δ− δ edges matched to the servers in Y and the remaining δ edges
matched to servers in W such that there is a perfect matching in the graph and the
non-matching edges are evenly distributed across the servers in the applicable server
sets.

Given any value for y, we set x = y Δ−1
Δ−δ

, and the other two parameters (w and z)
are determined by the equality constraints above. (The values x and y can be scaled
so that they are integers.) The size of y is determined by the fact that x + y = m

which implies that y = m Δ−δ
2Δ−δ−1 . See Fig. 1 which shows an example.

Define a flow f such that each client u ∈ W sends 1/Δ flow along its single
edge, and each client u ∈ X sends 1/Δ flow along each of its Δ edges. Clearly, f is
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Fig. 1 Worst-case graph with
y = 4, Δ = 4, and δ = 2. The
maximum flow is 10 while a
locally-fair maximal flow only

provides Δ2−δ

2Δ2−δΔ−Δ
10 = 7

a locally-fair flow and every server v ∈ Y is saturated while every server v ∈ Z is
unsaturated and receives δ/Δ flow.

The maximum flow in the graph is equal to x + y = m, since G contains a perfect
matching. Thus, the ratio of the locally-fair flow f to the maximum flow is (y +
z(δ/Δ))/(y +x) = (Δ2 − δ)/(2Δ2 −Δ− δΔ) since z = x. This is equal to our lower
bound and thus the second statement of the theorem is proved. �

4 Practicality

In a network of clients and servers it is well-known that TCP/IP, or any additive-
increase multiplicative-decrease (AIMD) algorithm, converges to a flow whereby
each unsaturated client receives bandwidth from each server at least equal to its
fair share (Kurose and Ross 2000). The definition of ‘Locally-fair’ in this paper is
a slightly stronger requirement since it has the additional constraint that every edge
contain at least a minimal amount of flow. However, in our preliminary experiments,
TCP/IP typically has higher aggregate bandwidth than the equivalent ‘locally-fair’
assignment would predict on the same network. So, it may be that the bounds in this
paper are lower-bounds for max-min fair algorithms such as TCP/IP. This remains
future research.

The degree-bounds in this paper are either locally enforceable or may occur natu-
rally in practice. Networks with low Δ and high δ values can be achieved in several
ways. It is common for clients to have restricted access to servers (or peers) in or-
der to limit the advantage of any single client over any other (Qiu and Srikant 2004).
This is a side-effect of the max-min fairness provided by TCP/IP to clients—the more
streams the more bandwidth a client can steal from others. Furthermore, maintaining
a set of streams becomes impractical as the number of streams gets too large: TCP/IP
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will reset the sender’s TCP window on any stream which is idle for more than a time-
out period (Stevens 1997). This effectively limits the number of outgoing streams a
single modern computer can maintain. (There is no equivalent idle-detection mecha-
nism on the receiver side.) So it is clear that limiting the maximum client degree, Δ,
should be practical and simple to implement in software distributed to clients.

Maintaining the minimum server degree, δ, can be managed in one of two ways.
First, in a randomly-constructed network where every client has exactly Δ connec-
tions, the minimum server degree is within a constant factor of Δ with high proba-
bility. With a balls-and-bins analysis (omitted here) it can be shown that as long as
Δ ≥ 4c2 ln(2|V |) then δ ≥ (1 − 1/c)Δ w.h.p. Thus, in a randomly-constructed net-
work, the two parameters Δ and δ can be coupled as long as Δ ∈ �(ln(|V |). Another
way to increase the value of δ is via a systems-level solution of server gossiping—
clients can be exchanged from low-degree servers to high-degree servers by periodic
server-to-server contact.

5 Open issues and further research

Other types of maximal flows are also of interest: “Locally-greedy maximal flows”
(LGMF) and “Locally-proportional maximal flows” (LPMF). In LGMF saturating
clients satisfy server demands from largest to smallest value while in LPMF these
saturating clients satisfy server demands in relative proportion.

For the unit-capacity case where the maximum client degree is 2, it can be shown
that LGMF always reaches at least 5/6 of the maximum flow and LPMF always
reaches at least 3/4 of the maximum flow. (LFMF has a tight bound of 3/4 of the
maximum flow for this case.) Furthermore, these bounds are tight (proofs are omit-
ted). For general graphs, it is an open problem to determine how well these flows
perform.

Appendix

Lemma 2 Given constants m, δ, and Δ, the solution to the non-linear program below

is a value at least min(1, Δ2−δ

2Δ2−δΔ−Δ
)m.

min f (x, y, z)

s.t. f (x, y, z) ≥ x + y2

y+xΔ−zδ

f (x, y, z) ≥ y + z δ
Δ

m ≥ x, y ≥ 0

x + y ≥ m

y + z ≥ m

Δ > δ ≥ 1
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Proof We have:

f (x, y, z) ≥ x + y2

y + xΔ − zδ
≥ x + y2

y(δ + 1) + xΔ − mδ

and

f (x, y, z) ≥ y + z
δ

Δ
≥ y

(

1 − δ

Δ

)

+ m
δ

Δ

since z ≥ m − y and both functions are increasing in terms of z.
Now we have two functions of x and y:

g1(x, y) = x + y2

y(δ + 1) + xΔ − mδ
(3)

g2(x, y) = y

(

1 − δ

Δ

)

+ m
δ

Δ
(4)

where f (x, y, z) ≥ min(g1(x, y), g2(x, y)).
Instead of searching the space of all possible pairs x, y which satisfy the constraint

x + y ≥ m, we can instead search the space along all lines of constant x + y. In our
case, since 2m ≥ x + y ≥ m, we will search along lines where x + y = m + c for
an arbitrary constant c such that m ≥ c ≥ 0. If we prove that the lemma holds for an
arbitrarily chosen value of c, then we have proven the lemma.

First, choose any value of c therefore y = m− x + c. Substituting this value for y,
we can now create two functions in terms of x only:

hc
1(x) = x + (m − x + c)2

(m − x + c)(δ + 1) + xΔ − mδ
(5)

hc
2(x) = (m − x + c)

(Δ − δ)

Δ
+ δ

Δ
m (6)

with

f (x, y, z) ≥ min(g1(x, y), g2(x, y)) = min(hc
1(x), hc

2(x)).

Setting hc
1(x) = hc

2(x) and solving for x we obtain two possible solutions: x1 =
cδ

δ−Δ
and x2 = m(Δ−1)+c(Δ−δ−1)

2Δ−δ−1 . The first intersection point, x1, yields a value of m

(when c = 0) or is an invalid point of intersection (when c > 0) since x is non-
negative.

Now we consider x2. Clearly, hc
2(x, y) is a decreasing function of x. We will now

show that hc
1(x, y) is monotonically increasing after the intersection point x2 and

therefore the minimum flow value is always at least the flow value hc
1(x2) = hc

2(x2)

which occurs at the intersection point x2.
First, note that hc

1(x) is positive and defined in the interval x ∈ [c,m] since
x + y ≥ m and Δ > δ ≥ 1.

Now, we show that the first derivative of hc
1(x) at x2 is non-negative.

d

dx
hc

1(x2) = Δ2 − 3Δ + δ + 1

Δ2
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For all possible values of δ and Δ:

Δ2 − 3Δ + δ + 1

Δ2
≥ 0

⇐⇒ Δ2 − 3Δ + δ + 1 ≥ 0

⇐⇒ Δ2 − 3Δ + 2 ≥ 0

where the last line results from the fact that δ ≥ 1. The last line is true since
Δ2 − 3Δ + 2 is an increasing function of Δ and Δ ≥ 2.

Now, we show that the second derivative of hc
1(x) is positive. The second deriv-

ative of hc
1(x) is 2 (mδ−(c+m)Δ)2

(c(1+δ)+m+(Δ−δ−1)x)3 Examining this function, we see that this
second derivative is always positive for x, c ≥ 0. Thus, for the domain x > 0, there
are no points of inflection and any extrema of hc

1(x) can only be minimums by the
second derivative test. Thus, since (1) hc

1(x) is either a local minimum or increasing
at the intersection point x2, (2) there are no maximums, and (3) hc

1(x) is well-defined
on all points x ≥ 0 then hc

1(x) must be monotonically increasing after the point of
intersection x2. Thus, the flow value at the point of intersection of hc

1(x) and hc
2(x)

must be a global minimum of the composite function max(hc
1(x), hc

2(x)).
Now, plugging x2 back into hc

1 we obtain a flow value of

(Δ2 − δ)m + cΔ(Δ − δ)

Δ(2Δ − δ − 1)

Since c ≥ 0 and Δ > δ, then this flow value is at least

(Δ2 − δ)m

2Δ2 − δΔ − Δ

Since we used an arbitrary value of c, the equations hold for all values of c and
thus the lemma is proved. �

Now we will prove Proposition 2 which is repeated here:

Proposition 2 After performing 2 log2(ΔU/ε) + 4 rounds the flow f generated
by algorithm LFMF is a 1

1+ε
-approximation to a locally-fair maximal flow, i.e.,

size(f ) = ( 1
1+ε

)size(g) for some locally-fair maximal flow g.

Proof We employ the following lemma.

Lemma 3 Let f be the flow produced by algorithm LFMF after performing 2j

rounds. Then, for each server v, either r(v) ≤ b(v)

2j )b(v) or dr(v) ≤ db(v)

2j , where r

denotes the residual capacity.

Proof Consider any server v and let N(v) denote the clients in the neighborhood of v.
Let S and T denote the subsets of N(v) that are saturated and unsaturated, respec-
tively, after a (single) execution of the algorithm LFF. Then, b(S) + b(T ) = db(v). If
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b(S) ≥ b(T ) then clearly dr(v) ≤ db(v)/2. On the other hand, if b(S) ≤ b(T ), then
since, each node u ∈ T is unsaturated, f (uv) ≥ b(u)b(v)/db(v). But, this means that
the flow f (v) into v is at least

∑
u∈T f (uv) ≥ b(u)b(v)/db(v) = b(T )b(v)/db(v) ≥

(db(v)/2)b(v)/db(v) = b(v)/2, so that r(v) ≤ b(v)/2. It follows that after every two
applications of LFF, either the residual capacity of the neighborhood of v (i.e., dr(v))
has been cut by at least one-half or the residual capacity of v has been cut by at least
one-half. Thus, after 2j rounds, either the (original) capacity of v or the (original)
capacity of the neighborhood of v has been reduced by a factor of 1

2j . The lemma
follows. �

Now, let Q denote the set of all servers v, such that r(v) ≤ b(v)

2j , let R denote the
complement set of servers, and let P denote the set of clients that are adjacent to a
server in R. By Lemma 3, dr(v) ≤ db(v)

2j , for all v ∈ R. Since, each client has degree
at most ΔU , we have:

r(P ) ≤
∑

v∈R

dr(v) ≤ 1

2j

∑

v∈R

db(v) ≤ Δ

2j
b(P )

It follows that r(P ) ≤ Δ

2j−1 f (P ), where f (P ) denotes the total flow out of P . Fur-

ther, it follows from the definition of Q that r(Q) ≤ 1
2j−1 f (Q) ≤ Δ

2j−1 f (Q), where
f (Q) denotes the total flow into Q. Since P ∪ Q is a vertex cover, i.e., every edge is
incident to one node in P ∪ Q, we can increase f to a maximal flow g in a way that
only increases the flow out of nodes in P or the flow into nodes in Q. But, this means
that the size of the additional flow added to f to obtain g is at most r(P ) + r(Q) ≤

Δ

2j−1 (f (P )+f (Q) ≤ 2Δ

2j−1 size(f ). Hence, size(g) ≤ (1+ ΔU

2j−2 )size(f ). Proposition 2
follows by setting j = 2 + log2 ΔU/ε. �
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