

Google’s Innovation Factory:

Testing, Culture, And Infrastructure

Patrick Copeland, Google
copeland@google.com

ABSTRACT
Google’s external mythology has been one of a brilliant
and chaotic innovation machine that produces new
products and features at an amazing rate. Behind the
curtain of public perception is a company that takes quality
seriously and is reinventing how software is created, tested,
released, and maintained; a reality that’s even more
interesting than the myth.
At Google we’ve learned a lot in the last few years about
accelerating very large scale software development; in this
paper we'll share what has worked and what hasn't worked
for us.

1. DYNAMIC EQUILIBRIA
Since humans began writing software in the middle of the
last century, the process has been cumbersome, error prone
and has more often than not created an end product that is
low in quality. Most companies are better at talking about
software quality than implementing it.[1]

This is clearly not a new problem. In 1962 the “most
expensive hyphen in history” forced the destruction of the
Mariner I rocket only 293 seconds after it was launched.
Instead of its intended flyby of Venus, the rocket ended up
in the Atlantic Ocean.[2]

Such events have been a mainstay of computing history
ever since. In fact, Googling the search term “software
bug” turns up over 80 million hits. Buggy software is part
of the industry’s fabric.

1.1 TORRENTIAL PROCESS
There have been numerous attempts over the prior decades
to build more reliable software and these have come under
many guises. Total Quality, Zero Defect, Six Sigma and
Cleanroom have all borrowed ideas that were successful in
manufacturing, specifically prescribing more methodical
and process-driven approaches to software development.
Yet here we are in 2010 still talking about software
quality! It’s hard to come to any other conclusion than that
the lessons learned from manufacturing don’t translate well
to software.
Quality is still very hard to evaluate in software and we
end up with estimations that focus on quantifying the
measurable and rely on subjectivity for the rest. As Niklaus
Wirth recently said,

"The experience, judgment, and intuition of
programmers who have survived the rigors of testing
are what make programs of the present day useful,
efficient, and correct." [3]

1.2 EMERGING LEFTISM
One thread common to formal models are that they focus
on a few of the many variables: improving efficiency,
predictable process, estimation of quality, or others. As
most practitioners know, a development process is a
polynomial wrapped inside of a culture, and solving for a
few variables only achieves a momentary local maxima.
While process-heavy development models may work well
for manufacturing airplanes and have been successfully
applied by some companies[4], they have been viewed by
many developers as burdensome and contrary to the
creative nature of writing innovative software. Conversely,
“process-less process”, can lead to a heroic culture that’s
unable to repeatedly deliver. There needs to be balance.
Consider the physics of flight as an analogy to software
process. In addition to reasonable flying conditions and an
experienced pilot, the key to getting airborne is having an
appropriate balance of factors
that match the situation: too
much weight or too little
thrust can be disastrous
depending on the
situation. Similarly,
teams, products and
process all have virtual
physics. For instance, adding
engineers late in a product cycle doesn’t necessarily
provide more lift[5]. Adopting a new process may give a
team more thrust momentarily, but may also incur a longer
term drag that makes them incapable of innovation.
The popularity of Agile, while not a wholesale rejection of
more rigid processes, indicates that developers desire more
balance and creativity. Whatever we do to make software
higher quality and more predictable to build, we must
maintain a balance that encourages the innovative aspects
of the art form. We need to motivate smart minds to solve
hard problems and deliver rich features to customers. In
other words, we need to focus on staying airborne for the
long term.

1.3 PARADIGM SHIFTS
A lot of software is now released as services and deployed
to data centers controlled by the software producers rather
than being installed on customer-owned servers/clients of
infinite configurations scattered around the globe. Software
can be released to early adopters and beta users, bug fixes
can be deployed to all users simultaneously or to a small
percentage, maintenance and updates are handled centrally
by experts and not by end users. With more control of the
end product, development teams can experiment and take
more risks providing innovation faster and with less fear.
When problems appear, they can be identified and fast-
fixed before impacting large groups of users.

ICST 2010 Copeland, Google’s Innovation Factory - 2

But the cloud paradigm is only part of the equation. We
also need to think differently about using these capabilities
for software development itself. Can we align our culture,
tools and processes to take full advantage of this new
model? Can we use automation to solve, once and for all,
the repetitive, mundane and downright boring aspects of
building products? Can we integrate development and
testing so tightly that writing good code is easier than
writing bad code? Can we encourage big thinking that
leads to new ideas? Can we do all of this at the scale and
hypercompetitive pace of the Internet?
We’ve been tackling this problem for several years at
Google and this paper is a report of our progress. Our
approach has been to automate those development tasks
that shouldn’t require a human in-the-loop, to focus on
building a culture around quality, to promote multiple
approaches to innovation, reduce bureaucratic creep, and to
invest in reusable infrastructure.

2. INNOVATION FACTORY
We encourage our engineers to focus on innovation. Eric
Schmidt, has said, “We take our jobs to be innovators and
we are failing if we are not innovating quickly enough.[6]”
Many of our best ideas were envisioned by engineers who
were passionate about solving a problem. Popular
products, like Gmail, were initially developed by a few
passionate engineers outside of their normal work.
Linus Pauling is commonly quoted as saying, “The best
way to have a good idea is to have lots of ideas.” Google
has made its mark on the industry with new approaches to
old problems. For example, our systems are built on
“flaky” commodity hardware and an infrastructure that
dynamically compensates for that flakiness. Initially this
was a subversive idea, as other companies at the time were
building servers that attempted to eliminate all failures
(like the foolproof HAL9000 from 2001). We expect
everything to fail and use redundancy and automated
compensation techniques to maintain overall reliability.

2.1 BUILDING FOR SCALE
Outside the walls of Google, this innovation factory has
created desirable products for our users. Inside the walls, it
has created large repositories of code, data, dependencies
and information that must be managed closely. Consider
the logistics of delivering at Google’s current pace:
• More than 6,000 engineers and >40 offices.
• 2,500 ongoing projects (2.5 developers / project).
• 1,600 active external release branches for products.
• 59,000 builds / day each with 10-1000 targets..
• 1.5 million tests / day, both manual and automated.
• Most products localized into 40 languages.
• At least bi-weekly release cycles.

2.2 FLAT & AUTONOMOUS
The organizational structure we use is atypical in the
industry. For one, Google is a flat organization with many
Nooglers being no more than 2-3 steps below senior
executives. The company structure can be characterized as:
flat and autonomous.
At Google, managers are not controllers, they are
connectors charged with ensuring that teams make
effective use of information and tools. Many managers
have 15 or more direct reports, introducing some chaos and
reducing the time available to micromanage. Managers are
judged on their ability to enable smart people to get things
done.
Teams are aligned along business lines we call “focus
areas” rather than around strict product lines. People doing
similar work, no matter what products they are
contributing to, will find themselves in close reporting
proximity to their colleagues. This matrix encourages some
amount of competition, but also the reuse of good ideas.
Projects live and die based on free-market Darwinism,
where successful projects are further funded and less
successful ones face atrophy. We take many short and long
term bets, but projects must produce value to survive.
2.3 AVOIDING PLAUSIBLE DENIABILITY
The entire product team is responsible for quality, and is
judged on their ability to enable innovation, anticipate
problems, make plans, and implement high quality
software. Teams adopt processes that are in their own self
interest and that allow them to focus on innovation.
The role of someone doing testing in this environment is
structured slightly differently than other technology
companies. Testers avoid becoming codependents within
this system and generally do not write unit tests or other
activities that are best done by the developer. Testing
teams focus on higher abstractions, like identifying
latencies, system or customer focused testing, and enabling
the process.
Code is expected to have high reliability as it is written and
we adhere to a socially reinforced code review and check-
in practices. Development teams write good tests because
they care about the products, but also because they want
more time to spend writing features and less on debugging.
Teams with good testing hygiene upstream have more time
to innovate, and are thus more adaptable and competitive.
In addition, there is one source tree and poorly written
code is quickly identified because it breaks other people’s
tests and projects. Aggressive rolling back is employed to
keep the tree building “green.”
Unlike traditional testing approaches, teams do not focus
on the tail end of the process or pad the schedule for
special testing phases. Instead, they look for ways to
anticipate issues and solve them proactively in real time.
Within each project are experts in the field of software
quality and they ensure that the right tools, test cases and
test procedures are in place throughout the product
lifecycle. When bugs do slip through, or more commonly

ICST 2010 Copeland, Google’s Innovation Factory - 3

unanticipated complex behavior situations occur, we
aggressively do postmortems and quickly put in place
solutions that prevent them from reoccurring.

2.4 VIRAL ADOPTION
At an individual project level, uniformity is rarely
mandated and adoption of tools and process is left to an
internal “market” to decide. Apart from our core systems,
discussed later, a large portion of our tools are developed
by motivated individuals to solve local challenges.
Similarly, process is tailored specifically to projects. While
this leads to a healthy amount of chaos, good ideas tend to
spread quickly, because they have been proven useful by
others. Engineers decide what's best for engineering, to
articulate the right vision, and to drive initiatives in the
most sustainable fashion, and then others follow after
grassroots successes. We’ve found that positive experience
is an effective means of persuasion.
An example of viral adoption is a “fix it”, or an event
organized by engineers, that encourages Googlers to work
on the same problem at the same time. The idea is to get a
large amount of work done in a short amount of time by
leveraging the power of masses. In the past, these have
been focused on fixing 1000 TODOs in the code-base or
fixing tests to take advantage of new infrastructure
improvements.
Testing on the Toilet is another example of a viral
adoption. It started as an offhand joke and it became a
world wide sensation, making headlines in the Wall Street
Journal. The idea was to communicate ideas about testing
and to do it in a place where we know people would have
the time to read it. It’s is now published in hundreds of
stalls in most Google offices, taking submissions from
different programming languages and application domains,
and appears on Google's public testing blog[7]. While the
articles themselves need to be short enough for people to
read while they “do their business”, the ideas create a buzz
about specific topics and that would otherwise be difficult
to achieve.

2.5 CMM WITH A TWIST
One popular grass roots initiation that resembles a more
traditional process methodology is called the Test Certified
Program. Test Certified is a series of increasingly
advanced levels, each defined by a list of measurable
testing goals and capabilities. These goals are set by testers
and present quality practices, advanced techniques and
quality-oriented goals for a development team to strive to
achieve. As a development team achieves more goals,
using whatever techniques that suit their team culture and
problem domain, they move up through the Test Certified
ladder levels from TC1 to TC5.
At the initial stages of the process, teams are asked to clean
up and do several remedial actives, all of which are
designed to get them seeing the benefits of testing
immediately. Establishing a continuous build that runs a
set of fast deterministic tests is the most important aspect
of the first phase. Speed is achieved by focusing on small

unit level tests and using practices like mocking and
distributed execution.
In subsequent levels, code coverage goals are explicitly
defined, rules about releasing on “non-green” builds are
imposed, and a broader array of testing is expected, such as
integration, system level, and various other techniques.
This process is defined not to dictate to developers what to
do but to identify goals that will help them develop better
software faster and spend less time in later phases fixing
bugs. Advancement won’t guarantee higher quality
software but it does pattern a roadmap that makes good
quality more probable.

2.6 ELEMENTS OF CONTROL

As a counterbalance to the randomness incurred by our
relatively freeform process are a set of release standards
and guidelines. These “launch reviews and criteria” are
outlined to ensure that products answer common sense
questions before release. A few examples are:
• Is the design secure and customer data private?
• Will the service scale with the anticipated load?
• Does the UI meet standards?
• What are the data center utilization estimates?
• What are the latency estimates?
The point is that the release process is not friction free.
There are many high standards that must be met and it can
be frustrating for teams that procrastinate. Pain can be
avoided by driving change up stream as early as possible.
Given the forewarning, teams can meet the standards in a
way appropriate to their constraints.

3. FASTER DEVELOPER WORKFLOW
The build/test system is at the core of day-to-day activity
for software engineers at Google. Almost everything
deployed in production is developed, tested, and built using
this system. Thus, the performance and usability of the
build tools has a large impact on engineer productivity,
where even small changes are multiplied by the total
number of tool interactions.
As traditional companies scale, sub-organizations begin to
maintain separate code silos, build tribal release and
integration procedures, and duplicate effort. But, more
disturbing, they end up sinking a large amount of time into
maintenance issues. Time that should be spent adding
value is instead used to atone for past sins.
Engineering teams should be able to concentrate a
maximum of their time on quality and innovation. At
Google that time is achieved, at least in part, by making the
hard and the mundane simple and automatic. As a case-in-
point, consider our build and deployment infrastructure.

3.1 DESIGN CONSIDERATIONS
Prior to 2006, Google employed a fairly slow build and test
process that was designed for a much smaller company.
Back then, builds might be broken for days or weeks, the

ICST 2010 Copeland, Google’s Innovation Factory - 4

“unpaid mortgage” of new code would build up, and then
would be followed by lengthy debugging and stabilization
phases. We needed an approach that provided developers
nearly instant feedback on every code check-in.
We designed the system with the following principles:
• Speed: All test and analysis systems need to return

results very fast. If it takes too long, engineers will
either ignore or not bother looking for that data.

• Feedback: The focus of test systems must be on high
quality feedback. We want engineers to keep code at
production quality at all times, not adding time to fix
code that was broken earlier.

• Simplicity: Engineers should not have to understand
how the underlying build and test systems work. All
data and feedback must be easy to understand,
integrated into commonly-used productivity tools, and
presented in a workflow that allows them to take
appropriate action.

Within milliseconds of a code check-in, our build process
will automatically select the appropriate tests to run based
on dependency analysis, run those tests and report the
results. By reducing the window of opportunity for bad
code to go unnoticed, overall debugging and bug isolation
time is radically reduced. The net result is that the
engineering teams no longer sink hours into debugging
build problems and test failures.

3.2 ESTIMATING IMPACT
We created a more holistic approach to estimate the overall
impact of improvements. We know the general workflow
of engineers, and we can estimate how much time
engineers spend in each area of the workflow. From this
we can model a “representative engineer” which provides a
framework for estimating where engineers spend their time
with tools. With this model we can measure the effect of
improvements on each area of the workflow to estimate
overall impact.
TABLE: ESTIMATED MONTHLY ACTIVITY PER DEVELOPER

ACTIVITY INITIAL
CHECK-

OUT

CLEAN
BUILD

BUILD
AFTER
EDIT

BUILD
AFTER
SYNC

RUN
TESTS

FREQUENCY 2 4 160 20 60

From the workflow we can identify five key activities
involving build tools. These are: Initial Checkout, Clean
Build, Build After Edit, Build After Incremental Sync, and
Run Tests. The tricky part is estimating the frequency of
these actions. This is subjective since the details vary for
each engineer. Some do a clean checkout and build for
every task. Others never do a full sync/clean build after the
initial build is created. By collecting the data and
identifying the most frequent use cases, we were able focus
on the largest productivity wins.
3.3 RESULTS
We were able to save the company about 600 person years
of time that would otherwise have been spent waiting on

tools. We did this improving the highest traffic workflows
with caching, distributed execution, and avoiding
bottlenecks.
CHART: TIME WAITING ON TOOLS IN HOURS/MONTH/DEVELOPER.

More importantly we were able to change how products
are produced with an emphasis on continual improvement.
The chart below show the number of hours “saved” per
month per developer on different types of projects. For
instance “big” are defined as having more than 20k or
more files.

5. CONCLUSION
Just as we are witnessing a paradigm shift to cloud
computing that stretches our imagination and challenges
the limits of software, our process for developing that
software is going through an equally dramatic revolution.
We are reconsidering the appropriateness of the lessons
we’ve taken from manufacturing. We believe that software
development models require a new set of physics.
Google has experimented with this new physics with
innovative new tools, processes and infrastructure. While
there is no magic bullet, there is a pragmatism that can be
applied to software development that seeks to balance the
art form of creating software with the needs for
repeatability, efficiency, and quality. At Google that has
meant eliminating the tedious and repetitive tasks with
automation and streamlined processes allowing testers to
engage the full extent of their creativity on innovation and
meeting the challenges of modern software development.

6. ACKNOWLEDGEMENTS
James Whittaker, Alberto Savoia, Nathan York, Mark
Striebeck, and the following teams from Google:
Engineering Productivity, and the Test Grouplet.

7. REFERENCES
[1] David N. Wilson, Tracy Hall, Perceptions of software quality: a pilot

study, Software Quality Journal 7, (1998) 67–75.
[2] Eric Roberts, Mariner I, The Risk Digest, Volume 5, Issue 66, (1987).
[3] Niklaus Wirth, Opening Talk GTAC 2009, (2009).
[4] Michael Diaz, Joseph Sligo, How Software Process Improvement

Helped Motorola, IEEE, 0740-7459, (1997) 75-81.
[5] Fred Brooks, Mythical Man Month, (1995).
[6] Ravi Mattu, World exclusive interview with Google!,

ft.com/managementblog, July 8, 2009.
[7] Introducing "Testing on the Toilet", Google Testing Blog, January 21,

2007.

http://www.springerlink.com/index/J155137072272K22.pdf
http://www.springerlink.com/index/J155137072272K22.pdf
http://catless.ncl.ac.uk/Risks/5.66.html#subj1
http://www.youtube.com/watch?v=8W5Jd_wzB90
http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/DiazSligoSOFTWARE1997.pdf
http://www.ipd.uka.de/mitarbeiter/padberg/lehre/sqs07/DiazSligoSOFTWARE1997.pdf
http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://blogs.ft.com/management/2009/07/08/world-exclusive-interview-with-google/
http://googletesting.blogspot.com/2007/01/introducing-testing-on-toilet.html

	Google’s Innovation Factory: Testing, Culture, And Infrastructure Patrick Copeland, Google
	copeland@google.com

