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ABSTRACT

Given the proliferation of consumer media recording de-
vices, events often give rise to a large number of recordings.
These recordings are taken from different spatial positions
and do not have reliable timestamp information. In this pa-
per, we present two robust graph-based approaches for syn-
chronizing multiple audio signals. The graphs are constructed
atop the over-determined system resulting from pairwise sig-
nal comparison using cross-correlation of audio features. The
first approach uses a Minimum Spanning Tree (MST) tech-
nique, while the second uses Belief Propagation (BP) to solve
the system. Both approaches can provide excellent solutions
and robustness to pairwise outliers, however the MST ap-
proach is much less complex than BP. In addition, an exper-
imental comparison of audio features-based synchronization
shows that spectral flatness outperforms the zero-crossing rate
and signal energy.

Index Terms— Multi-signal synchronization, audio fea-
ture analysis, minimum spanning tree, belief propagation

1. INTRODUCTION

Due to the popularity of video sharing sites, there is an in-
creasing amount of user-uploaded video content from differ-
ent vantage points of the same event. For example, sports,
concerts, and conferences might all have multiple attendees
upload video of the event. Combining these recordings can
provide richer user experiences through technologies such as
free-viewpoint video [1], overview mash-ups [2, 3], and 3D
scene reconstruction [4], but the input signals must first be
time synchronized. Unlike the Gen-locked multi-camera rigs
used in broadcast or cinema, consumer video is captured ad-
hoc with different devices such as cell-phones, camcorders,
or microphones, and must be synchronized after the event.

For video, there exists work on synchronizing two video
streams using the geometric consistency of tracked visual fea-
tures [5, 6, 7, 8]. However, these methods are only applicable
when visual features are visible in both videos. Consequently,
audio synchronization is widely used for outdoor motion cap-
ture [9], mash-ups, identifying video of the same event [10],
and is available in commercial editing applications [11].

Fig. 1. Left: the inputs and desired solution for three signals.
Arrows between the signals indicate a pairwise relationship.
Right: an example where two signals do not overlap, so one
pairwise offset (red) should not be included in the graph.

Synchronizing content captured of outdoor events on con-
sumer devices is particularly challenging given that the mi-
crophones may be far apart or disjoint in time, and hence
only partially share audio environments. In addition, com-
mon degradation due to compression and noise artifacts im-
pairs the audio quality leading to inconsistencies within pair-
wise matches. RANSAC-inspired synchronization strategies
can help improve pairwise matching [12] in order to produce
the most likely temporal offset.

Most previous approaches to this problem performed
a bottom-up temporal alignment of multiple signals, first
matching signal pairs and then hierarchically merging clus-
ters until a global solution was reached. For example, Bryan
et al. use audio-fingerprinting [13] to match strongly corre-
lating signal-pairs [14] that are iteratively merged into larger
clusters until a global solution is found. Similarly, Shrestha
et al. [15] and Cremer et al. [16] generate multiple audio-
fingerprints for small segments in each audio track which are
then individually matched against each other. Such bottom-
up approaches are sensitive to the propagation of bad initial
matching decisions, meaning all non-overlapping or poor
candidate pairwise matches must be pruned in advance.

In contrast to these bottom-up approaches, we provide a
formulation of the multi-signal synchronization problem as an
over-determined graph of pairwise interactions (Fig. 1). Our
global approach complements techniques that prune bad or
non-overlapping pairwise matches (e.g., by thresholding or
fingerprint consistency [14]), and provides additional robust-
ness to any remaining outlier pairwise matches.

To ensure reliable pairwise offsets, we contribute a com-
parison of three audio features: spectral flatness, zero-



crossing rate, and signal energy (§2.1). We then propose
two novel graph-based formulations for robust multi-signal
synchronization based on a minimum spanning tree approach
and belief-propagation (§2.2). A quantitative evaluation of
the feature-based matching and the proposed multi-signal
synchronization methods is described in §3. Our results in-
dicate that spectral flatness achieve the best performance in
terms of robustness and selectivity. In addition, an exper-
imental comparison of our multi-synchronization methods
shows that both approaches achieve similar robustness to
pairwise outliers and demonstrate resilience with up to 20%
outliers. However, the minimum spanning tree solver is
preferred since it is less complex than belief propagation.

2. MULTI-SIGNAL SYNCHRONIZATION

As input, we have N audio signals of the same event,
{si}Ni=1, where each signal si is a single-dimensional vec-
tor of length Ni. The multi-signal synchronization prob-
lem is to recover a consistent solution of temporal offsets,
x1:N = (x1, x2, · · · , xN ), such that the signals are brought
into temporal alignment (Fig. 1). This is challenging due to
the possible occurrence of temporally non-overlapping signal
pairs, as well as noisy signals that hinder pairwise matching.

2.1. Pairwise matching of input signals

The first step is to obtain robust and accurate offset estimates
for each signal pair. This is done by extracting a set of time-
indexed audio features for each input signal and then cross-
correlating the feature sets.

2.1.1. Audio features

A set of time-indexed audio feature coefficients f{s}(t) is
calculated for each input signal. The feature extraction em-
phasizes the descriptive audio events and increases robustness
to noise, volume differences, etc. In the following, three pop-
ular audio features are described.

Spectral Flatness: The spectral flatness feature (also
known as Wiener entropy) describes the variation of tonality
over time. It is defined by the ratio of the geometric mean and
arithmetic mean of the frequency domain coefficients:
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where Fs(t, ω) is the power of wavelength ω ∈ Ω at time t.

Zero-crossing Rate: The zero crossing rate is a popu-
lar feature in speech recognition for distinguishing between
voiced and unvoiced speech segments. It counts the number
of sign changes along a signal within a time window, T :

f zc{s}(t) =
1

T − 1

T∑
τ=1

I {s(t+ τ)s(t+ τ − 1) < 0} , (2)

(a) Calculation of weight e1,6 (b) Minimal-spanning tree

Fig. 2. Minimum spanning tree solver approach. Fig. 2(a):
the estimation of consistency weight e16 based on all overlap-
ping 3-cliques. Fig. 2(b): a minimum spanning tree solution
based on the most consistent correlations.

where I{A} is 1 if argument A is true and 0 otherwise.
Signal Energy: The signal energy feature computes the

root mean square of the signal energy in a window of time T :

fnrg{s}(t) =

√∑T−1
τ=0 |s(t+ τ)|2

T
. (3)

2.1.2. Pairwise Correlation

To apply these features for synchronization, consider signals
si and sj that yield feature sequences fi and fj . The can-
didate alignment offset is given by the time offset xij of the
maximum peak in the cross-covariance function of fi and fj .

xij = arg max
t

∑
τ∈Tij

(fi(τ)− f̄i)(fj(τ + t)− f̄j(t)) (4)

where Tij(t) = [max(0, t),min(Ti − 1, t + Tj − 1)] is the
region of overlap.

2.2. Multi-signal synchronization

In this section, two independent techniques are proposed to
reconcile any inconsistencies in the pairwise offset measure-
ments. The first approach seeks to select a minimal set of con-
sistent pairwise offset measurements to establish the global
solution using a minimum spanning tree search. The second
approach uses all pairwise hypotheses to define the marginal
posteriors of the offset variables.

2.2.1. Minimum spanning tree solver

We can formulate the problem as a fully connected graph
where each node is a signal and each edge weight is the tem-
poral offset. This complete graph construction produces an
over-determined system of N(N − 1)/2 edges. We need to
solve for only N − 1 edges that form a spanning tree to pro-
duce a global synchronization solution.

Let us define a second graph with the same nodes and
edges as the original but different edge weights. We will de-
fine this graph such that smaller edge weights reflect better



correlation between signals. We can solve for the global off-
sets by finding a minimum spanning tree (MST) of this second
graph. Critical to this approach is the definition of the edge
weights. Possible choices include measurements on the pair-
wise match scores, such as the correlation score or peakiness
of the correlation. However, such measurements may not be
comparable across nodes. For this reason, we define a mea-
sure of pairwise matching quality that is independent of the
correlation score. Notice that if the offsets could be measured
without error, the sum of the offsets along any cycle in the
original graph would be zero. Since measurements are never
error-free, empirically the sum of a cycle is actually non-zero.
So we define the penalty score of a given 3-clique in the graph
as

zijk = |xij + xjk + xki|. (5)

Accordingly, for a given edge in the secondary graph eij , we
define the total edge consistency weight as

eij =
∑
k

zijk, (6)

which is illustrated in Fig. 2(a). Prim’s MST algorithm is
applied to select the N − 1 most consistent edges that span
the nodes in the second weighted graph (Fig. 2(b)). These
edges correspond to the most consistent offset hypotheses in
the original graph structure.

The algorithmic complexity of the MST approach is
O(N3) due to the calculation of consistency weights along
all 3-cliques for each edge in the graph.

2.2.2. Belief propagation approach

The belief-propagation approach uses the hypothesis ex-
tracted from the pairwise analysis to build pairwise evidence,

φij(x) ∝ exp

(
−(x− xij)2

2σ2

)
+ c. (7)

with c being a uniform offset prior. We model the joint prob-
ability distribution by combining the pairwise evidence, φij ,
giving

p(x1:S) ∝
∏
ij

φij(xj − xi). (8)

This leads to an ambiguity where p(x1:S) = p(x1:S + t), so
we fix one node as a reference and set it to x1 = 0, giving

p(x2:S) ∝
∏

i>1,j>1

φij(xj − xi)
∏
i>1

φi(xi). (9)

The marginals of x in (9) are approximated through loopy
belief propagation. At iteration l ≥ 1, the message from node
i to j is defined as

ml
ij(xj) =

∫
φij(xj − xi)φi(xi)

∏
k∈N (i)\j

ml−1
ki (xi)︸ ︷︷ ︸

Partial belief

dxi,

(10)

with the m0
ij defined either uniformly or randomly, and N (i)

is the neighbors of i.
The belief at iteration l approximates the marginals and is

defined using the propagated messages,

bli(xi) = φi(xi)
∏

k∈N (i)\j

ml−1
ki (xi). (11)

Note that (10) is a convolution of the pairwise factor with the
partial belief, which allows efficient message computation via
the Fourier transform. The final solution after L iterations is
xi = arg max

x
bLi (x).

As loopy belief propagation is not guaranteed to converge,
we try all possible nodes as the reference to obtain S hypothe-
ses, {xi1:S}Si=1 and take the final solution as the one that max-
imizes a consistency score,

F (x1:S) =
∑
i

∑
j∈N (i)

φij(xj − xi). (12)

Since the BP algorithm calculates the discretized marginals
for each edge in the tree using a FFT-based convolution of
length Ni during L iterations, its computational complexity
is O(LN2Ni log(Ni)).

3. EXPERIMENTAL EVALUATION

In the first experiment, we investigate the influence of audio
feature selection (§2.1.1) on the robustness and selectivity of
the pairwise cross-correlation function. The second experi-
ment compares the performance of the two proposed multi-
signal synchronization techniques.

3.1. Feature comparison

To enable a quantitative comparison of the audio features, we
generate a large benchmark data set with known ground truth.
It contains multiple sets of signal pairs with varying tempo-
ral overlap (t = 5s to 25s in 2s intervals) for three different
recording scenarios: conference, concert and soccer. For
each scenario and overlap amount, one hundred 30-second
long signal pairs are extracted at random.

To investigate the impact of the feature selection on a
cross-correlation-based synchronization process, each audio
feature is used to generate a set of time-indexed feature coef-
ficients for each signal pair. The extracted feature coefficients
are normalized and the cross-correlation is computed. In this
experiment, the peak-to-average-power-ratio (PAPR) is used
as a measure for “peakiness” to evaluate the correlation char-
acteristics at the simulated offset t in the cross-correlation
function within a time window of 0.5s:

PAPRft =
max|ft|2

Pf
, (13)

where Pf is the average power of the discrete feature vector.
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Fig. 3. Experimental results of the audio feature comparison for three different recording scenarios. Each plot shows the
peakiness in the cross correlation function determined by the peak-to-average-power ratio (PAPR) as a function of signal
overlap. The spectral flatness is the most selective feature as it has the strongest cross correlation peaks in all three scenarios.
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Fig. 4. Performance comparison between MST, BP, and ran-
dom spanning trees for 6 and 8 source signals with varying
outliers. The plots show the percentage of correctly identified
offsets as a function of inconsistent signal pairs.

The experimental results of audio feature comparison are
illustrated in Fig. 3 for the three recording scenarios, con-
ferences, concerts and soccer games. Each plot shows the
peak-to-average-power ratio (PAPR). The results indicate that
the spectral flatness feature produces the best selectivity. The
zero-crossing and time-energy features show similar perfor-
mance on the conference and concert scenario. Interestingly
in the soccer scenario, the zero-crossing feature outperforms
the time-energy feature, which might be due to the strong in-
terplay between background noise and player voices.

3.2. Multi-signal synchronization

To evaluate and compare the synchronization approaches dis-
cussed in Section 2.2, correlation graphs are generated based
on randomized temporal offset values x. The effects of poorly
matched pairs are simulated by selecting random graph edges
and replacing them with uniformly distributed random val-
ues in the range of -7 to 7s, leading to inconsistencies in
the graph. This way we obtain objective benchmark data

with known ground truth that can be used to investigate the
synchronization performance in terms of robustness against
poorly matched signal pairs.

In the experiment, 1000 synthesized correlation graphs
with 6 and 8 source nodes are used to evaluate the MST and
BP algorithms, followed by comparing their output to the
ground truth data. In order to obtain an objective measure
of robustness that is independent from the absolute offset val-
ues, we calculate the percentage of correctly identified offset
estimates with an estimation error ∆x ≤ 1

64s, which is the
sample rate used to represent the densities in the BP.

The outcome of the multi-signal synchronization for the
MST and BP approaches are shown in Fig. 4. The plot shows
the percentage of correctly identified offsets versus the num-
ber of inconsistent hypotheses. Additionally, the results based
on randomly selected spanning trees within the correlation
graph are shown as a lower bound on performance. For BP we
use constant values of σ = 0.25, c = 1, and L = 6. The re-
sults show both MST and BP achieve similar performance in
terms of robustness to pairwise outliers: for up to 20% outlier
measurements in the correlation graph all offsets within the
correlation tree are correctly recovered with high probability.
In terms of computational complexity, as MST is only depen-
dent on the number of nodes in the graph, it significantly out-
performs the BP algorithm (milliseconds vs seconds), making
it the preferred method for multi-signal synchronization.

4. CONCLUSION

This paper has presented two techniques for temporally align-
ing multiple audio signals by exploiting redundancies within
an over-determined system of pairwise offset hypotheses. Ex-
periments revealed that robust temporal alignment of signal
pairs can be achieved by cross-correlating sequences of spec-
tral flatness feature coefficients. In order to obtain a glob-
ally optimized synchronization solution, the minimum span-
ning tree solver can be applied on multiple offset hypotheses,
showing excellent robustness against outliers in our experi-
ments. Future work will focus on the synchronization of mul-
tiple disjunct signal sets and the integration of multiple offset
hypotheses per signal pair.
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