
Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

The Intervalgram: An Audio Feature for
Large-scale Cover-song Recognition

Thomas C. Walters, David A. Ross, and Richard F. Lyon

Google, Brandschenkestrasse 110, 8002 Zurich, Switzerland
tomwalters@google.com

Abstract. We present a system for representing the musical content of
short pieces of audio using a novel chroma-based representation known
as the ‘intervalgram’, which is a summary of the local pattern of musical
intervals in a segment of music. The intervalgram is based on a chroma
representation derived from the temporal profile of the stabilized audi-
tory image [10] and is made locally pitch invariant by means of a ‘soft’
pitch transposition to a local reference. Intervalgrams are generated for a
piece of music using multiple overlapping windows. These sets of interval-
grams are used as the basis of a system for detection of identical melodic
and harmonic progressions in a database of music. Using a dynamic-
programming approach for comparisons between a reference and the song
database, performance is evaluated on the ‘covers80’ dataset [4]. A first
test of an intervalgram-based system on this dataset yields a precision at
top-1 of 53.8%, with an ROC curve that shows very high precision up to
moderate recall, suggesting that the intervalgram is adept at identifying
the easier-to-match cover songs in the dataset with high robustness. The
intervalgram is designed to support locality-sensitive hashing, such that
an index lookup from each single intervalgram feature has a moderate
probability of retrieving a match, with few false matches. With this in-
dexing approach, a large reference database can be quickly pruned before
more detailed matching, as in previous content-identification systems.

Keywords: Cover Song Recognition, Auditory Image Model, Machine
Hearing

1 Introduction

We are interested in solving the problem of cover song detection at very large
scale. In particular, given a piece of audio, we wish to identify another piece
of audio representing the same underlying composition, from a potentially very
large reference set. Though our approach aims at the large-scale problem, the
representation developed is compared in this paper on a small-scale problem for
which other results are available.

There can be many differences between performances with identical melodies.
The performer may sing or play at a different speed, in a different key or on a
different instrument. However, these changes in performance do not, in general,
prevent a human from identifying the same melody, or pattern of notes. Thus,



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

given a performance of a piece of music, we wish to find a representation that is
to the largest extent possible invariant to such changes in instrumentation, key,
and tempo.

Serra [12] gives a thorough overview of the existing work in the field of melody
identification, and breaks down the problem of creating a system for identifying
versions of a musical composition into a number of discrete steps. To go from
audio signals for pieces of music to a similarity measure, the proposed process
is:

– Feature extraction
– Key invariance (invariance to transposition)
– Tempo invariance (invariance to a faster or slower performance)
– Structure invariance (invariance to changes in long-term structure of a piece

of music)
– Similarity computation

In this study, we concentrate on the first three of these steps: the extraction
of an audio feature for a signal, the problem of invariance to pitch shift (both
locally and globally) and the problem of invariance to changes in tempo be-
tween performances of a piece of music. For the first stage, we present a system
for generating a pitch representation from an audio signal, using the stabilized
auditory image (SAI) [10] as an alternative to standard spectrogram-based ap-
proaches. Key invariance is achieved locally (per feature), rather than globally
(per song). Individual intervalgrams are key normalized relative to a reference
chroma vector, but no guarantees are made that the reference chroma vector will
be identical across consecutive features. This local pitch invariance allows for a
feature that can track poor-quality performances in which, for example, a singer
changes key gradually over the course of a song. It also allows the feature to be
calculated in a streaming fashion, without having to wait to process all the audio
for a song before making a decision on transposition. Other approaches to this
problem have included shift-invariant transforms [9], the use of all possible trans-
positions [5] or finding the best transposition as a function of time in a symbolic
system [13]. Finally, tempo invariance is achieved by the use of variable-length
time bins to summarize both local and longer-term structure. This approach is
in contrast to other systems [5, 9] which use explicit beat tracking to achieve
tempo invariance.

While the features are designed for use in a large-scale retrieval system when
coupled with a hashing technique [1], in this study we test the baseline per-
formance of the features by using a Euclidean distance measure. A dynamic-
programming alignment is performed to find the smallest-cost path through the
map of distances between a probe song and a reference song; partial costs, av-
eraged over good paths of reasonable duration, are used to compute a similarity
score for a each probe-reference pair.

We evaluate performance of the intervalgam (using both SAI-based chroma
and spectrogram-based chroma) using the ‘covers80’ dataset [4]. This is a set
of 160 songs, in 80 pairs that share an underlying composition. There is no ex-
plicit notion of a ‘cover’ versus an ‘original’ in this set, just an ‘A’ version and



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

a ‘B’ version of a given composition, randomly selected. While it is a small cor-
pus, several researchers have made use of this dataset for development of audio
features, and report results on it. Ellis [5] reports performance in terms of ab-
solute classification accuracy for the LabRosa 2006 and 2007 music information
retrieval evaluation exchange (MIREX) competition, and these results are ex-
tended by, amongst others, Ravuri and Ellis [11], who present detection error
tradeoff curves for a number of systems.

Since we are ultimately interested in the use of the intervalgram in a large-
scale system, it is worth briefly considering the requirements of such a system.
In order to perform completely automated detection of cover songs from a large
reference collection, it is necessary to tune a system to have extremely low false
hit rate on each reference. For such a system, we are interested less in high abso-
lute recall and more in finding the best possible recall given a very low threshold
for false positives. Such systems have previously been reported for nearly-exact-
match content identification [1]. The intervalgram has been developed for and
tested with a similar large-scale back end based on indexing, but there is no large
accessible data set on which performance can be reported. It is hard to estimate
recall on such undocumented data sets, but the system identifies a large number
of covers even when tuned for less than 1% false matches.

2 Algorithm

2.1 The Stabilized Auditory Image

The stabilized auditory image (SAI) is a correlogram-like representation of the
output of an auditory filterbank. In this implementation, a 64-channel pole-zero
filter cascade [8] is used. The output of the filterbank is half-wave rectified and
a process of ‘strobe detection’ is carried out. In this process, large peaks in the
waveform in each channel are identified. The original waveform is then cross-
correlated with a sparsified version of itself which is zero everywhere apart from
at the identified strobe points. This process of ‘strobed temporal integration’
[10, 14] is very similar to performing autocorrelation in each channel, but is
considerably cheaper to compute due to the sparsity of points in the strobe signal.
The upper panels of Figure 1 show a waveform (upper panel) and stabilized
auditory image (middle panel) for a sung note. The pitch of the voice is visible
as a series of vertical ridges at lags corresponding to multiples of the repetition
period of the waveform, and the formant structure is visible in the pattern of
horizontal resonances following each large pulse.

2.2 Chroma From the Auditory Image

To generate a chroma representation from the SAI, the ‘temporal profile’ is first
computed by summing over the frequency dimension; this gives a single vector
of values which correspond to the strength of temporally-repeating patterns in
the waveform at different lags. The temporal profile gives a representation of



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

0 5 10

Time (ms)

F
ilt

e
r 

c
e
n
te

r 
fr

e
q
u
e
n
c
y
 (

H
z
) 9400

40

0 5 10

Lag (ms)

Fig. 1. Waveform (top panel), stabilized auditory image(SAI) (middle panel) and SAI
temporal profile (bottom panel) for a human voice singing a note.

the time intervals associated with strong temporal repetition rates, or possible
pitches, in the incoming waveform. This SAI temporal profile closely models
human pitch perception [6]; for example, in the case of stimuli with a missing
fundamental, there may be no energy in the spectrogram at the frequency of the
pitch perceived by a human, but the temporal profile will show a peak at the
time interval associated with the missing fundamental.

The lower panel of Figure 1 shows the temporal profile of the stabilized
auditory image for a sung vowel. The pitch is visible as a set of strong peaks
at lags corresponding to integer multiples of the pulse rate of the waveform.
Figure 2 shows a series of temporal profiles stacked in time, a ‘pitch-o-gram’, for
a piece of music with a strong singing voice in the foreground. The dark areas
correspond to lags associated with strong repetition rates in the signal, and the
evolving melody is visible as a sequence of horizontal stripes corresponding to
notes; for example in the first second of the clip there are four strong notes,
followed by a break of around 1 second during which there are some weaker note
onsets.

The temporal profile is then processed to map lag values to pitch chromas in
a set of discrete bins, to yield a representation as chroma vectors, also known as
‘pitch class profiles’ (PCPs) [12]. In our standard implementation, we use 32 pitch
bins per octave. Having more bins than the standard 12 semitones in the Western
scale allows the final feature to accurately track the pitch in recordings where



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

L
a
g
 (

m
s
)

Time (s)

1 2 3 4 5

5

10

15

20

25

Fig. 2. A ‘pitch-o-gram’ created by stacking a number of SAI temporal profiles in time.
The lag dimension of the auditory image is now on the vertical axis. Dark ridges are
associated with strong repetition rates in the signal.



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

the performer is either mistuned or changes key gradually over the course of
the performance; it also enables more accurate tracking of pitch sweeps, vibrato,
and other non-quantized changes in pitch. Additionally, using an integer power
of two for the dimensions of the final representation lends itself to easy use of
a wavelet decomposition for hashing, which is discussed below. The chroma bin
assignment is done using a weighting matrix, by which the temporal profile is
multiplied to map individual samples from the lag dimension of the temporal
profile into chroma bins. The weighting matrix is designed to map the linear
time-interval axis to a wrapped logarithmic note pitch axis, and to provide a
smooth transition between chroma bins. An example weighting matrix is shown
in Figure 3. The chroma vectors for the same piece of music as in Figure 2 are
shown in Figure 4.

L
a
g
 (

m
s
)

Chroma bin
4 8 12 16 20 24 28 32

5

10

15

20

25

Fig. 3. Weighting matrix to map from the time-lag axis of the SAI to chroma bins.

2.3 Chroma From the Spectrogram

In addition to the SAI-based chroma representation described above, a more
standard spectrogram-based chroma representation was tested as the basis for
the intervalgram. In this case, chroma vectors were generated using the chromagram E

function distributed with the covers80 [4] dataset, with a modified step size to
generate chroma vectors at the rate of 50 per second, and 32 pitch bins per



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

Time (s)

C
h

ro
m

a
 b

in

1 2 3 4 5

4

8

12

16

20

24

28

32

Fig. 4. Chroma vectors generated from the pitch-o-gram vectors shown in Figure 2.

octave for compatibility with the SAI-based features above. This function uses
a Gaussian weighting function to map FFT bins to chroma, and weights the
entire spectrum with a Gaussian weighting function to emphasize octaves in the
middle of the range of musical pitches.

2.4 Intervalgram Generation

A stream of chroma vectors is generated at a rate of 50 per second. From this
chromagram, a stream of ‘intervalgrams’ is constructed at the rate of around
4 per second. The intervalgram is a matrix with dimensions of chroma and
time offset; however, depending on the exact design the time-offset axis may be
nonlinear.

For each time-offset bin in the intervalgram, a sequence of individual chroma
vectors are averaged together to summarize the chroma in some time window,
before or after a central reference time. It takes several contiguous notes to ef-
fectively discern the structure of a melody, and for any given melody the stream
of notes may be played a range of speeds. In order to take into account both
short- and longer-term structure in the melody, a variable-length time-averaging
process is used to provide a fine-grained view of the local structure, and simul-
taneously give a coarser view of longer timescales, to accommodate a moderate
amount of tempo variation; that is, small absolute time offsets use narrow time
bin widths, while larger absolute offsets use larger bin widths. Figure 5 shows
how chroma vectors are averaged together to make the intervalgram. In the
examples below, the widths of the bins increase from the center of the inter-
valgram, and are proportional to the sum of a forward and reverse exponential

wb = f
(
wp

f + w−p
f

)
, where p is an integer between 0 and 15 (for the positive

bins) and between 0 and -15 (for the negative bins), f is the central bin width,
and wf is the width factor which determines the speed with which the bin width
increases as a function of distance from the center of the intervalgram.

In the best-performing implementation, the temporal axis of the intervalgram
is 32 bins wide and spans a total time window of around 30 seconds. The central



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

two slices along the time axis of the intervalgram are the average of 18 chroma
vectors each (360ms each), moving away from the centre of the intervalgram, the
outer temporal bins summarize longer time-scales before and after the central
time. The number of chroma vectors averaged in each bin increases up to 99
(1.98s) in the outermost bins leading to a total temporal span of 26 seconds for
each intervalgram.

Fig. 5. The intervalgram is generated from the chromagram using variable-width time
bins and cross-correlation with a reference chroma vector to normalize chroma within
the individual intervalgram.

A ‘reference’ chroma vector is also generated from the stream of incoming
chroma vectors at the same rate as the intervalgrams. The reference chroma
vector is computed by averaging together nine adjacent chroma vectors using a
triangular window. The temporal center of the reference chroma vector corre-
sponds to the temporal center of the intervalgram. In order to achieve local pitch
invariance, this reference vector is then circularly cross-correlated with each of
the surrounding intervalgram bins. This cross-correlation process implements a
‘soft’ normalization of the surrounding chroma vectors to a prominent pitch or
pitches in the reference chroma vector. Given a single pitch peak in the refer-



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

ence chroma vector, the process corresponds exactly to a simple transposition
of all chroma vectors to be relative to the single pitch peak. In the case where
there are multiple strong peaks in the reference chroma vector, the process cor-
responds to a simultaneous shifting to multiple reference pitches, followed by a
weighted average based on the individual pitch strengths. This process leads to a
blurry and more ambiguous interval representation but, crucially, never leads to
a hard decision being made about the ‘correct’ pitch at any point. Making only
‘soft’ decisions at each stage means that there is less need for either heuristics
or tuning of parameters in building the system. With standard parameters the
intervalgram is a 32 by 32 pixel feature vector generated at the rate of one every
240ms and spanning a 26 second window. Since there are many overlapping in-
tervalgrams generated, there are many different pitch reference slices used, some
making crisp intervalgrams, and some making fuzzy intervalgrams.

2.5 Similarity Scoring

Dynamic programming is a standard approach for aligning two audio representa-
tions, and has been used for version identification by many authors (for example
[16]; Serra [12] provides a representative list of example implementations). To
compare sets of features from two recordings, each feature vector from the probe
recording is compared to each feature vector from the reference recording, using
some distance measure, for example Euclidean distance, correlation, or Hamming
distance over a locality-sensitive hash of the feature. This comparison yields a
distance matrix with samples from the probe on one axis and samples from the
reference on the other. We then find a minimum-cost path through this matrix
using a dynamic programming algorithm that is configured to allow jumping
over poorly-matching pairs. Starting at the corner corresponding to the begin-
ning of the two recordings the path can continue by jumping forward a certain
number of pixels in both the horizontal and vertical dimensions. The total cost
for any particular jump is a function of the similarity of the two samples to be
jumped to, the cost of the jump direction and the cost of the jump distance. If
two versions are exactly time-aligned, we would expect that the minimum-cost
path through the distance matrix would be a straight line along the leading di-
agonal. Since we expect the probe and reference to be roughly aligned, the cost
of a diagonal jump is set to be smaller than the cost of an off-diagonal jump.

The minimum and maximum allowed jump lengths in samples can be selected
to allow the algorithm to find similar intervalgrams that are more sparsely dis-
tributed, interleaved with poorly matching ones, and to constrain the maximum
and minimum deviation from the leading diagonal. Values that work well are a
minimum jump of 3 and maximum of 4, with a cost factor equal to the longer
of the jump dimensions (so a move of 3 steps in the reference and 4 in the probe
costs as much as 4,4 even though it uses up less reference time, while jumps of
3,3 and 4,4 along the diagonal can be freely intermixed without affecting the
score as long as enough good matching pairs are found to jump between). These
lengths, along with the cost penalty for an off-diagonal jump and the difference



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

in cost for long jumps over short jumps, are parameters of the algorithm. Figure
6 shows a distance matrix for a probe and reference pair.

Fig. 6. Example distance matrix for a pair of songs which share an underlying compo-
sition. The lighter pixels show the regions where the intervalgrams match closely.

In the following section we test the performance of the raw intervalgrams,
combined with the dynamic programming approach described above, in finding
similarity between cover songs.

3 Experiments

3.1 Intervalgram Similarity

We tested performance of the similarity-scoring system based on the interval-
gram, as described above, using the standard paradigm for the covers80 dataset,
which is to compute a distance matrix for all query songs against all reference
songs, and report the percentage of query songs for which the correct reference
song has the highest similarity score.

Intervalgrams were computed from the SAI using the parameters outlined in
Table 1, and scoring of probe-reference pairs was performed using the dynamic



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

programming approach described above. Figure 7 shows the matrix of scores
for the comparison of each probe with all reference tracks. Darker pixels denote
lower score, and lighter pixels denote higher scores. The white crosses show
the highest-scoring reference for a given probe. 43 of the 80 probe tracks in
the covers80 dataset were correctly matched to their associated reference track
leading to a score of 53.8% on the dataset. For comparison, Ellis [5] reports a
score of 42.5% for his MIREX2006 entry, and 67.5% for his MIREX2007 entry
(the latter had the advantage of using covers80 as a development set, so is less
directly comparable).

Parameter Value

Chromagram step size (ms) 20

Chroma bins per octave 32

Total intervalgram width (s) 26.04

Intervalgram step size (ms) 240

Reference chroma vector width (chroma vectors) 4

Table 1. Parameters used for intervalgram computation.

In addition to the SAI-based chroma features, standard spectrogram-based
chroma features were computed from all tracks in the ‘covers80’ dataset. These
features used 32 chroma bins, and were computed at 50 frames per second, to
provide a drop-in replacement for the SAI-based features. Intervalgrams were
computed from these features using the parameters in Table 1.

In order to generate detection error tradeoff curves for the dataset, the scores
matrix from Figure 7 was dynamically thresholded to determine the number of
true and false positives for a given threshold level. The results were compared
against the reference system supplied with the covers80 dataset, which is essen-
tially the same as the system entered by LabRosa for the 2006 MIREX competi-
tion, as documented by Ellis [5]. Figure 8 shows ROC curves the Elllis MIREX’06
entry and for the intervalgram-based system, both with SAI chroma features
and spectrogram chroma features. Re-plotting the ROC curve as a DET curve
to compare results with Ravuri and Ellis [11], performance of the intervalgram-
based features is seen to consistently lie between that of the LabRosa MIREX
2006 entry and their 2007 entry.

Of particular interest is the performance of the features at high precision.
The SAI-based intervalgram can achieve 47.5% recall at 99% precision, whereas
the Ellis MIREX ‘06 system achieves 35% recall at 99% precision. These early
results suggest that the intervalgram shows good robustness to interference. The
intervalgram also stands up well to testing on larger, internal, datasets in com-
bination with hashing techniques, as discussed below.



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

Fig. 7. Scores matrix for comparing all probes and references in the ‘covers80’ dataset.
Lighter pixels denote higher scores, indicating a more likely match. White crosses
denote the best-matching reference for each probe.



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

 

 

Ellis MIREX ’06

Intervalgram (SAI chroma)

Intervalgram (spectrogram chroma)

Fig. 8. ROC curves for the intervalgram-based system described in this paper and the
LabROSA MIREX 2006 entry [5].

3.2 Scaling-up with Hashing

In order to perform cover version detection on a large database of content, it
is necessary to find a cheaper and more efficient way of matching a probe song
against many references. The brute-force approach of computing a full distance
map for the probe against every possible reference scales as the product of the
number of probes and the number of references; thus a system which makes
it cheap to find a set of matching segments in all references for a given probe
would be of great value. Bertin-Mahieux and Ellis [2] presented a system us-
ing hashed chroma landmarks as keys for a linear-time database lookup. Their
system showed promise, and demonstrated a possible approach to large-scale
cover-song detection but the reported performance numbers would not make
for a practically-viable system. While landmark or ‘interest point’ detection has
been extremely successful in the context of exact audio matching in noise [15]
its effectiveness in such applications is largely due to the absolute invariance in
the location of strong peaks in the spectrogram. For cover version identification
the variability in performances, both in timing and in pitch, means that descrip-
tors summarizing small constellations of interest points will necessarily be less
discriminative than descriptors summarizing more complete features over a long
time span. With this in mind, we explore some options for generating compact
hashes of full intervalgrams for indexing and retrieval purposes.



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

Hashing Techniques Using the process outlined above, 32×32 pixel interval-
grams are generated from a signal at the rate of one per 240ms. To effectively
find alternative performances of a piece of music in a large-scale database, it
must be possible to do efficient lookup to find sequences of potentially match-
ing intervalgrams. The use of locality-sensitive-hashing (LSH) techniques over
long-timescale features for music information retrieval has previously been inves-
tigated and found to be useful for large datasets [3]. Various techniques based on
locality-sensitive hashing (LSH) may be employed to generate a set of compact
hashes which summarize the intervalgram, and which can be used as keys to
look up likely matches in a key-value lookup system.

An effective technique for summarizing small images with a combination of
wavelet analysis and Min-Hash was presented by Baluja and Covell [1] in the
context of hashing spectrograms for exact audio matching. A similar system of
wavelet decomposition was previously applied to image analysis [7].

Hashing of the Intervalgram In order to test the effectiveness of such tech-
niques on intervalgrams, the system described in [1] was adapted to produce a
compact locality-sensitive hash of the intervalgram features and tested at small
scale using the framework and dataset above. To generate hashes, four consecu-
tive 32×32 intervalgram frames are temporally averaged using a moving window,
and the resulting summary intervalgram is decomposed into a set of wavelet co-
efficients using a Haar kernel. The top t% of the wavelet coefficients with the
highest magnitude values are retained, and are represented by the sign of their
value. In this way, a sparse bit-vector can be produced, with two bits per wavelet
coefficient. The bit pattern 00 is used to represent an unused wavelet coefficient,
and the patterns 10 and 01 are used to represent a retained positive and negative
coefficient respectively. This sparse bit-vector is then hashed using the min-hash
techniques described in [1].

A search of the parameter space over a large internal dataset led to the
optimal values for the wavelet decomposition and min-hash as detailed in Table
2. In addition the choice of random permutations was optimised using the same
dataset.

Parameter Value

Top-wavelets used (%) 5

Hash bands 100

Number of permutations 255
Table 2. Optimal parameters for the wavelet decomposition and min-hash.

In this way, a 1024 element floating-point intervalgram matrix, costing 4096
bytes in storage, can be compactly summarised by a 100 byte min-hash rep-
resentation. This reduction by a factor of 40 in the size of the representation



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

comes with a cost in matching ability, which can be quantified using the same
framework as was used above for intervalgram matching. To compare hashes,
similarity matrices were generated for each pair of songs in the covers80 dataset,
as above but this time using the bytewise Hamming similarity between hashes.
The dynamic programming technique described above was again employed to
find the best path through the similarity matrix, and to provide a direct com-
parison with the raw intervalgram representation.

Figure 9 shows the overall scores matrix for the covers80 dataset computed
using the hashes. Figure 10 shows the ROC curve computed from hashed inter-
valgrams. Performance is reduced from the full intervalgram case, and the ROC
curve shows faster fall-off in precision with increasing recall, but recall at 99%
precision is around 37.5%, reduced from 47.5% with full intervalgrams. Since this
is the area of the curve which we wish to focus on for large-scale applications, it
is gratifying to note that the massive decrease in fingerprint size does not lead to
a correspondingly massive fall in achievable recall at high precision. In fact the
recall at 99% precision is still higher after hashing than that of the unmodified
Ellis MIREX 2006 features where recall was 35%.

Fig. 9. Scores matrix for comparing all probes and references in the ‘covers80’ dataset
using Hamming similarity over min-hashes. Lighter pixels denote higher scores, indi-
cating a more likely match. White crosses denote the best-matching reference for each
probe.



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

 

 

Intervalgram
Hashed Intervalgram
Ellis MIREX ’06

Fig. 10. ROC curves as in 8 with the addition of a curve for the hashed intervalgrams.

4 Discussion

We have introduced a new chroma-based feature for summarizing musical melodies,
which does not require either beat tracking or exhaustive search for transposition
invariance, and have demonstrated a good baseline performance on a standard
dataset. However, we developed the intervalgram representation to be a suitable
candidate for large-scale, highly robust cover-song detection. In the following
sections we discuss some approaches to the application of the intervalgram in
such a system.

4.1 SAI and Spectrogram-based Chroma

There was no great difference in performance between intervalgrams gener-
ated using the temporal profile of the SAI and intervalgrams generated using
a spectrogram-based chroma feature. However, there are some small differences
in different regions of the ROC curve. Recall at high precision is very similar
for both forms of chroma features; as precision is allowed to fall, the SAI-based



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

features lead to slightly higher recall for a given precision, but the trend is re-
versed in the lower-precision end of the curve. This may suggest that there would
be a benefit in combining both SAI-based and spectrogram-based chroma into a
feature which makes use of both. There is some evidence to suggest that the tem-
poral profile of the SAI may be robust to stimuli in which the pitch is ambiguous
[6], but this result may be less relevant in the context of music.

4.2 Hashing Results

Compared to exact-match audio identification, this system is much more chal-
lenging, since the individual hash codes are noisier and less discriminative. The
indexing stage necessarily has many false hits when it is tuned to get any rea-
sonable recall, so there are still many (at least thousands out of a reference set
of millions) of potential matches to score in detail before deciding whether there
is a match. However, experiments with this small test set show that existing
hashing techniques can be extremely effective at retaining the important detail
in the full feature representation.

While the bytewise Hamming similarity is a reasonable measure for compar-
ing fingerprints in the evaluation scheme described in this paper, it would not
scale to very large libraries of reference content. In such a larger-scale system
the matching could be implemented by grouping multiple bytes of the fingerprint
and using these groups of bytes as keys into a lookup table storing candidate
chunks of reference content which match the given key. A full discussion of such
a system is beyond the scope of this paper, but this is the intended application
of the hashing techniques describe here.

5 Conclusions

The intervalgram is a pitch-shift-independent feature for musical version recogni-
tion tasks. Like other features for such tasks, it is based on chroma features, but
we have demonstrated that a chroma representation derived from the temporal
profile of a stabilized auditory image gives comparable results to features derived
from a spectrogram, and may provide complementary information. To achieve
pitch-shift invariance, individual intervalgrams are shifted relative to a reference
chroma vector, but no global shift invariance is used. Finally, to achieve some
degree of tempo-invariance, variable-width time-offset bins are used to capture
both local and longer-term features.

In this study, the performance of the intervalgram was tested by using dynamic-
programming techniques to find the cheapest path through similarity matrices
comparing a cover song to all references in the ‘covers80’ dataset. Intervalgrams,
followed by dynamic-programming alignment and scoring, gave a precision at
top-1 of 53.8%. This performance value, and the associated ROC curve, lies be-
tween the performance of the Ellis 2006 and Ellis 2007 MIREX entries (the latter
of which was developed using the covers80 dataset).



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

The intervalgram has shown itself to be a promising feature for musical
version recognition. It has good performance characteristics for high-precision
matching with a low false-positive rate. Furthermore the algorithm is fairly sim-
ple and fully ‘feed-forward’, with no need for beat tracking or computation of
global statistics. This means that it can be run in a streaming fashion, requir-
ing only buffering of enough data to produce the first intervalgram before a
stream of intervalgrams can be generated. This feature could make it suitable
for applications like query-by-example in which absolute latency is an important
factor.

In this study, we have also reported results which suggest that the inter-
valgram representation will lend itself well to large scale application when cou-
pled with locality-sensitive hashing techniques such as wavelet-decomposition fol-
lowed by minhash. The high precision at moderate recall which can be achieved
with such techniques would allow for querying of a large database with a low
false-positive rate, and our preliminary experiments have shown promise in this
area.

References

1. Baluja, S., Covell, M.: Waveprint: Efficient wavelet-based audio fingerprinting. Pat-
tern recognition 41(11), 3467–3480 (2008)

2. Bertin-Mahieux, T., Ellis, D.: Large-scale cover song recognition using hashed
chroma landmarks. In: Proceedings of the International Symposium on Music In-
formation Retrieval (ISMIR) (2011)

3. Casey, M., Rhodes, C., Slaney, M.: Analysis of minimum distances in high-
dimensional musical spaces. IEEE Transactions on Audio, Speech, and Language
Processing 16(5), 1015–1028 (2008)

4. Ellis, D.: The ‘covers80’ cover song data set (2007), http://labrosa.ee.columbia.
edu/projects/coversongs/covers80/

5. Ellis, D., Cotton, C.: The 2007 LabROSA cover song detection system. MIREX
2007 Audio Cover Song Evaluation system description (2007)

6. Ives, D., Patterson, R.: Pitch strength decreases as f0 and harmonic resolution
increase in complex tones composed exclusively of high harmonics. The Journal of
the Acoustical Society of America 123, 2670 (2008)

7. Jacobs, C., Finkelstein, A., Salesin, D.: Fast multiresolution image querying. In:
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques. pp. 277–286. ACM (1995)

8. Lyon, R.: Cascades of two-pole-two-zero asymmetric resonators are good models of
peripheral auditory function. Journal of the Acoustical Society of America 130(6),
3893 (2011)

9. Marolt, M.: A mid-level representation for melody-based retrieval in audio collec-
tions. Multimedia, IEEE Transactions on 10(8), 1617–1625 (2008)

10. Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., Allerhand,
M.: Complex sounds and auditory images. In: Auditory physiology and percep-
tion, Proceedings of the 9th International Symposium on Hearing. pp. 429–446.
Pergamon (1992)

11. Ravuri, S., Ellis, D.: Cover song detection: from high scores to general classification.
In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on. pp. 65–68. IEEE (2010)



Author’s self-archived copy from research.google.com.
The final publication is available at springerlink.com.

http://link.springer.com/chapter/10.1007/978-3-642-41248-6 11

12. Serra Julia, J.: Identification of versions of the same musical composition by pro-
cessing audio descriptions. Ph.D. thesis, Universitat Pompeu Fabra (2011)

13. Tsai, W., Yu, H., Wang, H.: Using the similarity of main melodies to identify cover
versions of popular songs for music document retrieval. Journal of Information
Science and Engineering 24(6), 1669–1687 (2008)

14. Walters, T.: Auditory-based processing of communication sounds. Ph.D. thesis,
University of Cambridge (2011)

15. Wang, A.: An industrial strength audio search algorithm. In: Proceedings of the
International Symposium on Music Information Retrieval (ISMIR). vol. 2 (2003)

16. Yang, C.: Music database retrieval based on spectral similarity. In: Proceedings of
the International Symposium on Music Information Retrieval (ISMIR) (2001)


