
Bayesian Touch – A Statistical Criterion of Target 
Selection with Finger Touch 

Xiaojun Bi            Shumin Zhai 
Google, Inc. 

Mountain View, CA, USA 
xjunbi@gmail.com   zhai@acm.org 

 
ABSTRACT 
To improve the accuracy of target selection for finger 
touch, we conceptualize finger touch input as an uncertain 
process, and derive a statistical target selection criterion, 
Bayesian Touch Criterion, by combining the basic Bayes’ 
rule of probability with the generalized dual Gaussian 
distribution hypothesis of finger touch. The Bayesian Touch 
Criterion selects the intended target as the candidate with 
the shortest Bayesian Touch Distance to the touch point, 
which is computed from the touch point to the target center 
distance and the target size. We give the derivation of the 
Bayesian Touch Criterion and its empirical evaluation with 
two experiments. The results showed that for 2-dimensional 
circular target selection, the Bayesian Touch Criterion is 
significantly more accurate than the commonly used Visual 
Boundary Criterion (i.e., a target is selected if and only if 
the touch point falls within its boundary) and its two 
variants.  

Categories and Subject Descriptors 
H5.2 [Information interfaces and presentation]: User 
Interfaces. - Graphical user interfaces. 

Keywords 
Finger Touch; Target Selection; Bayes’ Rule 

INTRODUCTION 
Finger touch has been widely adopted as a major input 
modality for various computing devices. It is direct, 
intuitive, always-available, and easily extensible to multi-
touch. It has become the default interaction modality for 
Post-PC computing devices such as smartphones and 
tablets, and is even being integrated on regular PCs (e.g., 
touchscreen laptops).   

Using finger touch to select a target among a set of 
candidates (target selection) is one of the most basic, 
important and frequently-performed finger touch tasks. 
However, it also suffers from the obvious “Fat Finger” 
problem. For smaller targets on the screen, it lacks the 
necessary precision to hit the intended one every time. 

Numerous methods have been proposed to improve the 
accuracy of target selection with a bare finger. Most of 
them attempted to map the input to the intended touch 
point. For example, Holz and Baudisch [10] proposed a 
method of estimating the intended touch point based on the 
3D angle of the finger; Weir et al. [5] proposed mapping the 
raw sensor data or the touch location reported by the device 
to the intended touch point based on the historical touch 
behavior of a specific user. These techniques improve the 
touch accuracy by various degrees. However, employing 
them on current products would require either extra sensors 
[10] to measure finger postures, or knowing the specific 
user ID and her historical touch data [5].  

Different from the previous research, we address the target 
selection problem with another approach. Instead of 
attempting to map finger touch to a single intended point, 
this approach conceptualizes finger touch input as an 
uncertain and ambiguous process. We keep the reported 
touch point unchanged, but devise statistical algorithms of 
deciding the intended target among distractors from the 
uncertain finger touch. 

Current devices, by default, follow the Visual Boundary 
(VB) criterion to decide a target for a selection task: a target 
is selected if and only if the touch point falls within its 
boundary. Our experiment shows that this is a very 
erroneous criterion. Previous research [10] also reveals that 
to keep the error rate below 4%, the target size needs to be 
at least 4.3 mm wide if using this criterion. 

The VB criterion matches the real word analogy of physical 
buttons with clear and deterministic edges.  The underlying 
assumption is that the contact point is the point of interest 
and has to be within the visible boundary of the target 
However, this may not be the best analogy to finger touch 
on a purely visual target. 

To reflect the inherent uncertainty of finger touch, we 
propose a statistical criterion of finger touch target selection 
— the Bayesian Touch Criterion (BTC).  We derive BTC by 
treating the touch event as a statistical signal of the user's 
intention and inferring the probability of the intention 
accordingly. Specifically this decomposes to two steps. One 
is applying the Bayes’ rule to estimate the probability of 
each object being the intended target given a signal. The 
other is to use the dual Gaussian distribution principle 
recently discovered about finger touch (Bi, Li and Zhai [4]). 
By combining an absolute precision component and a 
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relative (to target size) precision component we built a 
Gaussian distribution of a given target's touch point 
distribution. These two steps lead to BTC, which serves as a 
principled criterion for ranking target likelihood. 

BTC computes the Bayesian Touch Distance (BTD) 
between candidate targets and the touch point, and selects 
the candidate with the shortest BTD as the most probable 
target. The BTD between the touch point 𝑠 and the target 
candidate 𝑡 is: 

𝐵𝑇𝐷(𝑠, 𝑡)  =  (𝑠−𝑐)2

2�𝛼𝑊2+ 𝜎𝑎2�
+ 1

2
ln(𝛼𝑊2 +  𝜎𝑎2)               Eq. 1 

where 𝑠  is the finger touch coordinates reported by the 
device, 𝑊 is the width of 𝑡, 𝑐 is the center of 𝑡, 𝛼 and 𝜎𝑎 
are constants which can be measured via a separate 
experiment. 

We conducted two experiments to show that BTC 
significantly reduced the error rate of target selection by 
70% over VB, and by 26% and 6% over its two other 
variants, respectively. The accuracy improvement was 
achieved only using the touch point reported by device, 
without any extra sensing information. 

RELATED WORK 

Understanding Finger Touch 
As a key input modality for touch screens, touch input has 
been extensively studied by many researchers. Wang and 
Ren [13] studied the properties of five fingers for touch 
input. Their results showed that the touch points followed 
bivariate Gaussian distributions, with the standard deviation 
varying across fingers. The touch points tended to spread 
wider for thumb and little fingers than index, middle and 
ring fingers. Azenkot & Zhai [1] and Henze et al.[9] studied 
the patterns of a special class of target selection tasks: 
entering text on a touchscreen keyboard. Both studies 
showed that touch points followed bivariate Gaussian 
distributions over the intended target key, often with more 
than 10% of touch points falling off the target key on a 
phone-sized device. The means of the Gaussian 
distributions were close to the key centers, but  often with a 
small bias in different directions depending on hand posture 
(index finger vs. thumb), and regions of the keyboard [1]. 
Bi, Li and Zhai [4] proposed the dual Gaussian distribution 
hypothesis to interpret the distribution of touch points for 
Fitts’ tasks [6], a special type of target selection tasks. They 
further derived the Finger-Fitts law (FFitts law) based on 
that hypothesis. Their study results validated the hypothesis 
and showed that the FFitts model had stronger predictive 
power than the conventional form of Fitts’ law [6], which 
only models one of the two distributions in the dual 
Gaussian hypothesis. 

Building on the literature, we apply the dual Gaussian 
distribution principle [6] to model the distribution of touch 
points based on the size and location of the target candidate, 

and combine it with the Bayes’ rule to improve touch 
selection accuracy. 

Improving Touch Accuracy  
As target selection plays a critical role for touchscreen 
interaction, a sizable amount of research has been 
conducted to improve its accuracy.  

Holz and Baudisch’s [10] research showed that the offsets 
of touch point locations from the intended point were 
affected by the angles between the finger and the touch 
surface (i.e., pitch, roll and yaw). Their research showed 
that the accuracy could be substantially improved if the 
offset was compensated according to the user and posture. 
Such information can be obtained by either 3D tracking or 
scanning the fingerprint. In the following studies [11], they 
discovered that users relied on the visual features of fingers 
such as finger outlines and nail outlines for placing the 
touch point. Their findings suggested that the pointing 
accuracy could be substantially improved by tracking 
fingers with cameras from above. 

Weir et al. [5] proposed a machine learning approach for 
learning a function that mapped an input (the devices’ 
reported touch location or the raw sensor value) to the 
intended touch location. The study results showed that 
using the intended touch location substantially improved 
the accuracy.  

Henz et al. [8] used a game published at the Android 
Market to collect a large number of touch events (more than 
120 million). Based on the collect data, they trained a 
function that shifted the touch events to reduce the error 
rates. Evaluated by an updated version of the game, the 
trained function can significantly reduce the error rates. 

Most of the methods proposed in the literature required 
extra information in addition to the touch location reported 
by device (e.g., 3D posture of the input finger [10, 11], or a 
user’s touch history [5]). Distinguished from the previous 
research, the Bayesian Touch Criterion improves the touch 
interaction accuracy with the reported touch location only, 
which could be easily implemented on current touch 
screens without adding extra sensors or obtaining any prior 
user data.  

Handling Input with Uncertainty 
Since modern input modalities (e.g., finger touch) are 
usually ambiguous, researchers have proposed handling 
these inputs as uncertain events. Williamson [14] proposed 
framing the input as a continuous control process. In his 
view, the system a user interacts with continuously infers a 
distribution over potential user goals, and provides 
continuous feedback about its beliefs as it does so. Schwarz 
et al. [12] proposed carrying the uncertainty of input 
forward all the way through in the interaction, and deciding 
the final action via a mediation process. Complementary to 
Williamson’s [14] and Schwarz et al.’s [12] work in general 
frameworks for handling uncertain inputs, we focus on a 
specific input modality: finger touch. We treat the finger 
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touch as an uncertain process, and apply probabilistic 
theory to improve input accuracy.  

BAYESIAN TOUCH 

A Bayesian View of Target Selection 
Target selection problems can be formulated as follows:  

Let 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}  be the 𝑛  target candidates on a 
touchscreen. Given a touch point 𝑠 , the conditional 
probability that 𝑡 (𝑡 ∈ 𝑇)  is the intended target is 𝑃(𝑡|𝑠). 
Determining the intended target is equivalent to finding 
𝑡∗ that maximizes 𝑃(𝑡|𝑠): 

                                 𝑡∗ = argmax
𝑡

𝑃(𝑡|𝑠)                         Eq. 2   

From Bayes’ rule, 𝑃(𝑡|𝑠) can be computed as: 

                            𝑃(𝑡|𝑠) = 𝑃(𝑠|𝑡)𝑃(𝑡)
𝑃(𝑠)

                               Eq. 3 

where 𝑃(𝑡)  denotes the prior probability of selecting 𝑡 
without the observation of 𝑠 , 𝑃(𝑠|𝑡)  is the likelihood 
function which expresses how probable the touch point  𝑠 is 
if 𝑡  is the intended target, and 𝑃(𝑠)  is the normalization 
constant. 

Since 𝑃(𝑠) is a constant, we have: 

𝑡∗ = argmax
𝑡

𝑃(𝑡|𝑠) = argmax
𝑡

[𝑃(𝑠|𝑡)𝑃(𝑡)]         Eq.4                 

Because the distribution of the touch point is Gaussian, the 
likelihood function can be written in the form (for 1-
dimensional target): 

𝑃(𝑠|𝑡) = 𝑃(𝑠|𝜇,𝜎2) = 1
(2𝜋𝜎2)1/2 exp {− 1

2𝜎2
(𝑠 − 𝜇)2}   Eq. 5 

where 𝑠 is the location of the touch point, 𝜇 and 𝜎2 are  the 
mean and variance of the touch point distribution if 𝑡 is the 
intended target. 

As a common practice, maximizing the likelihood function 
is converted to minimizing the negative log likelihood 
function, which is in the form 

−ln 𝑃(𝑠|𝑡) = 1
2𝜎2

(𝑠 − 𝜇)2 + ln𝜎 + 1
2

ln (2𝜋)               Eq.6  

From Eqs. 4, 5 and 6, we have; 

𝑡∗ = argmax
𝑡

[𝑃(𝑠|𝑡)𝑃(𝑡)] 

    = argmin
𝑡

[−ln𝑃(𝑠|𝑡) − ln𝑃(𝑡)] 

    = argmin
𝑡

� 1
2𝜎2

(𝑠 − 𝜇)2 + ln𝜎 + 1
2

ln(2𝜋) − ln𝑃(𝑡)�    

    = argmin
𝑡

� 1
2𝜎2

(𝑠 − 𝜇)2 + ln𝜎 − ln𝑃(𝑡)�              Eq. 7   

𝑃(𝑡)  can be estimated from user history or design 
expectations (some targets are expected to be used more 
often than others). It is usually dependent on the 
application. In text input, for example, such information 
may come from language modeling or its simplest form, a 

lexicon [15]. Some letter keys are more likely than others 
given a context. In the most conservative and most 
unfavorable case of no prior knowledge about where the 
intended target is, we can assume that every candidate in 𝑇 
has an equal probability to be selected. Under this 
assumption, Eq 7 becomes: 

𝑡∗ = argmin
𝑡

( 1
2𝜎2

(𝑠 − 𝜇)2 + ln𝜎)                Eq. 8 

We define the Bayesian Touch Distance (𝐵𝑇𝐷) as: 

𝐵𝑇𝐷(𝑠, 𝑡) = 1
2𝜎2

(𝑠 − 𝜇)2 + ln𝜎                       Eq. 9 

Eqs 8 and 9 show that finding the target 𝑡∗ given a touch 
point  𝑠   is equivalent to finding a value for 𝑡∗   that 
minimizes the Bayesian Touch Distance. If candidates are 
not equally probable prior to 𝑠, − ln𝑃(𝑡) should be added 
to 𝐵𝑇𝐷(𝑠, 𝑡). Using 𝐵𝑇𝐷(𝑠, 𝑡) to decide the selected target 
is also referred as the Bayesian Touch Criterion (BTC) 
hereafter. In this paper we focus on the general target 
selection tasks in which we assume each candidate has an 
equal prior probability. 

The Dual Gaussian Distribution Hypothesis 
To compute 𝐵𝑇𝐷(𝑠, 𝑡), we need to know 𝑠, 𝜇 and 𝜎. The 
touch point 𝑠  is reported by the device. In this section, we 
propose an approach to estimate 𝜇 and 𝜎 from the size and 
location of target 𝑡. The method is derived from the dual 
Gaussian distribution hypothesis.  

The dual Gaussian distributions hypothesis was initially 
introduced and verified by Bi, Li, and Zhai [4]. It considers 
the distribution of touch points ( 𝑋)  as a sum of two 
independent Gaussian distributions 𝑋𝑟 , and 𝑋𝑎 . Formally, 
this hypothesis can be expressed as: 

                             𝑋 = 𝑋𝑟 + 𝑋𝑎  ~ 𝑁(𝜇,𝜎2)                  Eq. 10 

𝜇 and 𝜎2 are: 

                                   𝜇 = 𝜇𝑟 + 𝜇𝑎                             Eq. 11                                                            

                                   𝜎2 = 𝜎𝑟2 + 𝜎𝑎2                           Eq. 12 

𝑋𝑟 is extrinsic to the user’s motor control limit and relative 
to target properties (particularly size). The variance of  𝑋𝑟 
results from the speed-accuracy tradeoff of the user. It 
reflects to which degree the user has chosen to comply with 
the task precision. It is independent of the precision of the 
selection implement (e.g., pen or finger). 

𝑋𝑎  is intrinsic to the motor control system, reflecting the 
absolute precision of a cursor, pen, or finger-based input 
method. It is independent of the user’s desire to follow the 
specified task precision. 𝑋𝑎 is negligible in a cursor-based 
input method, but significant in finger touch-based 
methods, particularly when the finger width is wider 
(“fatter”) than the target width. 
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In the current work, we generalize the dual Gaussian 
distribution hypothesis from Fitts’ tasks—which are special 
target selection tasks involving both amplitude (𝐴 ) and 
target width (𝑊)—to the more general target-selection tasks 
which are predominantly characterized by 𝑊 alone. In tasks 
such as successive target selection with a single pointer, A 
is well-defined. In other tasks, such as alternating two 
thumb typing, or a single finger touch from a resting 
position off the screen, A is less well-defined.   

Similar to the form in Fitts’ tasks, we hypothesize that the 
touch point distribution 𝑋, if 𝑡 is the intended target, is a 
sum of two independent Gaussian distributions: 𝑋𝑟 and 𝑋𝑎. 

Unlike Fitts’ tasks in which the desired task precision is 
specified by 𝐴/𝑊 (𝐴 is the movement amplitude and 𝑊 is 
the width of 𝑡), the precision is specified solely by 𝑊  in 
target selection tasks. 

In accordance with the underpinning of Fitts’ law, at least 
in its original form, 𝑊 affords the degree the touch points 
are expected to spread out. If the task precision is exactly 
complied with, no more, no less, we can expect 𝑊 ≈
4.133𝜎𝑟, which means 96.4% touch points fall within the 
target. In practice a user might tend to over/under utilize 𝑊. 

Note that it is 𝜎𝑟  instead of  𝜎  that is proportional to 𝑊. 
The reason is that 𝑋𝑎  is irrelevant to the precision of the 
task, and should be removed when considering to what 
degree the user decides to comply with the task precision. 

Assuming  that 𝜎𝑟 is proportional to  𝑊, we have 

                                 𝜎𝑟2 = 𝛼𝑊2                                Eq. 13  

where 𝛼 is a constant. 

Replacing 𝜎𝑟2 in Eq. 12 with Eq. 13, 𝜎2 can be computed as 

                  𝜎2 = 𝜎𝑟2 + 𝜎𝑎2 =  𝛼𝑊2 + 𝜎𝑎2              Eq. 14 

Note that both 𝛼 and 𝜎𝑎2 are constants and can be measured 
independently of the task. Eq. 14 shows that the variance 
(𝜎2) is linearly correlated to the target size 𝑊2 , and the 
linear regression between 𝜎2  and 𝑊2  has a non-zero 
intercept on 𝜎2-axis due to the low absolute precision of 
finger touch (𝜎𝑎2). 

Previous research [1, 8, 10] has shown that 𝜇 may have a 
small offset from the center of 𝑡 (denoted by 𝑐). However, 
the magnitude and direction of the offset vary with 
individuals [10], finger vs. thumb [1], finger angle [10] and 
other factors. Across these factors, it is reasonable to expect 
the central tendency as  

                                          𝜇 ≈ 𝑐.                              Eq. 15 

Eqs 14 and 15 essentially predict 𝜇 and 𝜎 from the size and 
center of 𝑡. Replacing 𝜇 and 𝜎 in Eq. 9 with Eqs 14 and 15, 
we have 
 

𝐵𝑇𝐷(𝑠, 𝑡) =
1

2𝜎2
(𝑠 − 𝜇)2 + ln𝜎 

                  =  (𝑠−𝑐)2

2�𝛼𝑊2+ 𝜎𝑎2�
+ 1

2
ln (𝛼𝑊2 +  𝜎𝑎2) ,           Eq. 16 

where 𝑠 is touch point location, 𝑊  is width of 𝑡 , 𝑐  is the 
center of 𝑡, 𝛼 and 𝜎𝑎 are constants.  

Eq. 16 shows that 𝐵𝑇𝐷(𝑠, 𝑡)  is computed based on the 
square distance of the touch point to the center of the target, 
the size of the target, and the finger absolute touch 
precision 𝜎𝑎

2.  
Two-Dimensional Circular Target Selections 
With some simplifications, we generalize BTC to 2-
dimensional circular targets. The derivation shows BTC for 
2-dimensional circular target selection tasks is equivalent to 
finding the target that minimizes 𝐵𝑇𝐷2(𝑠, 𝑡) , the 2-
dimensional Bayesian touch distance between the touch 
point 𝑠 and the target candidate 𝑡.  

Touch Points Distribution for 2-Dimenstional Circular 
Targets. Previous research shows that touch points 
approximately follow a bivariate Gaussian distribution for a 
2-dimensional target selection [1, 8, 13]. 

                              𝑋 ~ 𝑁(𝜇,𝛴)                                   Eq. 17 

The correlation (𝜌 ) between x and y coordinates of the  
touch points is small, but varies depending on the locations 
of the targets, and could be either negative or positive 
[1, 8]. Across various locations, it is reasonable to expect 
𝜌 ≈ 0.  𝜇 and 𝛴 of the distribution then become: 

                             𝜇 = �
𝜇𝑥
𝜇𝑦�                                      Eq. 18                             

                         𝛴 =  �
𝜎𝑥2 0
0 𝜎𝑦2

�                                Eq. 19 

where 𝜇𝑥  and 𝜇𝑦  are means, and 𝜎𝑥  and 𝜎𝑦  are standard 
deviations in x and y directions respectively. 

According to the definition of bivariate Gaussian 
distribution, the negative log likelihood function becomes: 

−ln 𝑃(𝑠|𝜇,𝛴) = 

1
2
�(𝑠𝑥−𝜇𝑥)2

𝜎𝑥2
+ (𝑠𝑦−𝜇𝑦)2

𝜎𝑦2
� + ln𝜎𝑥 + ln𝜎𝑦 + ln (2𝜋) ,        Eq. 20 

where 𝑠𝑥 , and 𝑠𝑦are coordinates of the touch point 𝑠.  

𝐵𝑇𝐷2(𝑠, 𝑡), the generalization of 𝐵𝑇𝐷(𝑠, 𝑡) (Eq. 9) for 2-
dimensional circular targets, becomes  

𝐵𝑇𝐷2(𝑠, 𝑡) = 1
2
�(𝑠𝑥−𝜇𝑥)2

𝜎𝑥2
+ (𝑠𝑦−𝜇𝑦)2

𝜎𝑦2
� + ln𝜎𝑥 + ln𝜎𝑦   Eq. 21 

2-Dimensional Dual Gaussian Distributions Hypothesis. To 
compute 𝐵𝑇𝐷2(𝑠, 𝑡) , we generalize the dual Gaussian 
distribution hypothesis to 2-dimensional circular targets.  
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Similar to the 1-dimensional targets, we hypothesize that 
the distribution of touch points for a 2-dimensional circular 
target is the sum of two independent Gaussians: 𝑋𝑟  and 𝑋𝑎.  

                   𝑋𝑟  ~ 𝑁��𝜇𝑟𝑥𝜇𝑟𝑦
� ,�

𝜎𝑟𝑥
2 0

0 𝜎𝑟𝑦
2 ��                  Eq. 22 

                  𝑋𝑎 ~ 𝑁��𝜇𝑎𝑥𝜇𝑎𝑦
� ,�

𝜎𝑎𝑥
2 0

0 𝜎𝑎𝑦
2 ��                 Eq. 23 

where 𝜇𝑟𝑥 and 𝜎𝑟𝑥2  are the mean and variance of 𝑋𝑟 in the 𝑥 
direction, 𝜇𝑟𝑦  and 𝜎𝑟𝑦2  for 𝑋𝑟  in the 𝑦 direction,  𝜇𝑎𝑥  and 𝜎𝑎𝑥2  
for 𝑋𝑎  in the x  direction, and 𝜇𝑎𝑦 and 𝜎𝑎𝑦2  for 𝑋𝑎 in the 𝑦 
direction. Since we expect 𝜌 ≈ 0  for 𝑋 , it is logical to 
expect 𝜌𝑟 ≈ 0 and 𝜌𝑎 ≈ 0 for  𝑋𝑟  and 𝑋𝑎, respectively. 

Similar to the 1-dimensional tasks, we assume both 𝜎𝑟𝑥  and 
𝜎𝑟𝑦are proportional to the size of 𝑡 (the diameter 𝑑), and the 
𝜇 is close to the center c (𝑐𝑥  , 𝑐𝑦) of 𝑡.  The touch point 
distribution (𝑋) of 𝑡 can be expressed as: 

𝑋 ~ 𝑁��
𝑢𝑥
𝑢𝑦� ,�

𝜎𝑥2 0
0 𝜎𝑦2

�� 

   = 𝑁��
𝑐𝑥
𝑐𝑦� ,�

𝜎𝑟𝑥
2 +  𝜎𝑎𝑥

2 0
0 𝜎𝑟𝑦

2 + 𝜎𝑎𝑦
2 �� 

  = 𝑁��
𝑐𝑥
𝑐𝑦� ,�

𝛼𝑥𝑑2 + 𝜎𝑎𝑥
2 0

0 𝛼𝑦𝑑2 +  𝜎𝑎𝑦
2 ��            Eq. 24 

Replacing 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 in Eq. 21 with the estimations 
in Eq 24, we have:   

𝐵𝑇𝐷2(𝑠, 𝑡) =
1
2
�
(𝑠𝑥 − 𝜇𝑥)2

𝜎𝑥2
+

(𝑠𝑦 − 𝜇𝑦)2

𝜎𝑦2
� + ln𝜎𝑥 + ln𝜎𝑦 

              = 1
2
� (𝑠𝑥−𝑐𝑥)2

𝛼𝑥𝑑2+ 𝜎𝑎𝑥
2 + (𝑠𝑦−𝑐𝑦)2

𝛼𝑦𝑑2+ 𝜎𝑎𝑦
2 � + 1

2
ln�𝛼𝑥𝑑2 + 𝜎𝑎𝑥

2 � 

                   + 1
2

ln (𝛼𝑦𝑑2 + 𝜎𝑎𝑦
2 )                                 Eq.25 

Note that 𝛼𝑥,  𝜎𝑎𝑥 ,  𝛼𝑦 , and 𝜎𝑎𝑦  are constants and can be 
measured via a separated experiment. 

After generalizing the dual Gaussian distribution hypothesis 
to the 2-dimensional circular targets, 𝐵𝑇𝐷2(𝑠, 𝑡) can be 
computed based on touch point location 𝑠 (𝑠𝑥 , 𝑠𝑦), center 
𝑐 (𝑐𝑥 , 𝑐𝑦) and diameter (𝑑) of 𝑡.  

EXPERIMENT 1.  MODELING TOUCH INPUT 
Theoretically, BTC builds on Bayes’ theorem and the dual 
Gaussian distribution hypothesis. In many steps of 
derivation we made simplifications and assumptions. 
Fundamentally, we applied mathematical (quantitative) 
reasoning to human behavior. The reliability of such a 

process should not be taken for granted without empirical 
confirmation. In the rest of the paper we seek experimental 
verifications of BTC.  

Though the original dual Gaussian distribution hypothesis 
has been verified by Bi, Li and Zhai [4] in tasks where 
participants selected a target with a certain size (𝑊) over a 
distance (𝐴), we first conducted an experiment (Expt. 1) to 
verify the generalized dual Gaussian distribution hypothesis 
for 2-dimensional circular target selection tasks where the 
task precision is solely specified by the target size 𝑊. 

More specifically, Expt. 1 is to verify the prediction made 
by the generalized dual Gaussian distribution hypothesis 
(Eq. 24): variances (i.e., 𝜎𝑥2 and 𝜎𝑦2) are linearly correlated 
to the target size 𝑑2, and have non-zero intercepts on the 
variance-axes due to the low absolute precision of finger 
touch (i.e., 𝜎𝑎𝑥

2  and 𝜎𝑎𝑦
2 ), 

We also aimed to estimate 𝛼𝑥 , 𝜎𝑎𝑥, 𝛼𝑦, and  𝜎𝑎𝑦  via Expt. 1, 
which would be used to compute 𝐵𝑇𝐷2(𝑠, 𝑡) for other target 
selection tasks.    

Participants and Apparatus 
We recruited 18 participants (3 females) between the ages 
of 26 and 49. Two of them were left-handed. All of them 
used touchscreen devices (e.g., smartphones) several times 
a day. The experiment was conducted on a Galaxy Nexus 
phone running Android OS 4.2. The capacitive touch screen 
was 11.94 cm in diagonal with an aspect ratio of 9:16 and a 
resolution of 720 × 1280 pixels. When a finger touched the 
screen, the approximate centroid of contact area between 
the finger and the screen was reported as the touch point.  

Tasks 
Each participant performed a set of typical target selection 
tasks. At the beginning of each trial, a green circle appeared 
on the screen and the participant was instructed to select it 
using the input finger as quickly and accurately as possible. 
The target turned yellow and the device played a successful 
beep sound if the target was successfully selected, 
otherwise an error sound. The next trial started as soon as 
the input finger was lifted off. The selection of the target 
was determined by whether the touch point fell within the 
target, which is a common criterion for selecting UI 
elements on current touchscreen devices.  

 
Figure 1. a: index finger posture. b: thumb posture. c: a target 

Design 
The study included 10 diameter (d) × input finger (f) 
conditions, with five levels of d (2, 4, 6, 8, 10 mm) 

a b c
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combined with two levels of f (thumb and index finger). In 
the index finger condition, the participant acquired the 
target in a two-handed posture (Figure 1a), holding the 
device with one hand and acquiring the target with the 
index finger on the other. In the thumb condition (Figure 
1b), the participant used a one-handed posture, holding it 
with one hand and using the thumb of the same hand to 
select it. Both postures are commonly used for interactions 
on touchscreen devices [1]. 

Each d × f  combination included 80 trials. Trials with the 
same input finger (f) were grouped in a session. The order 
of trials in a session was randomized, as well as the location 
of the target in each trial. The order of sessions was 
counterbalanced across participants: half of the participant 
performed tasks with thumb first. A one-minute break was 
enforced before switching finger conditions.  

In short, the study included: 

18 (participants) × 2 (input finger) × 5 (target diameter) × 
80 = 14400 trials. 

Data Processing 
We used the finger take-off position as the default location 
for a touch action. Trials with touch points 15 mm away 
from the target center were treated as outliers and 
discarded. The first 10 trials in each finger session of each 
user were treated as warm-up and were also excluded in the 
analysis. In total, 2% of trials were discarded and 14081 
trials were analyzed.   

Results 
In agreement with previous research, the touch points 
followed bivariate Gaussian distributions for different target 
sizes. Shapiro-Wilk tests showed that touch points followed 
normal distributions for each user × target size (p > 0.05). 
Figure 4 shows three examples of touch point distributions. 

To test the prediction from the dual Gaussian distribution 
hypothesis, we ran linear regressions for  𝜎𝑥2 vs. 𝑑2, and  𝜎𝑦2 
vs. 𝑑2. Results are presented at Figure 2 & 3. 

The regressions show strong linear relationships between 
the variance on each direction and 𝑑2. The R2 values are 
0.93 for 𝜎𝑥2 vs. 𝑑2 and 0.98 for 𝜎𝑦2 vs. 𝑑2. Figure 2 & 3 also 
show non-zero intercepts on the y-axes. 

 
Figure 2. Regression between variance on 𝑿 direction (𝝈𝒙𝟐 ) 

and target size (𝒅𝟐). 

 
Figure 3. Regression between variance on 𝒀 direction (𝝈𝒚𝟐 ) 

and target size (𝒅𝟐).

 
Figure 4. Distributions of touch points across all users for 3 target sizes. The yellow circles are the targets, and the dashed ellipses 
are 95% confidence ellipses. Touch point coordinates were calibrated with the origins at target centers.
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The linear regressions provide the estimations of  
𝛼𝑥,𝜎𝑎𝑥

2 ,𝛼𝑦 , and𝜎𝑎𝑦
2 , which are reported in Table 1. 

𝛼𝑥 𝜎𝑎𝑥
2  𝛼𝑦 𝜎𝑎𝑦

2  

0.0075 1.68 0.0108 1.33 

Table 1. Constants 𝜶𝒙,𝝈𝒂𝒙
𝟐 ,𝜶𝒚, 𝐚𝐧𝐝  𝝈𝒂𝒚

𝟐  computed from the 
linear regressions. 

Replacing the constants in Eq.25 with the values in Table 1, 
𝐵𝑇𝐷2𝐷(𝑠, 𝑡) can be computed as: 

𝐵𝑇𝐷2𝐷(𝑠, 𝑡) =
1
2
�

(𝑠𝑥 − 𝑐𝑥)2

𝛼𝑥𝑑2 +  𝜎𝑎𝑥2
+

(𝑠𝑦 − 𝑐𝑦)2

𝛼𝑦𝑑2 +  𝜎𝑎𝑦2
� 

 + 1
2

ln�𝛼𝑥𝑑2 + 𝜎𝑎𝑥
2 � + 1

2
ln (𝛼𝑦𝑑2 + 𝜎𝑎𝑦

2 )      

 =1
2
� (𝑠𝑥−𝑐𝑥)2

0.0075𝑑2+ 1.68
+ (𝑠𝑦−𝑐𝑦)2

0.0108𝑑2+ 1.33
� + 1

2
ln(0.0075𝑑2 + 1.68)     

 + 1
2

ln(0.0108𝑑2 + 1.33)                                       Eq. 26 

Thumb vs. Index Finger. Previous research [13] showed that 
the index finger and thumb have different precision, with 
the index finger slightly more precise than the thumb. The 
different properties of the index finger and thumb might 
lead to differences in 𝛼𝑥,𝜎𝑎𝑥,𝛼𝑦,or 𝜎𝑎𝑦  for different fingers. 

To evaluate this, we ran regressions for data in thumb and 
index finger conditions respectively. Results are reported in 
Table 2. 

 𝛼𝑥 𝜎𝑎𝑥 𝛼𝑦 𝜎𝑎𝑦  

Thumb 0.0073 1.35 0.0113 1.18 

Index 0.0075 1.24 0.0104 1.12 

Table 2. 𝛂𝐱,𝛔𝐚𝐱 ,𝛂𝐲, 𝐚𝐧𝐝  𝛔𝐚𝐱  for thumb and index finger 
specifically. 

Table 2 shows that the differences in 
𝛼𝑥,𝜎𝑎𝑥,𝛼𝑦,or 𝜎𝑎𝑦 between the thumb and index finger are 
small. The biggest difference is for 𝜎𝑎𝑥 , with the index 
finger being 8% lower than the thumb condition. Both 𝜎𝑎𝑥   
and 𝜎𝑎𝑦  are slightly greater for the thumb than for the index 
finger, indicating that the thumb has lower absolute 
precision.  

Discussion 
The study results strongly concur with the prediction made 
by the generalized dual Gaussian distribution hypothesis. 
The study results showed R2 of linear regression was 0.93 
between 𝜎𝑥2 and 𝑑2, and 0.98 between 𝜎𝑦2 and 𝑑2, indicating 
strong linear relationships between variances and target size 
𝑑2. Figure 2 and Figure 3 also show non-zero intercepts on 
the y-axis.  

The study results also provide estimations of constants 
𝛼𝑥 ,𝜎𝑎𝑥 , 𝛼𝑦, and 𝜎𝑎𝑦 . With these estimations, we can use Eq. 
26 to compute 𝐵𝑇𝐷2𝐷(𝑠, 𝑡) for other 2-dimensional circular 
target selection tasks. 

EXPERIMENT 2. EVALUATING BAYESIAN TOUCH  
CRITERION 

The purpose of the study is to evaluate BTC by comparing 
it with other target-deciding criteria. 

Participants and Apparatus 
Eighteen participants (7 females) between the ages of 21 
and 38 participated in the study. One of them was left-
handed. All of them used touchscreen devices (e.g., 
smartphones) several times a day. Importantly, to ensure the  
external validity of the model parameters estimated from 
Experiment 1,  none of them participated in the Experiment 
1. The apparatus was the same as that in Experiment 1. 

Task 
Each participant performed a set of target selection tasks. 
Unlike the task in Experiment 1, in which each trial 
displayed only one green circle as the target, the tasks in 
Experiment 2 showed multiple grey circles as distractors in 
addition to the green circular target (Figure 5). The 
participant was instructed to select the target (i.e., green 
circle) as accurately and quickly as possible.  

 
Figure 5. Three layouts of targets (green circles) and 
distractors (grey circles) used in the studies. The target and 
distractor sizes varied in the studies. The gap between the edge 
of the target and the edge of the distractor was 0.5 mm. 

The task was designed to simulate the behaviors of UI 
elements on current touchscreen devices. If the touch point 
fell within a grey circle, the grey circle turned yellow and 
the device played an error sound, indicating a false 
selection. If the touch point did not fall within any circles, 
the device provided no feedback, indicating that nothing 
was selected. If the touch point fell within the green circle, 
the target turned green and the device played a successful 
sound.  To encourage the participant to minimize errors, the 
participant needed to place the touch point within the 
boundary of the target (i.e., the VB rule) to continue to the 
next trial. Otherwise the trial repeated. The numbers of 
completed trials, remaining trials, and error rate were 
displayed at the right corner of the screen. 

Design 
The study included 54 target diameter (𝑑𝑇)  × distractor 
diameter (𝑑𝐷) × distractor layout × input finger conditions. 

a b c
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Both  𝑑𝑇  and 𝑑𝐷  had 3 levels (3, 5, 7 mm), to represent 
small, medium, and large targets. Distractor layout also had 
3 levels, which was illustrated in Figure 5. Input finger had 
2 levels (thumb and index finger). Each condition had 20 
repetitions with the location randomized each time. The 
process of the experiment was the same with that in 
Experiment 1. 

In short, the experiment had:  

       3𝑑𝑇 ×  3𝑑𝐷 × 3 distractor layout × 2 input finger 

        × 20 trials × 18 participants = 19440 trials.  

Note that some trials might repeat multiple times until the 
targets were successfully selected. 

Target Selection Criteria 
We designed and evaluated four target selection criteria: 

1) The Bayesian Touch Criterion (BTC). We use  
𝛼𝑥, 𝜎𝑎𝑥

2 , 𝛼𝑦, and 𝜎𝑎𝑦
2  measured from Experiment 1 

(Table 1) to compute BTD. The candidate with the 
shortest BTD is selected. 

2) Visual Boundary (VB). A circle is selected if and 
only if the touch point falls within it.  

3) Visual Boundary or Shortest Distance to Circle 
Boundary (VB/SDB). It applies the VB rule first. If 
the touch point does not fall within any circle, the 
selected target is the circle with shortest distance 
to the touch point from its boundary. This criterion 
is also equivalent to the bubble cursor [7] and 
many snap-to-target techniques. 

4) Visual Boundary or Short Distance to Circle 
Center (VB/SDC). It applies the VB rule first. If the 
touch point does not fall within any circle, the 
selected target is the circle with the shortest 
distance to the touch point from its center. This 
criterion is less common than VB and VB/SDB in 
practice.   

Criterion 1 (BTC) is derived from statistical principles as 
shown earlier. Criteria 2 – 4 are common sense criteria of 
target selection to which we want to compare BTC. The 
metric of evaluation for all of these criteria is selection 
Error Rate, defined as 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠

 

Data Processing 
We removed outliers and the trials in warm-up according to 
the same criteria as Experiment 1. In total, 3% of all trials 
were removed and 24214 trials were analyzed.  

Results 
Error Rate. Figure 6 shows the overall error rate for each 
selection criterion. As shown, BTC had the lowest error 
rate. The mean error rates were 5.9% for BTC, 19.6% for 
VB, 8.0% for VB/SDB, 6.3% for VB/SDC. ANOVA showed 
the target selection criterion had a significant effect on error 

rate (F3, 51 = 152, p < 0.001). Pairwise mean comparisons 
using the Bonferroni adjustment showed that BTC was 
significantly more accurate than all other criteria (p < 
0.001). 

 
Figure 6. Mean and the standard error of mean (SEM) of 
Error Rate per target selection criterion. 

Note that the Visual Boundary (VB) criterion resulted in the 
highest error rate, indicating that this commonly used 
criterion did not work well for finger touch under the 
experimental conditions tested. 

ANOVA also showed that target diameter (𝑑𝑇 ) (F2, 34 = 
110, p < 0.001), distractor diameter (𝑑𝐷) (F2, 34 = 33, p < 
0.001), and distractor layout (F2, 34 = 9.7, p < 0.001) had 
significant main effects on error rate. Smaller targets or 
distractors led to higher error rates. The mean error rates for 
3, 5 and 7 mm target diameter (𝑑𝑇) were 20.5%, 6.0%, and 
2.1% , and for 3, 5 and 7mm distractor diameter (𝑑𝐷) were 
11.8%, 8.7%, and 8.0%, respectively. The layout in Figure 
5(c) resulted in the highest error rate, 10.9%.  ANOVA did 
not show a significant main effect of input finger on error 
rate (F1, 17 = 0.818, p = 0.378). 

ANOVA showed significant interaction effects for target 
diameter (𝑑𝑇) × selection criteria (F6, 102 = 314, p < 0.001) 
and distractor diameter (𝑑𝐷) × selection criteria (F6, 102 = 
41, p < 0.001) on error rate. BTC outperformed other 
criteria with larger margins when targets were smaller or 
distractors were greater. 

Touch Point Distributions. Since the participants in 
Experiment 2 were completely different from Experiment 1, 
it allowed us to evaluate the external validity of the dual 
Gaussian distribution hypothesis. We computed 
𝜎𝑥, and 𝜎𝑦 from the recorded data (i.e., observed), and 
compare them with the values predicted from Eq. 26 (i.e., 
predicted). We define prediction error as: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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As shown in Table 3, Eq. 26 is able to closely predict 𝜎𝑥 
and 𝜎𝑦. The prediction error was below 7.5% across all the 
conditions. In particular, the error was 0 for 𝜎𝑦 when 𝑑 = 5 
and 7 mm. 

𝑑𝑇(mm)  𝜎𝑥 𝜎𝑦 

3.0 Observed 1.23 1.26 

Predicted 1.32 1.19 

Prediction Error 7.3% 5.6% 

5.0 Observed 1.35 1.27 

Predicted 1.37 1.27 

Prediction Error 1.5% 0 

7.0 Observed 1.37 1.36 

Predicted 1.43 1.36 

Prediction Error 5% 0 

Table 3. Prediction Error by Target Diameter (𝒅𝑻) 

To evaluate whether BTC performs better with finger-
specific tuning, we computed BTC with 𝛼𝑥, 𝜎𝑎𝑥

2 ,𝛼𝑦, and 𝜎𝑎𝑦
2  

in Table 2 for index finger or thumb input respectively. The 
mean (and SEM) of overall error rate across participants 
was still 5.9% (0.4%), almost the same as not using finger-
specific parameters. t-test did not show a significant 
difference ( 𝑝 ≈ 1.0 ) between using generic parameters 
(Table 1) and using finger-specific parameters ( Table 2). 

Discussion 
BTC outperforms VB and its variants. The study results 
verified that BTC was the most accurate criterion in 
selecting a user-intended target, providing strong support to 
the theoretical analysis leading to BTC. In particular, the 
error rate of BTC was 70%, and 26% lower than VB and 
VB/SDB, respectively. 

The study results also verified the external validity of the 
dual Gaussian distribution hypothesis and showed its strong 
predictive power: 𝜎𝑥  and 𝜎𝑦  predicted by Eq. 26 closely 
matched the empirical results observed from the data in 
Experiment 2 (Table 3).  

BTC can be adopted regardless of input finger. The study 
results showed that using finger-specific BTC did not lead 
to substantial performance improvement. It is probably 
because parameters (i.e., 𝛼𝑥,𝜎𝑎𝑥 , 𝛼𝑦, and 𝜎𝑎𝑦) do not vary 
drastically across fingers. The results show BTC can be 
adopted regardless of the input finger type. 

LIMITATIONS AND FUTURE WORK 
The current work is meant to be an exploration of a new 
and principled approach to finger touch target selection. We 
studied the Bayesian Touch Criterion at a general and 
fundamental level. Applying the criterion to specific and 
practical UI designs will require further verification and 
modifications. For example, we assumed each touch point 
is always meant for one of the objects on the screen. There 
is no “dead space” between objects. This of course does not 
have to be true. While BTC can be used as the primary 
criterion in ranking target likelihood, additional criteria can 
still be combined in a specific UI design problem. For 
example, additional thresholds and filters can be applied to 
the final target selection.  

To maintain a manageable scope of two experiments in a 
single paper, we limited the target and distractor sizes to a 
range commonly seen on smartphone-sized devices. We see 
the very strong predictive power of the Bayesian Touch 
Criterion within this range of sizes.  

CONCLUSION 
To improve the accuracy of touch input, we conceptualize 
finger touch input as an uncertain and ambiguous process, 
and devise a statistical Bayesian Touch Criterion (BTC) for 
deciding the intended target among distractors. In addition 
to the theoretical analysis, we conducted experiments to 
verify our theory, and empirically evaluate BTC. 

Our investigations lead to the following conclusions: 

1) The Bayesian Touch Criterion (BTC) is a principled 
criterion for deciding the target for finger touch. It selects 
the intended target as the candidate with the shortest 
Bayesian Touch Distance (BTD) to the touch point. BTD is 
a function of touch point 𝑠 and the target candidate 𝑡. For 1-
dimensional tasks, it is in the form: 

𝐵𝑇𝐷(𝑠, 𝑡)  =  (𝑠−𝑐)2

2�𝛼𝑊2+ 𝜎𝑎2�
+ 1

2
𝑙𝑛(𝛼𝑊2 + 𝜎𝑎2)           Eq.27 

where 𝑠 is the location of touch point, 𝑊 is  the width of 𝑡, 
𝑐  is the center of 𝑡, 𝛼 and 𝜎𝑎  are constants which can be 
measured via a separate experiment. 

For 2-dimensional circular targets, we not only derived the 
equation for computing BTD, but also measured the 
parameters via an experiment. Our investigation shows the 
2-dimensional Bayesian touch distance  𝐵𝑇𝐷2(𝑠, 𝑡)  is in the 
form: 

𝐵𝑇𝐷2(𝑠, 𝑡)   = 1
2
� (𝑠𝑥−𝑐𝑥)2

0.0075𝑑2+ 1.68
+ (𝑠𝑦−𝑐𝑦)2

0.0108𝑑2+ 1.33
� 

+ 1
2

ln(0.0075𝑑2 +  1.68) + 1
2

ln (0.0108𝑑2 +  1.33) Eq. 28                                 

where 𝑠𝑥, 𝑠𝑦  are the coordinates of touch point 𝑠, 𝑐𝑥 and 𝑐𝑦 
are the coordinates of the center of a target candidate 𝑡, and 
𝑑 is its diameter. The units of these variables are mm.  

2)  The empirical experiment for 2-dimensional circular 
target selection shows that BTC is significantly more 
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accurate than the typical target deciding method, Visual 
Boundary (VB), and its two variants: Visual 
Boundary/Shortest Distance to Circle Boundary (VB/SDB) 
and Visual Boundary/Shortest Distance to Circle Center 
(VB/SDC). BTC reduces the error rate by 70%, 26% and 6% 
over VB, VB/SDB, and VB/SDC respectively.  

3) BTC is a basis for touch UI design. BTC has a 
foundational role in researching and designing future touch 
user interfaces. Actual and specific touch UI designs may 
combine it with many other concerns and criteria of target 
selection. We believe fruitful future work should be 
expected along the direction this work points to. 
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