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ABSTRACT

Over the past few years, massive amounts of world knowledge have

been accumulated in publicly available knowledge bases, such as

Freebase, NELL, and YAGO. Yet despite their seemingly huge size,

these knowledge bases are greatly incomplete. For example, over

70% of people included in Freebase have no known place of birth,

and 99% have no known ethnicity. In this paper, we propose a way

to leverage existing Web-search–based question-answering tech-

nology to fill in the gaps in knowledge bases in a targeted way. In

particular, for each entity attribute, we learn the best set of queries

to ask, such that the answer snippets returned by the search engine

are most likely to contain the correct value for that attribute. For

example, if we want to find Frank Zappa’s mother, we could ask the

query who is the mother of Frank Zappa. However, this is likely to

return ‘The Mothers of Invention’, which was the name of his band.

Our system learns that it should (in this case) add disambiguating

terms, such as Zappa’s place of birth, in order to make it more likely

that the search results contain snippets mentioning his mother. Our

system also learns how many different queries to ask for each at-

tribute, since in some cases, asking too many can hurt accuracy (by

introducing false positives). We discuss how to aggregate candidate

answers across multiple queries, ultimately returning probabilistic

predictions for possible values for each attribute. Finally, we eval-

uate our system and show that it is able to extract a large number of

facts with high confidence.

Categories and Subject Descriptors: H.2.8 [Database manage-

ment]: Database applications—Data mining.

General Terms: Algorithms, Experimentation.

Keywords: Freebase; slot filling; information extraction.

1. INTRODUCTION
Large-scale knowledge bases (KBs)—e.g., Freebase [1], NELL [3],

and YAGO [18]—contain a wealth of valuable information, stored

in the form of RDF triples (subject–relation–object). However, de-

spite their size, these knowledge bases are still woefully incom-

plete in many ways. For example, Table 1 shows relevant statistics

for Freebase: in particular, it lists the fraction of subjects of type

PERSON who have an unknown object value for 9 commonly used

relations (also cf. Min et al. [12]); e.g., 71% of the roughly 3 mil-
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lion people in Freebase have no known place of birth, 94% have

no known parents, and 99% have no known ethnicity. As Table 1

further shows, coverage is quite sparse even for the 100,000 most

frequently searched-for entities. This problem is not specific to

Freebase; other knowledge repositories are similarly incomplete.

The standard way to fill in missing facts in a knowledge base is

to process a large number of documents in batch mode, and then

to perform named-entity disambiguation followed by relation ex-

traction (see, e.g., Ji and Grishman [8] for a recent review). We call

this a ‘push’ model, since it pushes whatever facts it can find across

all documents into the knowledge base. By contrast, in this paper,

we focus on a ‘pull’ model, whereby we extract values for spe-

cific subject–relation pairs by making use of standard Web-search–

based question-answering (QA) technology.

There are several reasons to take such an approach. First, we

can leverage mature Web-search technology to find high-quality

and up-to-date information sources. Second, we can rely on the

returned search snippets as a mechanism for focusing attention on

the parts of the documents that are most likely to contain the an-

swer. Third, this gives us a complementary signal to the stan-

dard ‘push’ approach. The ‘pull’ paradigm enables a targeted, on-

demand method for knowledge base completion; e.g., we could first

run a ‘push’ method to collect as many facts as possible and then

use our ‘pull’ system to retrieve facts that were not already found

by the passive ‘push’ run. Finally, the world is constantly chang-

ing, and KBs must be kept up to date accordingly [19]; the ‘pull’

paradigm seems more appropriate than the ‘push’ paradigm for ver-

ifying whether specific previously entered facts are still valid.

The key question we address in this paper is which questions

we should issue to the QA system. This is not obvious, since the

QA system is expecting natural language as input, but we have no

human in the loop who could formulate our queries. Furthermore,

not all the queries are equally good. For example, suppose we want

to determine the birthplace of the musician Frank Zappa. We could

issue the search query where does Frank Zappa come from, but it

is more effective to ask where was Frank Zappa born, because this

query formulation will be more likely to match phrases appearing

in the Web pages searched by the QA system.

As another example, consider the problem of determining Frank

Zappa’s mother. If we issue the query who is the mother of Frank

Zappa, we will most likely get back snippets about ‘The Mothers

of Invention’, which was the name of his band. In this case, we

should add extra terms to the query, to try to steer the search engine

to return snippets that mention his mother (cf. Collins-Thompson

et al. [4]). One way to do so is to append to the query the name of

the city where Zappa was born (namely, Baltimore), since the place

where one was born is often mentioned in proximity to the names

of one’s parents.



Relation Percentage unknown

All 3M Top 100K

PROFESSION 68% 24%

PLACE OF BIRTH 71% 13%

NATIONALITY 75% 21%

EDUCATION 91% 63%

SPOUSES 92% 68%

PARENTS 94% 77%

CHILDREN 94% 80%

SIBLINGS 96% 83%

ETHNICITY 99% 86%

Table 1: Incompleteness of Freebase for some relations that ap-

ply to entities of type PERSON. Left: all 3M Freebase PERSON

entities. Right: only the 100K most frequent PERSON entities.

The main contribution of this paper is to propose a way to learn

which queries to ask the QA system for each kind of subject and

relation. Our system is trained using search-query logs and existing

facts in Freebase. We show that it is better to ask multiple queries

and aggregate the results, rather than rely on the answers to a sin-

gle query, since integrating several pieces of evidence allows for

more robust estimates of answer correctness. At the same time, the

number of queries to ask varies depending on the nature of the re-

lation. On the one hand, relations that expect values from ‘open’

classes with large numbers of instances (e.g., CHILDREN, which ex-

pects values of type PERSON) are sensitive to the number of queries

asked, and asking more than a certain number of queries decreases

performance. The reason is that issuing more and more queries

(of ever decreasing quality) increases the number of false positives,

and if we ask too many queries, the negative impact of false posi-

tives will outweigh the positive impact of aggregating over several

sources of information. On the other hand, if the relation expects

values from a ‘closed’ class with only a limited number of instances

(e.g., NATIONALITY, which expects values of type COUNTRY), the

number of potential false positives is limited, and the performance

will not suffer from asking more queries.

We evaluate our method by using it to fill in missing facts for

1,000 Freebase entities of type PERSON for each of the 9 relations

shown in Table 1. This test set is chosen by stratified sampling

from a larger pool of the 100,000 most frequently searched-for en-

tities; thus, it contains a mix of head and tail entities. We show that

we are able to reliably extract correct answers for a large number

of subjects and relations, many of which cannot be extracted by

conventional ‘push’-type methods.

2. METHODOLOGY
In this section, we describe an end-to-end pipeline that uses a QA

system in order to find new facts to add to Freebase. We first give

a high-level overview—summarized in Fig. 1—before discussing

each separate stage in detail.

In the knowledge base completion task [8], we are given a sub-

ject entity ID S and a relation ID R, and need to find the correct, pre-

viously unknown object entity IDs. For instance, we might be given

subject ID /m/02whj (FRANK ZAPPA) and relation ID /m/01x3gb5

(PARENTS), and would be expected to return object ID /m/01xxvky

(ROSE MARIE COLIMORE) or /m/01xxvkq (FRANCIS ZAPPA).

In this paper, we propose to use an existing Web-search–based

QA system to perform the KB completion task. Since our QA sys-

tem expects as input a query string, we need a way of lexicalizing

subject–relation pairs to query strings. It is easy to look up one

or more names (aliases) for the subject; the tricky issue is how to

lexicalize the relation. To solve this, we mine a set of query tem-

plates from search query logs in an offline training phase (upper

box of Fig. 1; Section 2.1), using a form of distant supervision [13]

based on Freebase. For each relation R, this procedure constructs

a set Q̄R of templates. For example, parents of __ is a template

for PARENTS; it can be instantiated for a subject S by looking up a

name for S in Freebase and substituting it for the placeholder (e.g.,

parents of Frank Zappa). The same relation could also generate

the template __ mother. We also estimate the quality of each such

template using a labeled training set T R.

In the KB completion phase (lower box in Fig. 1), we process

each subject–relation pair (S,R) in turn. We start by selecting NR

templates {q̄1, . . . , q̄NR} ⊆ Q̄R, based on the estimate of template

quality computed offline, and instantiate them for S, obtaining the

queries {q1, . . . ,qNR} (query template selection, Section 2.2). (A

good value for NR is also found during offline training.)

In the subsequent question answering step, each query qi is fed

to the QA system, which uses Web search to produce a scored list

Ai of answer strings (Section 2.3).

In order to deal with the answers in Freebase, we must link them

to the entities they refer to. This is done in the answer resolution

step (Section 2.4), where each list Ai of answer strings is converted

to a list Ei of answer entities.

In the next phase, answer aggregation (Section 2.5), we merge

all answer rankings Ei—one per query—into a single ranking E .

It is desirable to have an estimate of the probability that the an-

swer is correct. The QA system produces quality scores, but these

are real numbers that cannot be directly interpreted as probabilities.

Hence, in the final answer calibration step (Section 2.6), we trans-

late the output scores to probabilities using a model ΘR that was fit

in the offline training phase, via supervised machine learning.

We now describe the individual system components in detail.

2.1 Offline training
Query templates are constructed in an offline training stage. The

simplest templates consist only of a lexicalization template, i.e., a

search query in which a placeholder has been substituted for the

subject, as in parents of __. We first describe how we construct

the set of lexicalization templates from Web-search logs, and then

introduce a class of slightly more complex templates that allow for

appending additional terms to a query.

Mining lexicalizations from search logs. Since our search-based

QA system is geared to work on search queries entered by humans,

we mine the lexicalization templates from logs of such queries, us-

ing a version of distant supervision [13] on Freebase. Our goal is to

count for each relation–template pair (R, q̄) how often the relation

R is expressed by the lexicalization template q̄ in the search-engine

logs. To do so, we iterate over the logs, performing the following

steps for each query q (e.g., parents of Frank Zappa).

1. Perform named-entity recognition on q, and link the result-

ing mentions to entities using approximate string matching

techniques. (Note that standard entity linkage methods are

of limited use here, as queries have little disambiguating con-

text.) If q does not contain exactly one entity, discard it.

2. Let S (e.g., FRANK ZAPPA) be the subject entity contained

in q. The template q̄ is obtained by replacing the name of S

with a placeholder string in q (e.g., parents of Frank Zappa

becomes parents of __).

3. Run the QA system on q, obtaining the top-ranked answer

string a (e.g., Francis Zappa). Link a to Freebase to get en-

tity A. (When matching the answer entities, we have more





Query specification Top result snippets (candidate answer strings in bold)

Subject–relation pair:

(FRANK ZAPPA, PARENTS)
True answer: ROSE MARIE COLIMORE

Template: (__ mother, [no augmentation])
Query: Frank Zappa mother

[1] The Mothers of Invention – Wikipedia, the free encyclopedia

The Mothers of Invention were an American rock band from California that served as the
backing musicians for Frank Zappa, a self-taught composer and performer [. . . ]
[2] Ray Collins of Frank Zappa’s Mothers of Invention Dies | Billboard

Ray Collins, a singer who co-founded the Mothers of Invention with Frank Zappa but left when
“too much comedy” started appearing in the band’s songs, died on Monday [. . . ]

Subject–relation pair:

(FRANK ZAPPA, PARENTS)
True answer: ROSE MARIE COLIMORE

Template: (__ mother, PLACE OF BIRTH)
Query: Frank Zappa mother Baltimore

[1] Frank Zappa – Wikipedia, the free encyclopedia

Frank Vincent Zappa was born in Baltimore, Maryland, on December 21, 1940. His mother, Rose

Marie Colimore [. . . ]; his father, Francis Vincent Zappa [. . . ]
[2] Frank Zappa statue to be dedicated in September – The Baltimore Sun

Frank Zappa statue to be dedicated in September. [. . . ] His mother, Rose Marie Colimore, was
a librarian, and his widow, Gail, lobbied to have the bust placed near a city library.

Subject–relation pair:

(MICHAEL JACKSON (WRITER), PLACE OF BIRTH)
True answer: LEEDS

Template: (birthplace of __, [no augmentation])
Query: birthplace of Michael Jackson

[1] Michael Jackson – Wikipedia, the free encyclopedia

Michael Jackson was born on August 29, 1958, in Gary, Indiana. He was the eighth of ten chil-
dren in an African-American working-class family [. . . ] in Gary, an industrial city near Chicago.
[2] Michael Jackson’s House – Gary, IN – Yelp

8 Reviews of Michael Jackson’s House “WTF. this place is kind of a bummer. Streets aren’t
labeled, potholes aren’t filled. The house is the only place on the block that was properly painted.

Subject–relation pair:

(MICHAEL JACKSON (WRITER), PLACE OF BIRTH)
True answer: LEEDS

Template: (birthplace of __, WORKS WRITTEN)
Query: birthplace of Michael Jackson World Guide

to Beer

[1] Michael Jackson (writer) – Wikipedia, the free encyclopedia

Jackson was born in Leeds, West Yorkshire and spent his early years in nearby Wetherby. [. . . ]
Jackson, Michael (1977). The World Guide to Beer [. . . ]
[2] The Unique Michael Jackson | Philly Beer Scene

He was born in Wetherby in the city of Leeds. [. . . ] Compensation eventually was awarded in
1988, when his agent [. . . ] negotiated a fee on the re-write as The New World Guide to Beer.

Table 2: Example queries for two subject–relation pairs, alongside top result snippets retrieved by the search-based QA system

(candidate answer strings in bold). The FRANK ZAPPA queries demonstrate how augmentation can shift the focus to more relevant

snippets, the MICHAEL JACKSON (WRITER) queries, how augmentation can be useful for disambiguation.

spective of human users, but some of them are poor for our pur-

poses because the QA system does not do well on them.

Heatmap representation of template quality. A compact way

of visualizing query quality is afforded by the heatmaps in Fig. 2,

which shows the query space for the PARENTS and PLACE OF BIRTH

relations. Lexicalization templates are shown on the horizontal

axes, while augmentation templates span the vertical axes. (Note

that we only show the manually selected subsets of lexicalization

and augmentation templates, but many more are possible.) The

color encodes the average quality of queries instantiating the re-

spective template, computed on the supervised training set T R.

Quality is measured in terms of mean reciprocal rank (MRR, cf.

Section 3.1.2) of the true answer in the answer ranking (after the an-

swer resolution phase, cf. Section 2.4), i.e., larger values (brighter

colors) are better. We see that, on average, some lexicalizations are

better than others (e.g., the colloquial __ mom performs worst for

PARENTS) and that some augmentations increase query quality over

augmentationless queries (e.g., PLACE OF BIRTH helps for PAR-

ENTS, as in the Frank Zappa example from Section 2.1), whereas

others decrease it (e.g., CHILDREN hurts for PARENTS).

Query selection strategies. A heatmap as in Fig. 2 may be com-

puted for every relation (based on a training set of subjects for

which the ground-truth answers are known in Freebase) and may

subsequently serve as the basis for deciding which queries to send

to the QA system. Given a heatmap of query quality, the exact

choice of queries is determined by two factors.

First, we can decide how to pick templates from the heatmap.

One option is to act greedily, always picking the templates with

the largest values in the heatmap. Another option would be to add

some diversity to the queries. A simple way to do this is to sample

(without replacement) from the heatmap, by converting it to a prob-

ability distribution. A standard way to obtain such a distribution is

to pass the values through the softmax function:

Pr(q̄) ∝ exp(γ MRR(q̄)) . (1)

In the above equation, γ is like an inverse ‘temperature’ parameter,

which controls the degree of greediness. To set γ = 0 is to choose

templates uniformly at random, and as γ is increased, ever more

probability mass is shifted onto the highest-valued template.

Second, given γ, we can choose how many queries to pick. We

are interested in finding the number NR that optimally trades off the

advantages of many queries (more pieces of evidence) against those

of few queries (fewer false positives) when aggregation is done. In

practice, we run the full pipeline on the training set T R for a wide

range of values and choose as NR the value that yields the aggre-

gated answer rankings with the highest MRR (cf. Section 3.1.2).

An exploration of the effects of varying the degree of greediness

and the number of queries is presented in Section 3.

2.3 Question answering
In this paper, we use an in-house natural-language QA system.

Since the system is proprietary, we cannot give all the details, but

we outline the basic approach below (see also Paşca [14]).

Input. A search query that can be answered by short phrases.

It may be a natural-language question, such as who was Frank

Zappa’s mother, or a terser query, as in Frank Zappa mother Balti-

more (the latter is used as an example in this section).

Output. A list of candidate answer strings, ranked according to an

internally computed answer quality score.

Step 1: Query analysis. Find the head phrase of the query (mother).

When applying the QA system in our pipeline, we can set the head

phrase explicitly, as we generate the queries given a relation.

Step 2: Web search. Issue the input query to the search engine,

retrieving the top n result snippets, where n is a tuneable parame-

ter (we choose n = 50). Two snippets for the query Frank Zappa

mother Baltimore are reproduced in row 2 of Table 2.

Step 3: Snippet analysis. Score each phrase in the result snip-

pets with respect to how good an answer it is to the input query.
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Figure 2: Heatmaps for the (a) PARENTS and (b) PLACE OF BIRTH relations, capturing the performance (mean reciprocal rank; cf.

Section 3.1.2) of a number of query templates on the training set. Each combination of lexicalization template (horizontal axes) and

augmentation template (vertical axes) defines a query template. Brighter colors signify higher MRR, i.e., better performance.

Each phrase is represented as a vector of features, and the score is

computed as a weighted sum of these features, with weights fitted

ahead of time via supervised machine learning. For instance, Rose

Marie Colimore is a good candidate because it is contained in a

highly ranked snippet, is a noun phrase, has high inverse document

frequency, appears close to the query term mother, and is highly

related to the head phrase mother of the query (since both typically

appear in person-related contexts in large text corpora).

Step 4: Phrase aggregation. The same phrase may appear sev-

eral times across all snippets (e.g., Rose Marie Colimore appears

twice in row 2 of Table 2), and each instance is scored separately

in step 3. This step computes an aggregate score for each distinct

phrase, again via machine learning, based on features such as the

number of times the phrase appears and the average and maximum

values (over all instances of the phrase) of the features from step 3.

2.4 Answer resolution
For each query qi, the QA system returns a list Ai of answer strings,

but what we want is a list of entities Ei. For this, we use standard

entity linkage techniques, such as [6], which takes into account the

lexical context of each mention, and [7], which takes into account

other entities near the given mention, using joint inference. For

example, if we see the string Gail, it could refer to GAIL, a river in

Austria, but if the context is Zappa married his wife Gail in 1967, it

is more likely to be referring to the person GAIL ZAPPA (cf. Fig. 1).

Since we know the type of answer we are looking for, we can use

this as an additional constraint, by discarding all incorrectly typed

answer entities (e.g., THE MOTHERS OF INVENTION and MUSICAL

ENSEMBLE in Fig. 1).

2.5 Answer aggregation
After the answer resolution step, we have one ranking of correctly

typed answer entities for each query. But since, in general, we issue

several queries per subject–relation pair to the QA system, we need

to merge all of their rankings into a single answer ranking.

We adopt a simple yet effective approach, computing an entity’s

aggregate score as the mean of its ranking-specific scores. Assume

we asked the QA system NR queries q1, . . . ,qNR for the subject–

relation pair (S,R), resulting in NR rankings E1, . . . ,ENR . Let Ω be

the set of entities occurring across all these rankings. Each entity

E ∈Ω has a score in each ranking Ei, referred to as si(E); if E does

not appear in Ei, we set si(E) = 0. Now, E’s overall score s(E)
is computed as its average score across all rankings, i.e., s(E) =

1
NR ∑

NR

i=1 si(E). The answer entities Ω alongside the scores s define

the aggregated ranking E for (S,R).
This eliminates false positives that are ranked high in a single

ranking (e.g., RAY COLLINS in Fig. 1), possibly because the respec-

tive query was of low quality. On the contrary, entities appearing

in many rankings, but not necessarily on top, are generally ranked

high in the aggregate ranking, as they contribute fewer ranking-spe-

cific scores of zero (e.g., ROSE MARIE COLIMORE in Fig. 1).

2.6 Answer calibration
The goal of the answer calibration step is to turn the scores attached

to entities in the aggregate ranking into probabilities that tell us how

likely an entity is to be the true object. Such interpretable scores

are important if we want to make informed decisions on how to

act upon a proposed answer: whether we want to discard it imme-

diately; how we should prioritize it for validation by humans; or

what weight to give it in a knowledge fusion algorithm for merging

evidence from different fact extraction methods.

To map QA scores to probabilities, we apply logistic regression

to the QA scores (a standard technique called Platt scaling [16]);

the model was trained on an independent development set. We in-

vestigated more sophisticated features, such as the number of times

each entity appeared across multiple query responses, but this did

not seem to help. Note that multiple answers can be correct (e.g.,

people can have multiple parents and spouses), so the probabilities

do not sum to 1 across answers; rather, each individual calibrated

answer is a number between 0 and 1.

3. EMPIRICAL EVALUATION
Having described the full pipeline in Section 2, we now evaluate it.

We proceed by first introducing our test data and quality metrics.

Then, we evaluate our answer rankings, and last, we investigate the

quality and quantity of our final, probabilistic predictions.

3.1 Experimental setup

3.1.1 Training and testing data

For testing our method, we consider the 9 relations of Table 1. To

be able to train and test our method, we need to have, for each rela-
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Figure 3: Performance in terms of MRR for three representative relations (with bootstrapped 95% confidence intervals). For

performance and curve shape of the remaining test relations, cf. Table 3. The (logarithmic) x-axes show the number of queries fed

to the QA system. Solid red: Greedily selecting the query templates that perform best on the training set. Dashed black: Selecting

queries uniformly at random. Dotted blue: Selecting all available queries.

tion R, a number of subjects alongside the ground-truth objects they

are connected to by R. We obtain this ground truth from Freebase

by sampling subjects with known values for R.

Hereby, we make what we call the ‘local closed-world assump-

tion’: Assume Freebase has a non-empty set of objects O for a

given subject–relation pair (S,R). The local closed-world assump-

tion then posits that O contains all ground-truth objects for (S,R).
In selecting subjects, we restrict ourselves to the 100,000 most

frequently searched-for persons. We repeat the following stratified

sampling procedure twice, to construct (1) the training sets T R and

(2) test sets for each R: For each relation, consider only the subjects

(from the base set of 100,000 persons) for which the objects are

known. Divide this subject set into 100 percentiles (with respect to

frequency) and randomly sample 10 subjects per percentile, for a

total of 1,000 subjects per relation.

The rationale for restricting ourselves to the top 100,000 persons

was that such frequent entities tend to be of higher interest to the

general user, while at the same time, Freebase is still rather incom-

plete even in this regime (cf. Table 1). Also, it is important to note

that, although our base set encompasses only about 3% of Free-

base’s roughly 3 million person entities, most of them are likely to

be unknown to most users (for example, the tail of the top 100,000

contains persons such as BIRTHE KJÆR, a Danish singer, or MO-

HAMMAD-REZĀ LOTFI, a Persian classical musician).

We manually select 10 lexicalization templates for each relation.

As augmentation templates, we use 10 relations: our 9 test relations

(see above) plus RELIGION. Of course, when testing on relation R,

we are not allowed to use R itself for query augmentation, so there

are 10×(10−1) = 90 candidate templates per subject–relation pair

(not all of which can be necessarily instantiated for every subject,

since the relation specified by an augmentation template might not

be known for every subject).

3.1.2 Ranking metrics

Next, we introduce the ranking metrics used to quantify perfor-

mance. Consider a subject–relation pair (S,R) with the set O =
{O1, . . . ,On} of ground-truth objects, and assume we want to eval-

uate an entity ranking E . Let r1 < .. . < rn be the ranks of the

elements of O in E , in ascending order. The rank of elements of O

not appearing in E is defined as infinity. Then, the reciprocal rank

(RR) of E is defined as the reciprocal of the rank of the highest-

ranked true answer, i.e., as 1/r1. Averaging over several rankings

yields the mean reciprocal rank (MRR). The reciprocal of the MRR

is the harmonic mean rank of the highest-ranked true answers.

If the emphasis is on retrieving each, rather than any, true answer

from O, another useful metric is average precision (AP), defined

as 1
n ∑

n
i=1 i/ri. Averaging over several rankings yields the mean

average precision (MAP).

For both RR and AP, the best possible value is 1, and the worst

possible, 0. RR upper-bounds AP, and if n = 1 (e.g., because R is a

functional relation), RR equals AP.

3.2 Quality of answer rankings
We previously stated the intuition that issuing too many queries to

the QA system may be harmful because of the negative impact of

false positives (answers that get ranked unduly high), and that we

might counteract this effect by asking a smaller set of well selected

queries. The goal of the first part of this section is to show that this

is indeed the case, by evaluating different query selection methods.

In the second part of this section, we illustrate the effects of query

subselection in more detail by performing a more fine-grained anal-

ysis on a per-subject basis.

3.2.1 Subselecting queries for aggregation

We now perform an evaluation of the effects of subselecting queries

for aggregation. Recall that query selection is based on heatmaps

as in Fig. 2 (one per relation), which are computed in an offline

training stage and which quantify, for each template, how well it

performs on our set of 1,000 training subjects. Also recall from

Section 2.2 that we can act at different degrees of greediness when

selecting templates according to these heatmaps. Further, for each

greediness level, we can ask the QA system any number of queries,

up to the number of queries available for the input subject–relation

pair (around 90, cf. Section 3.1.1).

Fig. 3 explores these combinations of greediness level and num-

ber of queries asked. Each panel pertains to one relation and con-

tains one curve for each of two greediness levels: random in dashed

black (γ = 0 in (1)) and greedy in solid red (γ → ∞). The x-axes

show the number NR of queries, the y-axes, performance for the

respective combination of greediness and number of queries (mea-

sured as the MRR across all aggregate rankings, one ranking for

each of the 1,000 test subjects). Finally, the blue dotted horizontal

lines indicate the MRR achieved when aggregating over all avail-

able queries; i.e., if we extended the x-axes as far to the right as



Relation R MRR (NR) MRR (all) MAP (NR) MAP (all) NR Greedy-curve shape Closedness

SPOUSES 0.54 0.47 0.50 0.43 8 inverted U 0.010

PARENTS 0.33 0.28 0.25 0.22 8 inverted U 0.013

SIBLINGS 0.30 0.27 0.24 0.23 8 inverted U 0.015

CHILDREN 0.25 0.20 0.18 0.14 8 inverted U 0.018

PLACE OF BIRTH 0.71 0.67 0.71 0.67 8 inverted U 0.026

EDUCATION 0.83 0.82 0.78 0.77 32 diminishing returns 0.063

PROFESSION 0.58 0.58 0.47 0.46 16 diminishing returns 0.21

NATIONALITY 0.94 0.94 0.93 0.93 32 diminishing returns 0.24

ETHNICITY 0.78 0.77 0.76 0.76 32 diminishing returns 0.28

Table 3: Performance of our system on 9 relations. We show MRR and MAP for two query selection strategies: (1) greedily selecting

the optimal number NR of queries (corresponding to the highest values of the red curves in Fig. 3); (2) selecting all available queries

(corresponding to the horizontal lines in Fig. 3). We also show the closedness for all relations (cf. Section 3.2.1 for a definition).

possible, the curves for all greediness levels would necessarily con-

verge to the horizontal lines. For space reasons, we show plots for

three representative relations only, but the observations that follow

apply equally to the relations not shown in Fig. 3. The results for

all relations are summarized in Table 3.

Greedy is best. The reason we restrict the plots to the two ex-

treme greediness levels is that we found that intermediate levels lie

strictly in between: the more we explore, the more we approach

the performance of random selection. So the first observation is

that greedy query selection works best for all relations (for perfor-

mance metrics, cf. the MRR and MAP columns in Table 3).

Asking too many queries can hurt. As a second point, the greedy

(red) curves also reveal that performance depends on the number

of queries asked. In all cases, we do better by asking the QA

system more than one query. In some cases, it is best not to ask

too many queries, manifest in an inverted-U shape (SPOUSES and

PLACE OF BIRTH in Fig. 3, but also PARENTS, SIBLINGS, CHIL-

DREN). In these cases, we achieve the best performance by asking

8 queries. In other cases, asking more queries is always better,

manifest in a diminishing-returns shape (NATIONALITY in Fig. 3,

but also ETHNICITY, EDUCATION, PROFESSION). The columns

‘NR’ and ‘Greedy-curve shape’ of Table 3 summarize the shapes of

the greedy (red) curves for all test relations. While this table indi-

cates that NR is optimally chosen as 16 or 32 for the relations with

diminishing-returns curves, the MRR and MAP achieved for those

values is only marginally better than for NR = 8 (cf. Fig. 3(c)), so

we conclude that issuing NR = 8 queries is a good choice for all R.

Open vs. closed relations. Whether a relation exposes an inverted-

U or a diminishing-returns shape has to do with the answer type

it expects; e.g., SPOUSES expects an object of type PERSON, an

‘open’ type with a large number of instances. This means that there

are many potential false positives, and by asking more and more

queries of ever poorer quality, we introduce ever more of them into

the aggregate answer ranking, which makes the greedy (red) curve

decrease. On the other extreme, NATIONALITY expects objects of

type COUNTRY, a ‘closed’ type with only around 200 instances,

such that the number of potential false positives is very limited.

To put this intuition in numbers, we compute, for each rela-

tion, the number of unique answer entities contained in all rankings

across all subjects and queries. Similarly, we compute the number

of all unique ground-truth answers across all subjects and queries.

Dividing the second by the first number yields the fraction of all

distinct answers that are ever true answers (akin to the notion of

precision), which we refer to as ‘closedness’. The results of this

calculation are displayed in the ‘Closedness’ column of Table 3.

We see that the closedness is lowest for person-typed relations and

highest for the predicates ETHNICITY and NATIONALITY. The val-

ues are significantly larger for relations with a diminishing-returns

shape than for those with an inverted-U shape.

In conclusion, the answer to the question whether we can profit

from the robustness of aggregation without injecting too many false

positives is, Yes: by asking a small, well chosen fraction of all avail-

able queries, we do better than by asking a single query and at least

as well as by asking all available queries.

3.2.2 Subject-level analysis

To better understand the effects of aggregating the rankings result-

ing from multiple queries, let us consider Fig. 4. In these plots, each

column (x-value) represents one of 100 randomly sampled test sub-

jects. Within each column, there is one gray circle per query, with

the y-axis showing the corresponding RR (on a logarithmic scale,

i.e., values of 0 do not appear). The per-subject MRR is obtained

by taking column-wise averages, plotted as black dots. Subjects

are sorted on the x-axis in order of increasing MRR (such that the

black curve is descending by design). The blue crosses show the

RR when aggregating over all queries available for the respective

subject (around 90, cf. Section 3.1.1), while the red triangles show

the RR when aggregating 8 greedily chosen queries (since NR = 8

was found to be a good value in Section 3.2.1). That is, the average

of all black dots equals the value of the corresponding black curve

in Fig. 3 at x = 1; the average of all blue crosses equals the value

of the corresponding blue horizontal line; and the average of all red

triangles equals the value of the corresponding red curve at x = 8.

We investigate two representative relations. Fig. 4(a) shows the

results for NATIONALITY, a ‘closed’ relation (diminishing-returns

shape in Fig. 3) on which we do nearly perfectly (MRR 0.94, or

harmonic mean rank 1.1). Fig. 4(b) visualizes performance for

SPOUSES, an ‘open’ relation (inverted-U shape in Fig. 3) on which

performance, while still good (MRR 0.54, or harmonic mean rank

1.9), is well inferior to that on NATIONALITY.

We see that, in the case of NATIONALITY, aggregating all avail-

able queries (blue crosses, often occluded by the red triangles) is

very effective, to the extent that for nearly all subjects, the aggre-

gate ranking has an RR of 1 (for an MRR of 0.94 across all sub-

jects). That is, aggregating over all available queries achieves vir-

tually the same performance as if we chose the single best query

for the respective test input—which is, of course, impossible, since

we cannot know ahead of time which query will perform best (we

only have estimates from the training phase).

As Fig. 4(b) demonstrates, the SPOUSES relation is considerably

harder. While for about 40% of subjects, aggregating over all avail-

able queries (blue crosses) places a true answer at rank 1, there also

is a considerable number of subjects for which aggregating does
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Figure 4: Subject-level performance analysis (cf. Section 3.2.2).

not outperform random query selection (where blue crosses lie be-

neath black dots). Although for many of these subjects there is at

least one query for which a true answer gets rank 1 (gray circles),

blindly aggregating all queries (blue crosses) often cannot recover

it. The reason is that, among all available queries, there are many

of poor quality, which overwhelm the aggregate ranking with false

positives. In this case, more careful query selection helps: on aver-

age, the red triangles lie significantly above the blue crosses (MRR

0.54 vs. 0.46). In particular, note that several red triangles achieve

an RR of 1, while their blue-cross counterparts lie further below.

3.3 Quality of calibrated predictions
As motivated in Section 2.6, it is desirable to know for each answer

candidate how likely it is to be correct. Computing this probability

(also called confidence) is the goal of the answer calibration step.

In this section, we evaluate this step, followed by an analysis of the

number of high-confidence predictions our system makes.

Quality of answer calibration. We proceed as follows, for each

relation R separately. For each of the 1,000 test subjects for R, run

the full pipeline (using greedy selection of NR = 8 queries, which

was found to be near-optimal in Section 3.2.1), resulting in one ag-

gregate ranking with calibrated scores per subject. Consider the set

of all answer entities, across all subjects, and partition it accord-

ing to the calibrated scores. For partitioning, we divide the range

[0%,100%] into 20 buckets spanning 5% each. Under perfect cali-

bration, the fraction of true answers in each bucket should lie within

the range that defines the bucket.

Graphically, this translates to the following requirement. If we

plot the 20 probability buckets on the x-axis and the fraction of true

answers per bucket on the y-axis, we want the resulting curve to

lie as close to the diagonal running through the origin as possible.

Fig. 5 visualizes the results of this graphical test for the same three

relations depicted in Fig. 3. For these relations (and equally for the

ones not plotted) the diagonal is followed closely, which implies

that calibration works well.

Number of high-quality answers. Eventually, we are interested

in making a large number of high-quality predictions, since those

are the best candidates to be suggested for Freebase.2 We can get

an idea of the number of high-quality predictions by counting how

many predictions we make with high confidence. The results for

all 9 test relations are summarized in Table 4, which contains the

2In practice, all automatically extracted facts are screened by hu-
man raters before they are added to Freebase.
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Figure 5: Calibration results (with bootstrapped 95% con-

fidence intervals). Horizontal axes: Predicted probability,

binned in 20 buckets of width 5%. Vertical axes: Fraction of

positive examples in bucket.

numbers of facts extracted above different confidence thresholds.

Since our test set contains 1,000 subjects for each relation, a value

of 1,000 means that we predict one fact per subject on average with

a confidence above the respective threshold, a value of 100 implies

we predict one fact per 10 subjects, etc.

When evaluating the quality of answer rankings returned by our

method (cf. Table 3), we found performance to be lowest on CHIL-

DREN (MRR 0.25; for an explanation, cf. the discussion in Sec-

tion 5). However, we also only extract 8 facts with a confidence

above 50% for CHILDREN, so our system knows that its answers

are poor in this case, which is crucial for making the output action-

able. Our answer rankings are best for NATIONALITY (MRR 0.94),

which is reflected in high confidence values: we extract 366 facts

with a confidence over 90%, i.e., over one per three subjects.

For completeness, each number of extracted facts in Table 4 is

followed (in parentheses) by the fraction of facts that are correct,

such that multiplying the two numbers in each cell yields the total

number of correct facts for the respective confidence threshold.3

Precison and recall. Fig. 6 shows precision–recall curves (interpo-

lated [10]) for the three representative example relations (those also

shown in Figs. 3 and 5). These curves were computed for a single

ranking per relation, formed by listing all predictions for the rela-

tion (across subjects) in order of confidence. As expected, the curve

for NATIONALITY looks best: since it is a closed relation (cf. Sec-

tion 3.2), the impact of false positives is limited, and precision stays

high even as recall is increased. Further, PLACE OF BIRTH is more

3Sometimes we are too confident in our top predictions (e.g., for
PROFESSION, of the facts with a confidence above 90%, only 65%
are correct). But since human raters verify all facts before they are
added to Freebase, perfect precision is not our main concern.



Relation > 10% > 30% > 50% > 70% > 90% Novel

SPOUSES 1,395 (0.37) 518 (0.64) 293 (0.79) 160 (0.84) 67 (0.91) 14%

PARENTS 1,278 (0.21) 213 (0.48) 78 (0.63) 35 (0.63) 7 (0.57) 38%

SIBLINGS 958 (0.21) 168 (0.50) 66 (0.65) 22 (0.73) 2 (1.00) 19%

CHILDREN 753 (0.20) 62 (0.48) 8 (0.62) 0 (—) 0 (—) —

PLACE OF BIRTH 1,723 (0.38) 766 (0.57) 426 (0.62) 209 (0.67) 52 (0.73) 15%

EDUCATION 2,400 (0.44) 1,222 (0.66) 857 (0.74) 535 (0.78) 173 (0.82) 19%

PROFESSION 2,405 (0.31) 719 (0.53) 388 (0.62) 202 (0.65) 68 (0.65) 30%

NATIONALITY 1,747 (0.53) 1,061 (0.71) 748 (0.79) 557 (0.83) 366 (0.90) 15%

ETHNICITY 1,805 (0.44) 909 (0.63) 601 (0.70) 408 (0.75) 175 (0.85) 31%

Table 4: Numbers of facts extracted above different confidence thresholds, for 1,000 subjects per relation. Parentheses: Precision,

i.e., fraction of correct facts. The column labeled ‘Novel’ contains the percentage of facts extracted with a confidence above 70% that

are found by none of a collection of complementary methods (cf. Section 3.3).
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Figure 6: Precision–recall curves. Horizontal axes: Recall. Ver-

tical axes: Precision.

closed than SPOUSES and achieves higher MRR and MAP (cf. Ta-

ble 3). Therefore, it is not surprising that the precision–recall curve

for PLACE OF BIRTH is more concave than for SPOUSES. Note,

however, that at low levels of recall, SPOUSES achieves higher pre-

cision than PLACE OF BIRTH, i.e., our most confident predictions

for SPOUSES are better than for PLACE OF BIRTH. This demon-

strates that, even if the quality of the uncalibrated answer rankings

for the average subject (which is what MRR and MAP capture) is

worse, there still is value in our overall top predictions across all

subjects when considering the calibrated answer scores.

Novelty of extracted facts. Finally, we compare the overlap of

the facts extracted by the present system with facts extracted by

our in-house state-of-the-art ‘push’ system [5] (which is similar to

Ji and Grishman [8]). Concretely, we consider the predictions we

make with a confidence above 70% and compute the fraction that

are not found by the conventional ‘push’ methods (also with a con-

fidence above 70%). The values range from 14% (SPOUSES) to

38% (PARENTS), with a mean of 23% over all 9 relations. (All val-

ues are listed in the right column of Table 4.) We conclude that our

‘pull’ method adds substantial value over existing ‘push’ methods.

4. RELATED WORK
Related work can be divided into three main areas: papers about

question answering (QA), papers about knowledge base completion

(KBC), and papers about using QA to solve the KBC task. We

briefly review each of these below.

The field of general QA has been popular for a long time. A mile-

stone was the introduction, in 1999, of a specialized track related

to QA into the annual competition held at the Text Retrieval Con-

ference [20]. Many systems in this competition, as well as our own

system, are based on the approach outlined by Paşca [14]. How-

ever, our focus is not developing better QA technology, but rather

addressing the issue of how to use such systems for KBC.

The KBC task has grown in popularity as a research topic af-

ter being introduced as an annual competition in 2008 to the Text

Analysis Conference [11]. Good summaries of the standard ap-

proaches to this task are given by Ji and Grishman [8] and Weikum

and Theobald [21]. Most of these methods process each document

in turn according to a ‘push’ model (cf. Section 1), extracting as

many facts as possible by using named-entity linkage and (super-

vised) relation extraction methods.

In this paper, we focus on a ‘pull’ model, whereby we try to re-

trieve individual documents to fill in specific facts, using QA tech-

nology. While this is a relatively new approach, there are some re-

lated works. The most similar is perhaps Kanani and McCallum’s

[9] work on using reinforcement learning to learn an optimal policy

for efficiently filling in missing values in a KB (they focus on filling

in the email address, job title, and department affiliation of 100 pro-

fessors at UMass Amherst). The actions available are to perform

one of 20 possible types of query (e.g., name, name + “CV”, name

+ “Amherst”), to download one of the n resulting Web pages, or to

extract one of the three relations from the page. By contrast, we

learn the value of each possible query formulation using a myopic

strategy; we always process n = 50 snippets resulting from search;

and we extract the values from each snippet independently.

OpenEval [17] focuses on classifying if a given subject–relation–

object triple is true or not, based on retrieved Web pages, whereas

we focus on returning all high-confidence object values for a given

subject–relation pair based on snippets. A further difference is that

OpenEval glosses over the distinction between entities and their

names, or mentions, which can cause problems due to synonymy.

Another related approach is ‘Conversing Learning’ [15]. Here,

the goal is to formulate natural-language questions about inference

rules (e.g., ‘Is it true that, if X and Y have children in common,

then they must be married?’) used by the NELL system [3], and to

pose these questions to Twitter and Yahoo! Answers, hoping that

humans will answer ‘yes’ or ‘no’ to the questions. By contrast, we

do not ask humans, but instead perform targeted Web searches, and

our questions are about specific facts rather than inference rules.

Finally, Byrne and Dunnion [2] formulate one query per subject–

relation pair, using manually constructed templates, and search a

small collection of documents to retrieve answers. By contrast, we

learn how to formulate the queries, and we search the entire Web.

5. DISCUSSION
The main goal of this paper is to present and evaluate an end-to-

end pipeline for knowledge base completion based on search-based

question answering. While it is fully functional and works well

on our evaluation data, many more improvements can be made.

The purpose of this section is to discuss the separate parts of the

pipeline, pointing out common failure modes and highlighting po-

tential directions for future work.



Query construction (Section 2.1). Several further kinds of aug-

mentation beyond appending known properties are conceivable. For

instance, we could add phrases that tend to co-occur with the cor-

rect answer on Web pages (e.g., the strings hospital or was born in

could help in queries for PLACE OF BIRTH). Also, when choosing

which properties to augment with, we could attempt to pick ones

that disambiguate between entities with similar names; e.g., when

the subject is called Michael Jackson (as in Table 2), appending the

value of PROFESSION is better than appending the value of GEN-

DER, since the latter is shared by the two ambiguous subjects, while

the former distinguishes them.

Another interesting idea for query augmentation would be to ad-

mit the exclusion operator when constructing queries. This could

provide a tool for explicitly reducing the number of bad snippets

retrieved by the QA system. For instance, snippets containing the

word music—most likely about Michael Jackson the singer rather

than the beer sommelier—would be avoided by the query Michael

Jackson birthplace –music.

Query selection (Section 2.2). Currently, query choice is done in

batch mode: for each relation R, we first choose a predetermined

number NR of queries and then feed them to the QA system all

at once. An alternative approach could follow a sequential rather

than a batch paradigm, asking one query at a time, and inspect-

ing the aggregated and calibrated ranking after each query. This

process could continue until the calibrated probabilities of the top-

ranked answers are high enough or the ranking has stayed stable

for a while. Such a setup would be more adaptive with respect to

the number of queries asked and could thus be potentially more

effective at avoiding to ask too many queries (cf. [9]).

Question answering (Section 2.3). It is a strength of our method

that it leverages powerful Web-search machinery for retrieving rel-

evant and up-to-date information that is independent of Freebase.

Nonetheless, in the evaluation (cf. Tables 3 and 4) it became clear

that our system works better on some relations than others. We have

already discussed the different properties of ‘open’ vs. ‘closed’ re-

lations (Section 3.2.1). Still, there remain effects that are not ex-

plained by this distinction. Consider, e.g., the relations SPOUSES

and CHILDREN, both expecting objects of type PERSON. Although

SPOUSES is arguably even more ‘open’ than CHILDREN (cf. Table

3, where SPOUSES has the lowest closedness), our performance is

considerably better for SPOUSES than for CHILDREN (MRR 0.54

vs. 0.25). Error analysis led us to conclude that the effect is due

to the QA system: result snippets that mention the subject’s chil-

dren often also mention their spouse, to the extent that, in some

cases, the spouse appears more often in the snippets than the chil-

dren themselves, so our QA system, which uses frequency of oc-

currence among its main features, may return the spouse in place of

the children. It is also problematic that children are less frequently

mentioned by name than other people the subject is related to.

We emphasize that we do not rely on the internal details of the

QA system, but merely require that it take a query string as input

and return a scored list of answer strings as output. Treating the QA

system in this black-box fashion means we can in principle replace

it with any QA system with the same input–output signature.

Answer calibration (Section 2.6). A fruitful addition, which could

also help mitigate the problem of SPOUSES vs. CHILDREN from the

previous paragraph, could be to inject world knowledge into the an-

swer calibration step; e.g., if we know from Freebase that Y is sub-

ject X’s husband, we would want the calibration model to learn that

Y is unlikely to also be X’s child. One way to enable this would

be to augment the feature vectors that serve as input to the calibra-

tion step by binary features indicating all known relations between

the subject and the candidate object. Then, the logistic regression

used for calibration could learn which relations are mutually exclu-

sive in Freebase (e.g., it could learn a large negative weight for the

SPOUSES feature of the model for the CHILDREN relation).

Head vs. tail entities. Our test subjects were carefully sampled

in a stratified manner, such that we are covering entities at all lev-

els of popularity (from our base set of the 100,000 most frequently

searched-for people; cf. Section 3.1.1). We originally hypothesized

that performance would be better for more popular subjects. How-

ever, we could not confirm this intuition in our experiments: when

ordering subjects according to popularity rather than MRR on the

x-axis in Fig. 4, no correlation between MRR and popularity could

be discerned. This is important for the following reason.

Recall that, to allow for automated evaluation, we sampled a

test set of subjects for which the ground-truth objects are known

in Freebase. Of course, for the system to be truly useful, it must be

run on subjects for which the object is presently unknown. How-

ever, we found that Freebase is less complete for unpopular than

for popular entities. Thus, and since there are more unpopular than

popular entities in Freebase, it is important that our method works

well on the less popular entities, too.

This being said, there are fundamental limits to any method for

automated knowledge base completion—including ours—, stem-

ming from the fact that many true facts are hard, or even impossible,

to find on the Web. For instance, Freebase lists ROSE MARIE COL-

IMORE as one of FRANK ZAPPA’s parents, and our Web-search–

based QA system successfully retrieves many documents that men-

tion this fact. But what if we chose ROSE MARIE COLIMORE as

the subject whose parents we want to find? Not only is the answer

unknown in Freebase, there currently are not even any Freebase

entities for Colimore’s parents. The reason is that the vast ma-

jority of information on Colimore—whether in Freebase or on the

Web in general—deals with her exclusively in her role as Zappa’s

mother and rarely discusses any other aspects of her life. As a con-

sequence, it is very challenging even for humans—let alone for au-

tomated knowledge base completion methods—to answer the ques-

tion who Colimore’s parents were. This means that, beyond finding

the answer, having it verified by humans is a difficult task, too.

6. CONCLUSIONS
This paper presents a method for filling gaps in a knowledge base.

Our approach is different from a number of prior projects in that

it follows a ‘pull’ model that attempts to find the missing objects

for a given subject–relation pair on demand, rather than as one of

many facts discovered during a full pass over a large corpus (which

we call a ‘push’ model).

Our system uses a question-answering system (as a black box),

which in turn takes advantage of mature Web-search technology

(also as a black box) to retrieve relevant and up-to-date text pas-

sages to extract answer candidates from. We propose an end-to-

end pipeline that lexicalizes subject–relation pairs to Web-search

queries, chooses a good subset of queries, performs Web-search–

based question answering, links candidate answer strings to Free-

base entities, aggregates the results from all queries, and finally

produces probabilistically scored rankings of answer entities.

We show empirically that choosing the right queries—without

choosing too many—is crucial, especially for relations with objects

from ‘open’ types with many instances (such as PERSON). Finally,

we demonstrate that, for several relations, our system makes a large

number of high-confidence predictions; e.g., we predict a national-

ity with a confidence above 90% for one in three test subjects.
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