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for Digital Subscriber Lines
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Abstract—Crosstalk is a major issue in modern digital sub-
scriber line (DSL) systems such as ADSL and VDSL. Static
spectrum management, which is the traditional way of ensuring
spectral compatibility, employs spectral masks that can be overly
conservative and lead to poor performance. This paper presents
a centralized algorithm for optimal spectrum balancing in DSL.
The algorithm uses the dual decomposition method to optimize
spectra in an efficient and computationally tractable way. The
algorithm shows significant performance gains over existing
dynamis spectrum management (DSM) techniques, e.g., in one
of the cases studied, the proposed centralized algorithm leads to
a factor-of-four increase in data rate over the distributed DSM
algorithm iterative waterfilling.

Index Terms—Digital subscriber line (DSL), dual decom-
position, dynamic spectrum management (DSM), interference
channel, nonconvex optimization.

I. INTRODUCTION

ROSSTALK is a major issue in modern digital subscriber
Cline (DSL) systems such as ADSL and VDSL. Typically
10-20 dB larger than the background noise, crosstalk is the
dominant source of performance degradation.

Whilst crosstalk cancellation is a commonly proposed solu-
tion [1], [2], in many scenarios, this may not be feasible due to
complexity issues or as a result of unbundling. In this case, the
effects of crosstalk must be mitigated through spectrum man-
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agement, where the transmit spectra of all modems are limited
in some way to minimize crosstalk.

Static spectrum management is the traditional approach and
employs identical spectral masks for all modems. To ensure
widespread deployment, these masks are based on worst case
scenarios [3]. As aresult, they can be overly restrictive and lead
to poor performance.

Dynamic spectrum management (DSM), a new paradigm,
overcomes this problem by designing the spectra of each
modem to match the specific topology of the network [4].
These spectra are adapted based on the direct and crosstalk
channels seen by the different modems. They are customized
to suit each modem in each particular situation.!

A DSM algorithm known as iterative waterfilling was re-
cently proposed and demonstrates the spectacular performance
gains that are possible [6]. An unanswered question at this point
is: how much more can be achieved?

The goal of this paper is to address this question. We con-
sider centralized spectrum management where a spectrum
management center (SMC) is responsible for setting the spectra
of the modems within the network. This paper will present an
algorithm for optimal spectrum balancing in the DSL inter-
ference channel. Assuming that all modems employ discrete
multitone (DMT) modulation, this algorithm achieves the best
possible balance between the rates of the different modems in
the network, allowing operation at any point on the rate region
boundary.

The algorithm is suitable for direct application when an SMC
is available. Note that with centralized algorithms, reoptimiza-
tion is necessary whenever a line is activated or deactivated in
order to ensure optimal performance. This is one disadvantage
of centralized algorithms with respect to more distributed al-
gorithms such as iterative waterfilling. Furthermore, centralized
spectrum management requires an SMC that is not available in
unbundled networks where multiple operators share the same
binder. In this case, a distributed algorithm may be preferred.
Optimal spectrum balancing can be useful here since it provides
an upper bound on performance of all DSM algorithms, both
centralized and distributed. Furthermore, the spectra generated
by the proposed algorithm provide valuable insight that can be
used in distributed algorithm design [7].

One may argue, if centralized control is available (via an
SMC), then why not implement full-blown crosstalk cancella-
tion? Although crosstalk cancellation can lead to greater perfor-
mance gains, it is more complex to implement and is not fea-

IRecent standardization activities [5] have broadened the scope of DSM to
include not only spectra adaptation, but also signal processing algorithms such
as crosstalk cancellation and vectoring. This paper uses the term DSM in the
narrowly defined sense.
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sible when head-end modems are not co-located in the same
central office (CO) or remote terminal (RT). Spectrum manage-
ment, on the other hand, only requires adaptation of the modem
transmit spectra. This can be done without any change to the
modem hardware currently deployed in the field and is feasible
to implement right now. In contrast, crosstalk cancellation uses
signal-level coordination, thus requiring an entirely new design
of both the DSL access multiplexer (DSLAM) and customer
premises (CP) modems.

Under several specific scenarios, crosstalk cancellation is
possible even without signal coordination [8]. Whilst perfor-
mance gains are possible, these techniques are again typically
complex. The remainder of this paper assumes that crosstalk
cancellation is not performed, and each modem treats crosstalk
as additive noise.

The multiuser DSL channel with no signal-level coordination
is an example of an interference channel in multiuser informa-
tion theory. The capacity region and the optimal code design
for the interference channel are long-standing open problems in
information theory. This paper considers an achievable rate re-
gion for the interference channel within the context of currently
deployed DSL modems in the field. In this case, interference
must be treated as noise, and the optimization of the achievable
rate region is reduced to the optimization of the joint spectra
amongst all of the users. The solution obtained using the optimal
spectrum balancing algorithm proposed in this paper, although
not the best possible for the interference channel, is nevertheless
optimal within the current capabilities of DSL. modems already
developed.

The main difficulty in the optimal design of multiuser DSL
spectra is the computational complexity associated with the op-
timization problem. The constrained optimization problem is
nonconvex, and a naive exhaustive search leads to an exponen-
tial complexity in the number of tones K in the system. In ADSL
K = 256, whilst in VDSL K = 4096. This leads to a compu-
tationally intractable problem.

This paper overcomes the exponential complexity in K
through the use of a technique called dual decomposition. The
computational complexity of the proposed algorithm, although
linear in K, is still exponential in the number of users. Never-
theless, it gives a practical way to compute the achievable rate
regions for channels with a small number of users. Doing so
was not possible prior to this work.

A related work [9] formulated a solution to the optimal bal-
ancing problem based on simulated annealing. However, simu-
lated annealing cannot guarantee convergence to the global op-
timum, and the convergence speed can also be slow. Another
paper tries to find the optimal solution in closed form, using
convex optimization techniques [10]. Unfortunately, this is only
possible when the crosstalk channels are sufficiently weak such
that the objective function is convex. This approach is not valid
in the general case. In particular, in mixed CO-RT distributions
and in VDSL, the crosstalk channels may be stronger than the di-
rect channels. The result is a nonconvex objective function with
many local optima. Exploring all local optima requires an ex-
ponential complexity in the number of tones K, and the opti-
mization becomes computationally intractable [10]. Other sub-

optimal solutions, both distributed [6], [11], [12] and centralized
[13], have also been proposed.

The remainder of this paper is organized as follows. The
system model for a network of interfering DSL modems is
formulated in Section II. The problem is then to characterize the
achievable rate region and the corresponding transmit spectra.
This problem is formulated in Section III, where it is shown
that trying to find the solution directly through an exhaustive
search is computationally intractable. Section IV shows that the
spectrum balancing problem has an equivalent dual problem.
This can be decomposed into separate subproblems that are then
solved independently on each tone. The resulting algorithm
gives an efficient solution to the spectrum balancing problem.
Section V compares the performance of the proposed algorithm
to existing spectrum balancing techniques. Conclusions are
drawn in Section VI.

II. SYSTEM MODEL

Assuming that DMT modulation is employed by all modems,
transmission can be modeled independently on each tone as

yi = Hixp + 21 (1

The vector x; = [z],---, 2] contains transmitted signals on
tone k. There are NV lines in the binder, and zj; is the signal
transmitted onto line n at tone k. y and z; have similar struc-
tures. yy, is the vector of received signals on tone k. zj is the
vector of additive noise on tone k and contains thermal noise,
alien crosstalk, single-carrier modems, and radio frequency in-
terference (RFI). Recall that 1 < k < K, where K is the
number of tones within the system. We denote the noise power
spectral density (PSD) on line n as o} 2 E{|z1*}. Hy, is the
N x N channel transfer matrix on tone k. h; "™ 2 Hy],, ,, is
the channel from TX m to RX n on tone k. The diagonaf ele-
ments of Hy, contain the direct channels whilst the off-diagonal
elements contain the crosstalk channels. We denote the transmit
PSD as s} 2¢ {|27]*}. For convenience, we denote the vector

containing the PSD of user » on all tones as s,, 2 [sT,...,s%]
We denote the tone spacing as Ay and DMT symbol rate as f;.

We assume that the modems within the network are synchro-
nized such that each tone operates independently and free from
intercarrier interference (ICI). We also assume that each modem
employs frequency-division duplexing to separate upstream and
downstream transmission.

We denote the maximum bitloading that a modem can sup-
port as byax, which lies in the range 8—15 in current standards
[14], [15]. It is assumed that each modem treats the interfer-
ence from other modems as noise. When the number of inter-
fering modems is large, the interference is well approximated
by a Gaussian distribution. Under this assumption, the achiev-
able bitloading of user n on tone k is

2
|y, 1" sk

Z = min bmaX710g2 <1 += n,m 2 ))
< Fzmyénvlk’ | s+ oy
2




924

where I' is the SNR gap to capacity and is a function of the
desired bit error rate (BER), coding gain, and noise margin [16].
The data rate on line 7 is thus

Rn = fszbz
k

In practice, the relationship between the received signal-to-in-
terference-plus-noise ratio (SINR) and the bitrate may be more
complex and is in fact dependent on the coding scheme em-
ployed within the modem. In this paper, (2) will be used for
simplicity, however, the algorithms presented here can be ap-
plied to any arbitrary function that relates the bitloading to the
SINR on each tone.

III. SPECTRUM MANAGEMENT
A. Spectrum Management Problem

We restrict our attention to the two-user case for ease of expla-
nation. Extensions to more than two users follow naturally from
what is presented here. The spectrum management problem for
the two-user case is defined as

max Ry s.t. Ry > Ry (3)

S1,S2

The rate region is a plot of all possible operating points or rate
combinations that can be achieved in a multiuser channel. Oper-
ating points on the boundary of the region are said to be optimal.
These points and their corresponding PSD combinations can be
characterized by solving the spectrum management problem (3)

for a range of values of R{""™#". This is the goal of this paper.

B. Constraints

The optimization (3) is typically subject to a total power con-
straint on each modem

AstZ <P, n=12
k

where P,, denotes the total power that modem 7 can transmit.
This arises from limitations on each modem’s analog front-end
(AFE). For convenience, this is reformulated as

Y sp<Pu, n=1,2 )
k

A = e . .
where P, = P,/Ay. A positivity constraint applies to the
transmit spectra

sp >0 Vk,n. 5)

Spectral mask constraints may also apply

sp < sk, (6)
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C. Continuous Bitloading

Consider the case where the modems can support any pos-
sible bitloading. We denote the accuracy with which modems
can control their transmit PSD as A,. In current standards, A,
is set to 0.5 dBm/Hz [17]. The total power (4) and spectral mask
constraints (6) make it possible to upper bound the transmit
power on any tone

n,max

sp < s

where ;"% 2 min(P,, s;"™***). Combining this with the
positivity constraint (5) limits the range of s} to

5 € {0, A5l )

Thus, on tone k, there are g, = [], (s A7! + 1) possible
PSD combinations.

D. Discrete Bitloading

Practical DSL modems can only support a fixed set of
discrete bitloadings. The search space can thus be reduced to
the PSD’s corresponding to these discrete bitloadings, thereby
reducing complexity without affecting optimality. Define the
vectors by 2 [bL,....6N]" and 5, 2 [sl,...,sN]" which
contain the bitloadings and PSDs of all users on tone k, re-
spectively. Provided that b} < byax, Vn, then (2) can be used
to find the PSD combination §j, corresponding to a particular
bitloading combination by, as will now be shown. First, define

A
Ay = o™, where

nm A [0, n=m
YU T\TRE™?, n#m.
Also, define o, 2 Lo}, ..., U,JCV]T, D, 2 diag{|h,1€’1|27 e
LNV 12} and Ay 2 diag{2% — 1,...,2%% — 1}. Since b} <
bmax, (2) can be rewritten as

B[P =T (2% 1) 3 P s
m#n
=T (2’]3 - 1) ot Vn. (8)
Note that taking (8) for each n forms a set of n linear equations
in Sy. These can be written in matrix form as
(Dk — AkAk>§k = Akak.
The PSD combination required to support a particular bitloading
combination by, is then
5, = (D — AAg) Aroy. 9)

In the remainder of this paper, s?(bi, b2) is used to denote the
PSD of user n corresponding to the bitloadings b}, and b7, as cal-
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culated by (9). Hence, the range of PSD combinations (s}, 57)
can be limited to

(sks) €{(sk (bx,b7) - 5% (bg-b7)) bR €10, .. bmax} ‘v’g%)
Thus, on tone k, there are gz = (bmax + 1)? possible PSD
combinations.

E. Exhaustive Search

At this point, a simplistic algorithm could be proposed to
find the optimal PSDs based on an exhaustive search. On
tone k, there are g possible PSD combinations. Taking all
possible PSD levels across all tones results in [, gi possible
PSD combinations. The feasibility of each PSD combination
is determined based on any power constraints, as described in
Section III-B, and on the target rate constraint for user 1. The
PSD combination that maximizes the data rate of user 2 is then
selected.

Unfortunately, although this algorithm is simple to imple-
ment, its complexity in the discrete bitloading case is O((bypax+
1)25), With K = 256 in ADSL and K = 4096 in VDSL, this
results in a computationally intractable problem. In the contin-
uous bitloading case, the complexity can be even higher.

IV. OPTIMAL SPECTRUM BALANCING

As was shown in Section III-E, an exhaustive search for the
optimal PSDs leads to a computationally intractable problem.
The reason behind this is as follows. The target rate constraint
for the first line and the total power constraint associated
with each line couples the power allocation problem across
frequency. As such, the PSD combination must be searched in
a joint fashion across all tones. This results in an exponential
complexity in K and an intractable problem.

The following sections will use dual decomposition to trans-
form this problem into an equivalent one that has a linear com-
plexity in K and is tractable. Since the development has many
stages, a brief overview is given here before proceeding with a
detailed explanation in Sections IV-A to IV-D.

Section IV-A begins by replacing the original optimization
problem (3) with the maximization of a weighted rate sum. With
a correctly chosen weight w, maximizing the weighted rate sum
implicitly enforces the target rate constraint on user 1.

In Section IV-B, the power-constrained optimization is re-
placed by an equivalent dual problem. This dual problem con-
sists of an unconstrained optimization of a Lagrangian. In the
Lagrangian, the total power constraints are enforced through
the use of Lagrangian multipliers which form part of the objec-
tive function. When the Lagrangian multipliers are chosen cor-
rectly, maximizing the Lagrangian will implicitly enforce the
power constraints. The power constraints need not be explicitly
enforced, and the problem can be decoupled across frequency.

After this decoupling, the optimization can be solved by
maximizing the Lagrangian independently on each tone, an
approach which is known as dual decomposition. This leads
to a complexity which is linear rather than exponential in K,
and the problem becomes computationally tractable. This is the
main innovation in this paper.

wRi+ (1-w)Ry > &
wRi+ (1 —w)Ry =k

& _Impossible B

target]

R

Range of w for which
point C is optimal

R
2

Fig. 1. Optimality of A in the weighted rate sum (11) implies optimality in the
spectrum management problem (3).

Section IV-C provides details of the implementation of the
algorithm itself, and Section IV-D will show the significant re-
duction in complexity that it achieves.

The dual-decomposition method is a commonly used ap-
proach in convex optimization theory for solving constrained
optimization problems through an equivalent unconstrained
dual problem. This dual problem can be decomposed into
several simpler subproblems. The dual decomposition has
been applied in other communication problems with convex
objective functions such as joint routing and resource allocation
[18] and power allocation in the vector broadcast channel [19].
This study shows that the dual-decomposition method can also
be applied to nonconvex optimizations.

A. Weighted Rate Sum

Start by considering the following optimization problem
where the objective is to maximize the weighted rate sum

max wRy + (1 — w)Ro.

S1,S2

Y

The following theorem shows that solving this problem is equiv-
alent to solving the original spectrum management problem (3).
Theorem 1: For any 0 < w < 1, there exists at least one
R for which the weighted rate-sum optimization (11) is
equivalent to the original spectrum management problem (3).
Proof: The proof will be made by illustration. As shown
in the rate region in Fig. 1 for any given 0 < w < 1, there will
be at least one point which maximizes the weighted rate sum. If
there are multiple optimal points, the optimization search will
need to explore each point in turn. In this case, there are two
points A and C. Consider one of these points A 2 (RS, RS).

Assume that there exists some other point in the rate region B £
(R}, Rb) such that R} > R§ and R} > R$. This would imply
that point B leads to a larger weighted rate sum than point A,
but this is contradicted by the optimality of A in the weighted
rate sum (11). Thus, no such point B can exist. Hence, R§ is
the highest rate of line 2 that allows a target rate of R{ to be
achieved on line 1. This implies that point A is optimal in terms
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Fig. 2. Operating points in X N Y can be found through a weighted rate-sum
optimization.

of the original spectrum management problem (3) for the target
rate Ry™®*" = R{. |

In Section IV-C, the optimal spectrum balancing algorithm is
described, which finds the optimal solution to (11) for any par-
ticular w. Theorem I implies that solving (11) is equivalent to
solving (3) for some particular R}*5°. Thus, the proposed al-
gorithm is guaranteed to always yield an optimal solution to the
spectrum management problem (3). The full proof is deferred
to Theorem 3 and the Appendix.

By sweeping through different values of w, a large portion
of the rate region can be characterized. Unfortunately, points
which lie in the interior of the convex hull of the rate region,
e.g., point D in Fig. 2, cannot be found with the proposed algo-
rithm. The reason for this is that these points are not optimal in
terms of a weighted rate sum (11). For example, in Fig. 2, both
A and B are superior to point D. This is one of the problems
inherent to the use of the weighted rate sum as an optimization
metric, however, the weighted rate sum appears to be difficult to
avoid, since trying to solve (3) directly leads to an exponential
complexity in K and an intractable problem.

Fortunately, all achievable points on the convex hull of the
rate region can be characterized using a weighted rate sum and
hence can be found using optimal spectrum balancing. This
statement is formalized in the following theorem.

Theorem 2: For any rate region X, define X as the boundary
of X, Y as the convex hull of X, and Y as the boundary of Y.
Consider any operating point C 2 (RS, RS) whichis achievable
C € X and on the boundary of the convex hull of the rate region
C €Y, as depicted in Fig. 2. There exists some w such that
the PSDs at point C' can be found through a weighted rate-sum
maximization.

Proof: C'is on the boundary of the convex set Y. Thus,
there exists no point D 2 (R{,RY) € Y such that R > RS
and R¢ > RS. This implies that for some w, we have

wRS + (1 —w)R§ > wR{ + (1 —w)Ry V(R{,R3) €.
Now, since X C Y, we have

wRS + (1 —w)R§ > wR{ + (1 —w)Ry ¥ (R{,R3) € X.
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Thus, the point C' gives the maximum weighted rate sum of all
achievable points within the rate region X for some particular
weight w. Hence, the point C' is optimal in the weighted rate sum
(11) for that w and can be found through a weighted rate-sum
maximization. ]

Corollary 1: For any convex rate region, all optimal operating
points on the boundary of the rate region can be found through
a weighted rate-sum optimization.

Proof: In a convex rate region, the boundary of the convex
hull Y contains the entire boundary of the rate region and X =
Y. All optimal operating points in terms of the original spectrum
management problem (3) lie on the boundary of the rate region.
Hence, Theorem 2 implies that all optimal operating points can
be found through a weighted rate-sum optimization. |

Theorem 2 implies that any achievable operating point on the
boundary of the convex hull of the rate region can be found
through a weighted rate-sum optimization. If the rate region is
close to being convex, then the majority of the optimal operating
points can be found. Thankfully, this is the case in DSL chan-
nels, as will now be explained.

In the wireline medium, there is some correlation between
the channels on neighboring tones. If the channel is sampled
finely enough, then neighboring tones will see almost the same
channels (both direct and crosstalk).

Imagine that the tone spacing is fine enough such that h)""™ ~
hy7, 0 <1 < L — 1. Consider two points in the rate region
A = (R},R%) and B = (R}’{7 RY) and their corresponding
PSDs (5%, sp") and (s, s2"). It is possible to operate at a
point £ = ((I/L)R$ +(L—1/L)RS,(I/L)R$ + (L —1/L)R%)
forany 0 < | < L — 1 as depicted in Fig. 2. This is done by
setting the PSDs to (s,7%, s.°*) ontones k € {pL+1,...pL+1}
for all integer values of p and to (s;"", 52 on all other tones.

For example, to operate at a point two thirds between A and
B (i.e., on the side closer to A), it is required that [ = 2 and
L = 3. Thus, the PSDs are set to (s%’a,s;’“) on tones k €
{1,2,4,5,7,8,..., K — 1} and to (sk’b,sk’b) on tones k €
{3,6,9,...,K}. For this to work, the tone spacing must be
small enough such that the channel is approximately flat over
L = 3 neighboring tones. That is, it is necessary that h;"™ ~
B s BT € (1,4, K — 2}

For large L (small tone spacing), practically any operating
point between A and B can be achieved. Thus, for any two
points in the rate region, any point between them is also within
the rate region. This is the definition of a convex set. As such,
the rate region is approximately convex in DMT systems with
small tone spacings. This approximation becomes exact as the
tone spacing approaches zero. For the remainder of this paper,
we assume that the DMT tone spacing is small such that the rate
region is convex. This is justified for practical DSL systems for
which Ay is 4.3125 kHz.

Note that one should not confuse convexity of the rate region
with convexity of the objective function (11). In practice, the
rate regions are seen to be nearly convex, however, the opti-
mization problem is highly nonconvex, exhibiting many local
maxima. For this reason, conventional convex optimization
techniques cannot be applied, and an exhaustive search is
required on each tone.
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B. Dual Decomposition

In the previous section, it was shown that the spectrum
management problem (3) can be solved through a weighted
rate-sum optimization (11). It was also shown that in DSL,
the rate region is approximately convex, allowing almost all
optimal operating points to be found. This section will show
how the weighted rate-sum optimization can be solved in a
computationally tractable way.

The total power constraints (4) can be incorporated into the
optimization problem by defining the Lagrangian

LEwRi+(1—w)Ry =M Y sk=2 Y sk (12)
k k

Here, \,, denotes the Lagrangian multiplier for user n and is
chosen such that either the power constraint on user n is tight
(OS¢ = Pn)or A, = 0. The constrained optimization (11)
can now be solved via the unconstrained optimization

maxL(w,)\l,)\g,s}c,sz) . (13)

S1,S2

Define the Lagrangian on tone & as
Ly, 2 whp + (1 — w)b} — Aysp (bh, b3) — Aos? (b, b3) .

Clearly, the Lagrangian (12) can be decomposed into a sum
across tones of Ly, i.e.,

L:ZLk.

k

This is known as the dual decomposition. As a result, the opti-
mization can be split into K per-tone optimizations which are
coupled only through w, A1, and As. This will lead to a linear,
rather than exponential, complexity in K and a computationally
tractable search.

C. Algorithm

The optimal spectrum balancing algorithm is listed as Algo-
rithm 1. Spectral mask constraints can be incorporated into the

optimization by setting Ly to —oo if sL > 5™ or s7 >
si’ma". If discrete bitloading is employed, then the maximiza-

tion in the function optimize_s is limited to the PSD combi-
nations corresponding to valid bitloading combinations, as de-
scribed by (10). If continuous bitloading is used, then the maxi-
mization is limited to the values of s}, supported by the accuracy
of the modem’s AFE, as described by (7).

The algorithm operates as follows. It is necessary to search
through both A\; and A, to find values which place sufficient
importance on the total power constraint terms within the La-
grangian (12). Varying w makes it possible to map out the op-
timal points on the convex hull of the rate region.

The algorithm contains three loops: an outer loop that varies
w, an intermediate loop that searches for A1, and an inner loop
that searches for \». Bisection is used in each search.

When searching for )\, it is first necessary to find a value of
A that ensures that the power constraint of user n is satisfied.
This value is stored in A'**. Note that a larger \,, places more
emphasis on the power constraint of user n in the Lagrangian.
As a result, using a larger A,, will result in a lower total power
for user n.

Once A*** is found, the algorithm proceeds to bisection.
Note that after the algorithm has completed, for each user ei-
ther ), s} = P, or A, = 0. Thus, the Lagrangian and the
original objective become equivalent. More rigorously, we have
the following.

Algorithm 1 Optimal spectrum balancing

Main Function
forw =0,...,1
S1,S2 = optimize_A1(w)
end
Function s1,s; = optimize_\ (w)

)\rlnax — 1, )\1111in =0
while >, st > Py

)\Ilnax — 2)\1{[1'1&)(
S1,S2 = optimize_Ag(w, AI**¥)
end

repeat

)\1 — ()\llnax + )\1111in)/2
S1, So = optimize_Ao(w, A1)
if 0, sk > Py, then A = )\, else AP = )\,

until convergence
Function s1, s; = optimize_\s(w, A1)

)\rgnax — 1, )\glin =0
while >, 52 > P,

max __ max
Apax — 278
S1, So = optimize_s(w, A1, AP*¥)

end
repeat

Ap = (Aax 4 \min) /9
S1, 8o = optimize_s(w, A1, A2)
if 37, 52 > Py, then ARI® = )y, else AP = ),

until convergence
Function s, sy = optimize_s(w, A1, A2)
fork=1...K
i, 53 = arg max,1 g2 Li(s}, s3,w, A1, A2)
(solved by exhaustive 2-D search)

end
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Theorem 3: For each w, the execution of Algorithm 1 returns
aPSD combination that is optimal for the spectrum management

. target
problem (3), i.e., for some R;*"®%", we have
S1,S2 = arg max Ro
51,82
t ot
st. Ry > R
E sp <P, Vn

k

0 <sp <sp™ Vn,k. (14)

Here, Riarget is in fact the rate of user 1 at convergence of the
algorithm. Varying w from O to 1 allows all optimal operating
points which lie on the convex hull of the rate region to be found.
If the rate region is convex, then all optimal operating points can
be found.
Proof: See the Appendix. [ |
Note that the function optimize_s must solve an N-dimen-
sional nonconvex optimization. This requires an exhaustive
search, which has an exponential complexity in /N. However,
since the number of users in a system is typically small, such
an exhaustive search is computationally tractable. Through use
of the dual decomposition, the complexity of the algorithm is
linear in K, and the total optimization is tractable. Compare this
with the exhaustive search described in Section III-E, where
the optimization was coupled between tones. This coupling
led to a K N-dimensional nonconvex optimization, which was
computationally intractable.

D. Complexity

This section discusses the complexity of the proposed al-
gorithm and shows that a significant complexity reduction is
achieved over the exhaustive search described in Section III-E.

The algorithm begins by finding upper bounds on A; and Ao,
which are stored as A"** and A5***. This is done by simply dou-
bling A1 and A9 until the power constraints are met. This typi-
cally occurs within a few iterations and has a negligible impact
on complexity.

The majority of the complexity occurs in the outer loops
of the algorithm, where bisection is done on A; and Ay such
that the power constraints on both users become tight. Assume
that an accuracy of € is required in each A. This will require
log,(1/e€y) iterations of optimize_A;, which in turn requires
log,(1/€x)? iterations of optimize_\,. Each iteration will result
in the function optimize_s being called.

The function optimize_s solves the weighted rate-sum opti-
mization independently on each tone. Since the objective func-
tion is nonconvex, the optimization is done exhaustively. This
requires K (bmax + 1)? evaluations of Ly in the discrete bit-
loading case. A similar expression can be written for the contin-
uous bitloading case. Thus, the total complexity of the proposed
algorithm is O(K (bmax + 1) log,(1/e)?).

In comparison, solving the problem through an exhaustive
search across all tones, as described in Section III-E, requires
the evaluation of (byax+1)%% bitloading combinations. In most
cases, this is computationally intractable.

This paper has only shown the algorithm and optimality proof
for two user channels. Extensions to more than two users are
straightforward and follow naturally from the algorithm and
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proof presented here. In the general case of N users, there will
be a target rate constraint on the first N — 1 users, and the goal is
to maximize the rate of the Nth user. This is equivalent to max-
imizing a weighted rate sum ) ., w, R,, where the weight for
the Nth user is arbitrarily defined as wy 21— Zi:’;ll Wy, To
enforce the total power constraints on all users, N Lagrangian
multipliers are required Ay, ..., Ay. The N-user algorithm has
a similar form to Algorithm 1, however, it must now sweep
through all values of wy, ..., wx—1 in Main Function.

With N users, bisection must be done on Aq,..., AN, re-
sulting in the function optimize_s being called logy(1/ex)™
times. In the discrete-bitloading N-user case, the func-
tion optimize_s requires K (byax + 1)V evaluations of L.
Evaluating Lj requires a weighted rate sum of N users
to be calculated, so the total complexity of optimize_s is
O(K N (byax + 1)%). Taking this all into account, the overall
complexity of the proposed algorithm in the N-user case is
O(KN(bmax + 1)V logy(1/ex)Y). Typically setting ey to
1 x 10719 is sufficient to achieve an accuracy of 1% in the total
power constraints [see (4)]. This leads to a complexity

Vosg = O (KN (bax + 1)V33V) . (15)

In comparison, the exhaustive search across all tones in the
N -user case requires the evaluation of (byayx + I)KN bitloading
combinations. For each bitloading combination, the total rate
must be calculated for each user across all tones. Hence, the ex-
haustive search has a complexity

‘/thaustivc =0 (KN(bmax + 1)KN) .

Comparing this with (15) shows that the proposed algorithm
leads to a complexity reduction of

AV =0 ((bmax + 1)<K*1>N33*N) .

The first term (byax + 1) =DV can be interpreted as the ben-
efit of replacing the K /V-dimensional nonconvex optimization
with K separate /N -dimensional optimizations. The second term
337N is the penalty of searching through A-space.

Typically, byax = 14. In ADSL, K = 256, and thus the
overall complexity reduction with the proposed algorithm is
O(10298N) Tn VDSL, K = 4096, and the overall complexity
reduction is even higher at O (104815,

Despite the large reduction in complexity that optimal spec-
trum balancing achieves, at large IV, it is still highly complex.
Due to changing line conditions and the frequent addition of
new users, practical DSM algorithms must be capable of reopti-
mizing the modem spectra in a matter of minutes. Thus, in prac-
tice, it is more interesting to design low-complexity algorithms
with near-optimal performance.

There are several options that can be used to reduce the
complexity of the proposed algorithm by sacrificing some
optimality. An extension of this study has demonstrated that
by optimizing the transmit spectra one modem at a time in an
iterative fashion, near-optimal performance can be achieved
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with a significant reduction in complexity to O(KN?) [7].
While this technique helps to reduce complexity considerably,
it is important to note that the resulting algorithm is no longer
strictly optimal.

V. PERFORMANCE

This section examines the performance of optimal spectrum
balancing when compared with other spectrum management
techniques. For all simulations, the line diameter is 0.5 mm
(24-AWG). The target symbol error probability is 10~7 or
less. The coding gain and noise margin are set to 3 and 6 dB,
respectively. Continuous bitloading is used and Ay is set to
0.1 dBm/Hz. The maximum bitloading is not constrained. As
per the DSL standards, the tone spacing Ay and DMT symbol
rate f are set to 4.3125 and 4 kHz, respectively [14], [15].

A. Remote Terminal Distributed Downstream ADSL

Downstream transmission in ADSL was simulated with a
5-km CO distributed line and a 3-km RT distributed line. The
RT is located 4 km from the CO, as depicted in Fig. 3.

A maximum transmit power of 20.4 dBm was applied to each
modem [14]. A spectral mask was applied to the flat power
back-off (PBO) and reference noise method and was set at
—40 dBm/Hz [14]. A spectral mask was not applied to iterative
waterfilling or optimal spectrum balancing. Background noise
included crosstalk from 16 ISDN, four HDSL, and ten conven-
tional ADSL modems which transmit at the spectral mask.

Fig. 4 shows the rate regions corresponding to the various
spectrum management algorithms. For comparison, the rate re-
gions with iterative waterfilling, flat PBO, and the reference
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Fig. 5. PSDs on the CO line in downstream ADSL (CO line at 1 Mbps).
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Fig. 6. PSDs on RT line in downstream ADSL (CO line at 1 Mbps).

noise method have been included. In the reference noise method,
each modem sets its transmit PSD such that the crosstalk it in-
duces on the victim modem is equal to the background noise
seen by that modem, which is the so-called reference noise [12].
With flat PBO, each modem transmits the minimum possible flat
PSD required to support its target rate.

Note that iterative waterfilling, the reference PSD method,
and flat PBO are all distributed algorithms and require no
centralized control. In contrast, optimal spectrum balancing
is a centralized algorithm requiring knowledge of the direct
and crosstalk channel attenuations within the network. Optimal
spectrum balancing is suitable for direct application when an
SMC is available. In the absence of an SMC, the proposed
algorithm is still a useful tool in the design of distributed DSM
algorithms, providing both an upper bound on performance and
insight into good spectrum management strategy [7].

The PSDs corresponding to a 1-Mbps service on the CO dis-
tributed line are depicted in Figs. 5 and 6. The optimal PSD on
the RT line decreases with frequency to reflect the increase in
crosstalk coupling. This continues until 440 kHz, where the CO
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TABLE 1
ACHIEVABLE RATES IN DOWNSTREAM ADSL

Scheme CO Rate RT Rate

Flat PBO 1.0 Mbps | 1.7 Mbps

Ref. Noise 1.0 Mbps | 2.3 Mbps

Iterative Waterfilling 1.0 Mbps | 3.6 Mbps
Optimal Spectrum Balancing | 1.0 Mbps | 7.4 Mbps

line becomes inactive due to its low channel SNR above this fre-
quency. Once the CO line becomes inactive, a sudden increase
in the optimal PSD on the RT line can be observed.

With the flat PBO algorithm, the RT line must employ a large
amount of PBO to protect the CO line. This occurs because,
unlike in optimal spectrum balancing, the flat PBO algorithm
cannot vary the degree of PBO with frequency.

The iterative waterfilling algorithm gives similar results.
Slightly less PBO is required since the CO line PSD has been
boosted on the active tones, as shown in Fig. 5. However, the
amount of PBO required is still much larger than with op-
timal spectrum balancing. The iterative waterfilling algorithm
does not exploit the fact that crosstalk coupling is low at low
frequencies. It also does not exploit the fact that the CO line
is inactive above 440 kHz. Both of these facts were used by
optimal spectrum balancing to increase the transmit PSD on
the RT line at low and high frequencies, thus leading to a large
performance gain over iterative waterfilling.

It has been shown that the reference noise method is near
optimal when the SINR is high [12]. This is the case in low
frequencies. For this reason, the reference noise PSD matches
the optimal PSD quite closely at frequencies below 440 kHz.

As shown in Table I, using optimal spectrum balancing in-
stead of iterative waterfilling allows the data rate on the RT dis-
tributed line to be increased from 3.6 to 7.4 Mbps whilst still
maintaining a 1-Mbps service on the CO distributed line. This
corresponds to a gain of over 100%.

B. Near—Far Problem in Upstream VDSL

Upstream VDSL transmission was simulated with 4 x 600-m
lines and 4 x 1200-m lines with the receivers colocated at a
common CO. Each modem had a maximum transmit power of
11.5 dBm available. A spectral mask was applied to the flat
PBO, reference noise, and reference PSD method and was set
at —60 dBm/Hz [15]. A spectral mask was not applied to itera-
tive waterfilling or optimal spectrum balancing. Alien crosstalk
was incorporated into the background noise using ETSI model
A [15]. FDD bandplan 998 was used with the frequency bands
corresponding to amateur radio frequencies notched off [15].

Fig. 7 shows the rate regions corresponding to various spec-
trum management algorithms. Included are iterative waterfilling
[6], the reference noise method, flat PBO, and the reference PSD
method, which is currently adopted in VDSL standards [15].

To give an example of the potential gains of optimal spec-
trum balancing, we set the target rate to 16 Mbps on the 600-m
lines. The resulting achievable rate on the 1200-m lines is listed
in Table II for each of the algorithms. As can be seen, using op-

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 5, MAY 2006

1200m line (Mbps)

—} Optimal Spectrum Balancing
1 - Ilterative Waterfilling
- Flat PBO

- Ref. Noise

% Ref. PSD

0 ! H
0 2 4 6 8 10 12 14 16 18
600m line (Mbps)

Fi

=

g. 7. Rate regions in upstream VDSL.

TABLE II
ACHIEVABLE RATES IN UPSTREAM VDSL
Scheme 600m. Rate 1200m. Rate

Target Rate 16 Mbps Best Achievable

Ref. PSD 13.1 Mbps 2.7 Mbps

Flat PBO 16.0 Mbps 0.8 Mbps

Ref. Noise 16.0 Mbps 1.7 Mbps

Iterative Waterfilling 16.0 Mbps 2.6 Mbps

Optimal Spectrum Balancing 16.0 Mbps 4.5 Mbps

timal spectrum balancing instead of iterative waterfilling allows
the data rate on the 1200-m lines to be increased from 2.6 to
4.5 Mbps, almost doubling the data throughput.

Note that the optimal rate regions for both the ADSL and
VDSL scenarios are convex, as was predicted in Section IV-A.

C. Discrete Bitloading

The same simulations were made with discrete bitloading,
with each modem forced to adopt an integer bitloading value.
We set the maximum bitloading b, to 14. All other simula-
tion parameters were the same. In the iterative waterfilling algo-
rithm, the Levin—Campello algorithm was used to ensure integer
bitloadings on each tone [16].

In the ADSL scenario, using optimal spectrum balancing in-
stead of iterative waterfilling allowed the data rate on the RT
distributed line to be increased from 3.1 to 7.3 Mbps whilst still
maintaining a 1-Mbps service on the CO distributed line.

In the VDSL scenario, using optimal spectrum balancing in-
stead of iterative waterfilling allowed the data rate on the 600-m
lines to be increased from 3.4 to 13 Mbps while maintaining a
5-Mbps service on the 1200-m lines. This corresponds to a gain
of over 280%.

VI. CONCLUSION

This paper presented an optimal algorithm for spectrum
balancing in DSL. The algorithm optimizes the spectra of the
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modems within a network, allowing them to achieve maximal
performance and operate on the rate region boundary. The
algorithm can operate under a combination of total power
and/or spectral mask constraints and can use either continuous
or discrete bitloading.

Through the use of a dual decomposition, the inner loop
of the algorithm solves the spectrum management problem
independently on each tone. The result is a computationally
tractable and efficient algorithm. Simulations show that the
algorithm yields significant gains over existing spectrum
management techniques, e.g., in one of the cases studied, the
proposed centralized algorithm leads to a factor-of-four in-
crease in data rate over the distributed DSM algorithm iterative
waterfilling.

Optimal spectrum balancing is a centralized algorithm re-
quiring an SMC for direct implementation. In future work, it
will be interesting to develop distributed DSM algorithms based
on the insight gained from the proposed algorithm. The goal is
to find a simple, distributed algorithm which yields near-optimal
performance in a broad range of scenarios. Early work in this
area is promising [7].

While this paper has focused on the problem of spectrum
management in DSL, the algorithm is also applicable to
any communication system where interuser interference is a
problem. Optimal spectrum balancing could also be applied
to broadband cable networks, high-speed Ethernets, or fixed
wireless links.

The idea of using dual decomposition to simplify high-di-
mensional, nonconvex problems can also be applied to many
other communications problems. Extensions of the work pre-
sented here consider the use of dual decomposition for joint
crosstalk canceller—transmit spectra design [20], and for joint
bandplan—transmit spectra optimization [21].

APPENDIX
PROOF OF THEOREM 2

To prove the optimality of Algorithm 1 as stated in Theorem
3, it is first shown that the algorithm converges. It will then be
shown that at convergence, maximizing the Lagrangian is equiv-
alent to maximizing the weighted rate sum (11). This implies the
optimality of the PSDs generated by the algorithm.

To prove the convergence of Algorithm 1, the convergence of
a related routine is first examined. This routine finds the cor-
rect value for \,, thereby ensuring that the total power con-
straint on user n, as described by (4), is satisfied. At this value
of \,, the routine finds the optimal PSD for user 7. As will be
shown in Corollaries 2 and 3, the algorithms optimize_\; and
optimize_M\, can be seen as special cases of this routine for spe-
cific values of the optimization function f(s,,). In Lemma 2, it
is proven that this routine converges. This in turn implies the
convergence of optimize_\; and optimize_\,.

First, define the objective function

G(Sn:An) = f(80) = An D 57 (16)
k

Denote the optimal power allocation for a given A,, as

Sn(An) 2 argmax G(sn, An)

Sn

with s7(Ap) 2 [sn(An)],.- The routine for user n is then given
as follows.

Routine for user n

Amax — 1, \min — ()
while Y, sp > P,
Amax — g jmax
Sp, = argmaxg, f(s,) — An™*Y", sy
end
repeat
Ap = (Amax 4 \min) /2
s, = argmaxs, f(Sn) — An D ) Sk
if Y2, s > P, then AR = ), else A% = ),

until convergence

The following lemma is used to prove the convergence of this
routine.

Lemma 1: Fixn. )", sit(\y) is monotonic decreasing in Ay,.
Furthermore, limy, oo >, 57 (An) = 0.

Proof: Consider two Lagrangian multipliers A% and A%

and their corresponding optimal PSDs s¢ 2 sn(A2) and sb, 2
s, (A%). Denote the elements of these PSDs as sp“ and sZ’b,
respectively. Let

XY > A (17)
Define
ASF(sh) =My s
k
B2 (sh) = s
k
C2F(sh) =y s
k
DEJ(sn) =M s
k
Now G(s2,A\%) > G(sb,\?) by the optimality of s? in
G(sn,A%). Hence, A > B. Similarly, the optimality of s in
G(s,,\?) implies C > D. Furthermore, (17) implies B > C.

Now, A > B > C > D implies A— D > B — C. Hence

(AL = A S s> (AL =A%) Y s
k k

which implies

(18)

n,a n,b
E s, 2 E sy -
k k
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Thus, a larger A, leads to a smaller ), s}. This implies that
>k Sk is monotonically decreasing in A,,.

The second part of the lemma will now be proven. From (16),
it can be shown that for large \,,, G(Sn, An) &~ —Ap D>, Sp
with the approximation becoming exact as A,, — oo. Hence,
limy, o0 Sn(An) = Ok, where O is the length K vector with
all elements equal to zero. [ |

Lemma 2: In DMT systems with small tone spacing, the Rou-
tine for user n converges. At convergence, we have

Sn = argmax f(sn) s.t. Z sp < Py.
k

Proof: Before establishing convergence, we first show that
>k S7(Ay) is a continuous function of A,,. This is true for DMT
systems with small tone spacing and with a large number of
DMT tones. In such a system, there would always be one or
more tones that would change their bit and power allocation
in response to any small change in \,,. Thus, the total transmit
power of the optimal power allocation ) -, s}*(A,) is continuous
in \,.

Now, we are ready to prove convergence of the routine. The
routine consists of two stages: a preamble that determines A\'**
and the actual routine itself. The preamble clearly converges
since, from Lemma 1, )", si(An) — 0 as A, — oo.

The convergence of the main part of the Routine for user n
can be shown as follows: Aa* — A\t decreases by half in
each iteration. Thus, \,, converges to a fixed value. Let us now
consider two cases, depending on whether }_, s (Ami") > P,
or not.

Suppose that 3, sp(A™") > P, at A" = 0, then, since
the preamble ensures that ) 3, s (A**) < P,, throughout the
algorithm, it is always the case that ), sp(A"") > P, and
Dok SEARE) < P, Since AT?F > A, > AP AR apd APX
converge to a fixed value, and since ), s7(),) is monotonic
in A, this implies that >, s}'(A\y) must converge to P,. On
the other hand, suppose that Y, sp(An™) < P, at A" = 0.
Then, A,, will converge to zero.

Hence, the algorithm will converge, and at convergence, ei-
ther A, = O or ), si(A,) = P,. Thus, at convergence, we
have

G(sn, An) = f(sn) — A Prn

which is simply f(s,) modified by a term that is independent
of s,,. In the routine, we have

argmax G(sp, An)

Sn

= argrrg}x f(sn) s.t. Z sg < P,.
k

Sn

To see this, clearly s, satisfies the constraint. Further, if there is
some other feasible s/, that does better than s,, for the objective
function f(s,,), then s/, should do better than s,, for the objec-
tive G(sy, A, ) also. This is contradicted by the optimality of s,,
in G(sn, \n). Hence, s,, must be optimal in f(s,,). []

Lemma 3: The function optimize_s yields PSDs s; and s»
which maximize the Lagrangian.
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Proof: From function optimize_s, we have

1.2 1.2
Sky Sy = argnlla)ng (w7)\17/\2,sk,sk) .
SkaS%

Since L = ), Ly, and since the optimization of the Lagrangian
is unconstrained,? this implies

S1,82 = argglast(w, )\1,)\2751,52).
1,82

|
Corollary 2: The function optimize_Xy converges. At con-
vergence, we have

so = argmaxwhR; + (1 —w)Ry — Ay ZS}C’
k

S1,S2

S.t. ZS% SPQ

Proof: Let n*= 2 and

19)

f(s2) 2 maxwhR; + (1 —w)Ry — My Zs,lc
S1 A

Lemma 3 implies that optimize_\; and the routine are equiva-
lent. Hence, Lemma 2 implies optimize_\o converges, and that
at convergence, (19) is satisfied. |

Corollary 3: The function optimize_\; converges. At con-
vergence, we have

s1 = argmaxwRy + (1 — w)Ro,

S1,82
st. Y si<P, Y sp <P (20)
Proof: Letn = 1*and k

f(s1) 2 maxwR; + (1 —w)Rs,
s2
S.t. Z S%, S PQ.
k

Then, Lemma 2 and Corollary 2 imply that optimize_\; con-
verges and that, at convergence, (20) is satisfied. [ |

From Theorem 1, for any particular w, there exists some
RY™&°* for which the weighted rate-sum optimization (20) is
equivalent to the original spectrum management problem (14).
Hence, for any particular w, the weighted rate-sum optimization
leads to an optimal operating point.

Corollary 3 implies that for each value of w in Algorithm
1, the PSD combination returned by the algorithm maximizes
a weighted-rate sum. Hence, the PSD combination is also an
optimal solution to (14). Furthermore, Theorem 2 states that by
varying w from O to 1, it is possible to map out all achievable
operating points on the boundary of the convex hull of the rate
region.
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