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Abstract

In a previous paper [6] we described the appli-
cation of geo experiments to the measurement
of advertising effectiveness. One reason this
method of measurement is attractive is that it
provides the rigor of a randomized experiment.
However, related decisions, such as where and
how to spend advertising budget, are not static.
To address this issue, we extend this methodol-
ogy to provide periodic (ongoing) measurement
of ad effectiveness. In this approach, the test and
control assignments of each geographic region ro-
tate across multiple test periods, and these rota-
tions provide the opportunity to generate a se-
quence of measurements of campaign effective-
ness. The data across test periods can also be
pooled to create a single aggregate measurement
of campaign effectiveness. These sequential and
pooled measurements have smaller confidence in-
tervals than measurements from a series of geo
experiments with a single test period. Alter-
natively, the same confidence interval can be
achieved with a reduced magnitude and/or du-
ration of ad spend change, thereby lowering the
cost of measurement. The net result is a better
method for periodic and isolated measurement
of ad effectiveness.

Keywords: ad effectiveness, advertising exper-
iment, periodic measurement, experimental de-
sign

1 Introduction

Advertisers benefit from the ability to measure
the effectiveness of their campaigns. This knowl-
edge is fundamental to strategic decision mak-
ing and operational efficiency and improvement.
However, advertising is dynamic. Competitors
come and go, product lines evolve, and consumer
behavior changes. Consequently, measuring ad
effectiveness is not a one-time exercise. Advertis-
ers with search campaigns need to know if their
bidding strategy, keyword sets, and ad creatives
are having a consistently compelling impact on
consumer behavior. Since an assessment of ad
effectiveness is relevant for a limited amount
of time, the need for measurement is ongoing.
Methods of measurement need to be adapted to
accommodate this persistent need for measure-
ment.

There are several key capabilities that a peri-
odic geographically based measurement method
should provide. Most importantly, the method
needs to provide the ability to generate a se-
quence of ad effectiveness measurements across
time. Additionally, the experimental units
should rotate between the test and control
groups. This rotation ensures that, over time,
all geographic regions, or “geos”, experience an
equivalent set of campaign conditions, which bal-
ances the ad spend opportunity across geos. The
capability to evaluate the design of an experi-
ment is also important. Understanding how the
measurement uncertainty is impacted by charac-
teristics such as experiment length, test fraction,
and magnitude of ad spend change is critical to
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executing an effective and efficient experiment.

The application of geo experiments to the mea-
surement of advertising effectiveness was de-
scribed in a previous paper [6]. These exper-
iments measure ad effectiveness across a single
test period. A series of single test period geo ex-
periments meets the requirements above. How-
ever, the time required to execute these exper-
iments is less than optimal. Each experiment
requires a separate pretest period, which signif-
icantly limits measurement frequency. This re-
striction is particularly undesirable since ongoing
measurement is the primary goal. The alterna-
tive approach described here avoids this problem
by combining the test period of one measure-
ment with the pretest period of the next mea-
surement. This coupling of the pretest and test
periods not only avoids the inefficiency of iso-
lated pretest periods, it also uses ad spend more
efficiently to reduce the confidence interval of the
ad effectiveness measurements.

2 Description of Multiple-Test-
Period Geo Experiments

Our objective is to measure the impact of ad-
vertising on consumer behavior. Examples of
this behavior include clicks, online and offline
sales, newsletter sign-ups, and software down-
loads. We refer to the selected behavior as the
response metric. Results of the analysis are in
the form of return on ad spend (ROAS), which
is the incremental impact that a change in ad
spend has on the response metric divided by the
change in ad spend.

In this paper, we describe how ad effectiveness
can be measured periodically using a multiple
test-period geo experiment, which is a general-
ization of the single test period geo experiment.
Consequently, many of the considerations and
steps for performing periodic measurement are
the same, or similar, to those discussed previ-
ously for generating an isolated measurement of
ad effectiveness.

The first step is to partition the geographic re-

gion of interest, (e.g. a country), into a set of
geos. It must be possible to target ad serving to
these geos, and track ad spend and the response
metric at this same geo level. The location and
size of the geos can be used to mitigate potential
ad serving inconsistency due to finite ad serving
accuracy and consumer travel across geo bound-
aries. A process that uses optimization to gen-
erate geos will be described in a future paper.
In the United States, one possible set of geos is
the 210 DMAs (Designated Market Areas) de-
fined by Nielson Media, which is broadly used as
a geo-targeting unit by many advertising plat-
forms.

The next step is to randomly assign each of the
N geos to a geo-group. Randomization is an im-
portant component of a successful experiment as
it guards against potential hidden biases. That
is, there could be fundamental, yet unknown,
differences between the geos and how they re-
spond to the treatment. Randomization helps
to keep these potential differences equally dis-
tributed across the geo-groups. In an experi-
ment that contains multiple test periods, we ro-
tate the assignment of the test condition between
geo groups.. If there are M geo-groups, then the
test fraction is 1/M . That is, only N/M geos are
assigned to the test condition at any given point
in time. It also may be helpful to use a random-
ized block design [3] in order to better balance
the geo-groups across one or more characteris-
tics or demographic variables. We have found
that grouping the geos by size prior to assign-
ment can reduce the confidence interval of the
ROAS measurement by 10% or more.

Each experiment contains a series of distinct
time periods: one pretest period and one or
more test periods (see Figure 1). During the
pretest period there are no differences in cam-
paign structure across geos (e.g. bidding strat-
egy, keyword set, and ad creatives). All geos
operate at the same baseline level and there are
no incremental differences between the test and
control geos in the ad spend and response metric.

In each test period, the campaigns of the geos
in one geo-group are modified so that they differ
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Figure 1: Diagram of a periodic geo experiment
with four test periods. Ad spend is modified in a
different geo-group during each of the first three
test periods, and it returns to the baseline state
in the final test period. There may be some delay
before the corresponding change in a response
metric is fully realized.

from the baseline condition. This modification
generates a nonzero difference in the ad spend
for these geos relative to the others. That is,
the ad spend differs from what it would have
been if these campaigns had not been modi-
fied. This difference will be negative if the cam-
paign change causes the ad spend to decrease
(e.g. campaigns turned off), and positive if the
change causes an increase in ad spend (e.g. bids
increased and/or keywords added).

The ad spend difference will, hopefully, generate
a non zero difference in the response metric, per-
haps with some time delay, ν. Each test period
extends beyond the end of the ad spend change
by ν to fully capture this incremental change in
the response metric. Total clicks (paid plus or-
ganic) is an example of a response metric that
is likely to have ν = 0. Offline sales is an ex-
ample of a response metric that is likely to have
ν > 0, since it takes time for consumers to com-
plete their research, make a decision, and then
visit a store to make their purchase.

Each test period provides another opportunity to
measure ROAS. So, the length of the test period

determines the frequency with which advertising
effectiveness can be assessed. In addition to this
monitoring capability, the adjacency of these test
period transitions also reduces the confidence in-
terval of these ROAS estimates. For example,
the transition from Test Period 1 to Test Period
2 provides the opportunity to observe the im-
pact of reducing the ad spend on the response
metric in geo-group 2. It also provides the op-
portunity to observe the impact of restoring the
ad spend to the baseline level in geo-group 1.
The use of adjacent test periods effectively dou-
bles the difference in ad spend for each test pe-
riod level measurement of ROAS, except for the
first measurement (transition from Pretest Pe-
riod 0 to Test Period 1), and the last (transition
from Test Period 3 to Test Period 4, in the Fig-
ure 1 example). This effective doubling of the
ad spend reduces the confidence interval of the
ROAS measurement by increasing the leverage
in fitting the linear model described below 1. So,
in Test Period 1 only the geos in geo-group 1
have a test condition with reduced ad spend. In
Test Period 2 the geos in geo-groups 1 and 2 have
a test condition with increased and reduced ad
spend, respectively, and in Test Period 3 the geos
in geo-groups 2 and 3 have a test condition with
increased and reduced ad spend, respectively.

3 Linear Model

After an experiment is executed, the ROAS for
test period j is generated by fitting the following
linear model:

yi,j = β0j + β1jyi,j−1 + β2jδi,j + εi,j (1)

where i = 1, ..., N , yi,j is the aggregate of the
response metric during test period j for geo i,
δi,j is the difference between the actual ad spend
in geo i and the ad spend that would have oc-
curred without the campaign change associated
with the transition to test period j, and εi,j is
the error term. We fit this model using weights

1This reduction can be characterized analytically, as
demonstrated in Appendix A.
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wi = 1/yi,0 in order to control for heteroscedas-
ticity caused by heterogeneity in geo size.

The first two parameters in the model, β0j and
β1j , are used to account for seasonal differences
in the response metric across periods j and j−1.
The parameter of primary interest is β2j , which
is the return on ad spend (ROAS) of the response
metric for test period j. A sequence of ROAS
measurements can be calculated by fitting this
model separately for each test period in the ex-
periment. Note that when j = 1, Equation 1
matches the linear model for the single test pe-
riod geo experiment described in [6].

More generally, the ROAS can be estimated by
pooling the data from a set of test periods, J . In
this situation, the model becomes

yi,j = β0j + β1jyi,j−1 + β2Jδi,j + εi,j . (2)

This model has the same form as Equation 1,
except here j ranges over all of the values of J .
Each combination of geo and test period pro-
vides another observation. So, instead of fitting
the model withN observations, it is fit withN |J |
observations. The set J can include any number
of test periods, and there is no need for these pe-
riods to be consecutive, although typically they
will be. J may also include all of the test peri-
ods, in which case all of the experiment data are
pooled to generate a single ROAS estimate.

The values of yi,j (e.g. offline sales) are gener-
ated by the advertiser’s reporting system. The
geo level ad spend is available through the ad
platform reporting system (e.g. AdWords). The
process for finding the ad spend counterfactual
for each test period, δi,j , is analogous to the pro-
cess described in [6]. If there is no ad spend dur-
ing period j − 1 then the ad spend difference in
test period j, δi,j , is simply the ad spend during
test period j. However, if the ad spend is posi-
tive during period j−1 and it is either increased
or decreased, as depicted in Figure 1, then the
ad spend difference is found by fitting a second
linear model:

si,j = γ0j + γ1jsi,j−1 + µi,j (3)

Here, si,j is the ad spend in geo i during test

period j and µi,j is the error term 2. Assuming
si,0 > 0, this model is fit with weights wi = 1/si,0
using only the set of control geos (C).

This ad spend model characterizes the impact
of seasonality on ad spend across the transitions
between test periods, and it is used as a coun-
terfactual 3 to calculate the ad spend difference.
The ad spend differences in the control and test
geos (T ) of each test period transition are:

δi,j =

{
si,j − (γ0j + γ1jsi,j−1) for i ∈ T

0 for i ∈ C
(4)

The zero ad spend difference in the control geos
reflects the fact that these geos continue to op-
erate at the baseline level across the test period
transition. Note that, with the exception of the
first and last test periods, all test periods will
include δi,j that are positive and negative, since
ad spend increases across the test period bound-
ary for some geos while is decreases for others,
as described in Section 2.

4 Example Results

We employed a geo experiment in [6] to eval-
uate the potential cannibalization of cost-free
organic clicks by paid search clicks for an ad-
vertiser. We did so because the advertiser was
concerned that consumers were clicking on paid
search links when they would have clicked on
free organic search links had there not been paid
links present. The goal of the experiment was to
measure the cost per incremental click (CPIC).
That is, the cost for clicks that would not have
occurred without the search campaign. Here we
show the results of a similar geo experiment that
was run to monitor the effectiveness of an exist-
ing national search advertising campaign across
time.

2The error term in Equation 3 is scaled by the ROAS
as it propagates through to Equation 1 or 2 in an additive
way through the application of Equation 4. However,
this error term is often smaller than the error term in
Equations 1 and 2 by an order of magnitude, or more.

3The counterfactual is the ad spend that would have
occurred in the absence of the campaign change across
each test period transition.
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The measurement period lasted approximately
12 weeks and included 11 test periods. Dur-
ing this experiment, the advertiser’s search ads
were not shown in 1/6 of the geos during each
of the first 10 test periods. Each of the six geo-
groups took turns going “dark” across the exper-
iment, which ensured that no geo stopped show-
ing search ads for more than about a week at a
time. Search ads were shown in all of the geos
again starting with the 11th test period.

Figure 2 shows individual test period level results
generated using Equation 1. There is one ROAS
measurement for each test period. These mea-
surements are not quite independent of one an-
other because the test period associated with one
measurement is the pretest period for the subse-
quent test period. However, there is no overlap
in the data used to generate the measurements
in non-adjacent test periods. The ROAS ranges
from 1.3 to 2.9 clicks per dollar (CPIC ranges
from $0.34 to $0.77 per incremental click). Note
that the width of the confidence interval remains
roughly the same across test periods 2 through
10. It is higher in test periods 1 and 11 where the
experiment does not benefit from the effective
doubling of the ad spend difference, as described
in Section 2.

Figure 3 shows results generated by pooling data
across test periods using Equation 2. Each
ROAS measurement is generated by pooling the
data from each test period with the data from
all of the previous test periods. So, the ROAS
generated for the first period has J = {1},
for the second J = {1, 2}, and for the 11th

J = {1, 2, 3, ..., 11}. The final ROAS estimate
is 1.9 clicks per dollar (CPIC = $0.53 per incre-
mental click). Note that the confidence interval
decreases monotonically across the length of the
experiment as additional data are added to the
model.

In contrast to the individual test period results,
this scenario provides a long-term estimate of
the response metric. For example, the impact
of shorter term factors such as the weather, or a
competitor’s promotions, in a single week might
be smoothed across an entire quarter. It is also

Figure 2: Measurement of return on ad spend
for clicks as a function of test period. There is
one ROAS measurement for each test period.

possible to balance these alternative views of the
data by pooling across a subset of test periods.
For example, the ROAS can be calculated by
pooling data across consecutive pairs of test peri-
ods by letting J = {1, 2}, J = {2, 3}, J = {3, 4},
and so on.

One potential application for the information
presented above is the generation of combined
Shewhart-CUSUM quality control charts [5].
These charts are used in detection monitoring.
They can identify both a sudden change (She-
whart) and a gradual change (CUSUM) in the
response metric.

5 Experimental Design

As always, design is an important step for run-
ning an efficient and effective experiment. The
design considerations include the length of the
experiment, the test fraction, the magnitude of
the ad spend difference, and the length of the test
periods (switching frequency). Although there
are more design considerations with a multiple-
test-period geo experiment than with a single
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Figure 3: Measurement of return on ad spend for
clicks as a function of test period length. Each
ROAS measurement is generated by pooling the
data from all of the previous test periods.

test period geo experiment, the same approach
that was employed in [6] is still applicable.

Consider the matrix form of Equation 2,

Y = Xβ + ε (5)

where X = (Xj1Xj2 ...Xj|J|∆) is the concatena-
tion of |J | matrices with dimension [N |J | x 2]
and one matrix with dimension [N |J | x 1];

Xj1 =



1 y1,j1−1
. .
. .
1 yN,j1−1
0 0
. .
. .
. .
. .
. .
. .
. .
. .
. .
0 0



, Xj2 =



0 0
. .
. .
0 0
1 y1,j2−1
. .
. .
1 yN,j2−1
0 0
. .
. .
. .
. .
. .
0 0



Xj|J| =



0 0
. .
. .
. .
. .
. .
. .
. .
. .
. .
0 0
1 y1,j|J|−1
. .
. .
1 yN,j|J|−1



, ∆ =



δ1,j1
.
.

δN,j1
δ1,j2
.
.

δN,j2
.
.
.

δ1,j|J|

.

.
δN,j|J|



Y =



y1,j1
.
.

yN,j1
y1,j2
.
.

yN,j2
.
.
.

y1,j|J|

.

.
yN,j|J|



, ε =



ε1,j1
.
.

εN,j1
ε1,j2
.
.

εN,j2
.
.
.

ε1,j|J|

.

.
εN,j|J|



.

The coefficient vector, β, is a vector with length
2|J | + 1,

β =



β0,j1
β1,j1
β0,j2
β1,j2
.
.

β0,j|J|

β1,j|J|

β2


.

With the model in this form, the variance-
covariance matrix of the weighted least squares
estimated regression coefficients is:

var(β̂) = σ2ε (X
TWX)−1 (6)
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(see [4]), where W is an [N |J | x N |J |] diagonal
matrix containing the weights wi;

W =


Ŵ 0 . . 0

0 Ŵ .
. . .
. . 0

0 . . . Ŵ


with

Ŵ =


w1 0 . . 0
0 w2 .
. . .
. . 0
0 . . . wN

 .

The lower right component of the matrix in
Equation 6 is the variance of β̂2. So,

var(β̂2) = σ2ε
adj(XTWX)N |J |,N |J |

det(XTWX)
(7)

where adj(A)n,n is the n, n cofactor of the matrix
A and det(A) is the determinant.

Using a set of geo-level pretest data in the re-
sponse variable, it is possible to use Equation
7 to estimate the width of the ROAS confidence
interval for a specified design scenario. This pro-
cess is analogous to the process described in [6].

The first step is to select a consecutive set of
days from the pretest data to create pseudo
pretest and test periods. The lengths of the
pseudo pretest and test periods should match
the lengths of the corresponding periods in the
hypothesized experiment. For example, an ex-
periment with a 14 day pretest period and three
14 day test periods should have pseudo pretest
and test periods with the same lengths using 56
days of data. These data are used to estimate
W and all but the last column of X in Equation
7.

The next step is to randomly assign each geo to
a geo group. If blocking is used, as suggested in
Section 2, then this random assignment should
be similarly constrained. It may be possible to
directly estimate the value of δi,j at the geo level.
For example, if the ad spend will be turned off in
the test geos, then δi is just the average daily ad

spend for test geo i times the number of days in
test period j. Otherwise, an aggregate ad spend
difference ∆j can be hypothesized for each test
period and the geo-level ad spend difference can
be estimated using

δi,j =

{
∆j(yi,0/

∑
i yi,0) for i ∈ T

0 for i ∈ C (8)

The last value to estimate in Equation 7 is σε.
This estimate is generated by considering the re-
duced linear model;

Y = X̂β + ε̂ (9)

where X̂ = (Xj1Xj2 ...Xj|J|). This model has the
same form as Equation 6 except the column of
ad spend difference terms, ∆, has been dropped.
Fitting this model using the pseudo pretest and
test period data results in a residual variance of
σε̂, which is used to approximate σε.

To avoid any peculiarities associated with a par-
ticular random assignment, Equation 7 is evalu-
ated for many random control/test assignments.
In addition, different partitions of the pretest
data are used to create the pseudo pretest and
test periods by circularly shifting the data in
time by a randomly selected offset. The half
width estimate for the ROAS confidence interval

is 2

√
var(β̂2), where var(β̂2) is the average vari-

ance of β̂2 across all of the random assignments.
This process can be repeated across a number of
different scenarios to evaluate and compare de-
signs.

Figure 4 shows the confidence interval predic-
tion as a function of test period for the exam-
ple shown in Figure 3. The dashed line corre-
sponds to the predicted confidence interval half
width and the solid line corresponds to results
from the experiment. For this comparison, the
ad spend difference calculated using Equation 4
was used as input to the prediction. That is, we
assumed that the ad spend difference was known
with certainty, as it will be when the pretest pe-
riod spend is zero. The relatively good match
between these two curves demonstrates that the
absolute size of the confidence interval can be
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Figure 4: ROAS confidence interval half-width
prediction across the length of the experiment.

predicted quite well, at least as long as the ad
spend difference can be accurately predicted. In
practice, the accuracy of this prediction is im-
pacted by the dynamic environment of the live
auctions and uncertainty in the relationship be-
tween changes in campaign settings, such as bids
and keyword sets, and resulting changes in ad
spend. The bid simulator tool [1] and the traffic
estimator tool [2] can help with ad spend predic-
tion, and closely monitoring ad spend and ad-
justing campaign changes in the test group dur-
ing the early stages of the experiment can also
help realize the targeted ad spend difference.

6 Multiple vs. Single-Test-
Period Geo Experiments

In this section, we compare the application of
multiple and single-test-period geo experiments
to scenarios in which the objectives are periodic
and isolated measurement. Multiple-test-period
experiments are a better choice for periodic mea-
surement, and the same is true for isolated mea-
surement.

To make the comparisons more clear, all of the
scenarios considered below have the same num-
ber of geo groups and, for all but one scenario,
the same test fraction, q = 1/3. Also, when it
is nonzero, the ad spend intensity (i.e. the ad
spend per geo per unit time) is constant across
scenarios. There is no delay in the impact of ad-
vertising on user behavior (i.e. ν = 0) for the
scenarios described in Sections 6.1 through 6.3.
The experiment budget is the cost per measure-
ment and each scenario has an absolute exper-
iment budget (i.e. aggregate magnitude of ad
spend difference) of either B or 2B, depending
on whether the ad spend is pulsed or continuous.
Computational results were generated using the
geos and response data from the example shown
in Section 4. Analytical results were generated
using variants of the analysis described in Ap-
pendix A.

6.1 Periodic Measurement - Pulsed
Spend

The measurement objective in the first set of
comparisons is to monitor ad effectiveness over
time. The most obvious approach for extend-
ing single period geo experiments to this situa-
tion is to run a series of consecutive experiments.
In this case, each experiment has the ad spend
profile depicted in Figure 8 in Appendix B. The
test group has an aggregate ad spend difference
of B in every 9 day test period. The following
9 days are reserved for the pretest period asso-
ciated with the next test period, which results
in a pattern of pulsed ad spend. This scenario
corresponds to the first row in Table 1.

The analog for this test in the multiple-test-
period paradigm corresponds to the second row
in Table 1 (also see Figure 9). The spend profile
is the same as the first scenario. Most notably,
the budget is still B. The primary difference
is that the 9 day period subsequent to test pe-
riod i is not only used as a pretest period for
test period i + 1, it is also used to reduce the
confidence interval of the ROAS estimate associ-
ated with measurement i. That is, the informa-
tion provided by increasing the ad spend in geo
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group 1 in transitioning to test period i is com-
bined with the information provided by decreas-
ing the ad spend in geo group 1 in transitioning
to test period i+ 1. Pooling information in this
way reduces the confidence interval by a factor
of 1/

√
2. 4. Alternatively, the same confidence

interval can be achieved using only one half of
the ad spend difference. Along with this lower
cost, the ad effectiveness measurement is more
relevant to the current level of ad spend. 5

Test Ad Spend C. I.
# Test Period Difference, Half

scen. Periods Length Leverage Width

1 1 9 B, B 1.59

2 2 9 B, 2B 1.18

Table 1: Periodic measurement scenarios with
pulsed ad spend. See Figures 8 and 9 in Ap-
pendix B for the spend profiles associated with
these scenarios.

6.2 Periodic Measurement - Continu-
ous Spend

Both of the scenarios in Section 6.1 have a bud-
get of B. Now consider the situation in which the
measurement interval continues to be 18 days,
but we allow for a continuous change in ad spend
across time. The budget for these scenarios is
2B. It is not possible to apply a single period
geo experiment to a situation in which there is a
continuous change in ad spend across time. So, a
budget-equivalent comparison is made using Sce-
nario 3, which is identical to Scenario 1 except
that the test fraction has been doubled to achieve

4In Table 1 the confidence interval improvement for
Scenario 2 over Scenario 1 is slightly less than expected
(1.18 versus 1.12). This discrepancy is caused by the use
of an 18 day pretest period, which was chosen for its com-
patibility with subsequent scenarios. It disappears if a 9
day pretest period is used to match the length of the 9
day test periods in Scenarios 1 and 2.

5Generally speaking, the effectiveness of judiciously
applied advertising spend decreases as ad spend volume
increases. So, using a smaller ad spend difference provides
a more precise measure of the marginal value of the ad
spend.

a budget of 2B (see Figure 10).

Test Ad Spend C. I.
# Test Period Difference, Half

scen. Periods Length Leverage Width

3 1 9 2B, 2B 0.79

4 1 18 2B, 4B 0.64
5 2 9 2B, 4B 0.68
6 3 6 2B, 4B 0.66
7 6 3 2B, 4B 0.67
8 9 2 2B, 4B 0.66
9 18 1 2B, 4B 0.64

Table 2: Sequence of multiple-test-period scenar-
ios. The leverage from the ad spend is twice as
large as the actual ad spend when switching is
used. See Figures 10 through 14 in Appendix B
for the spend profiles associated with Scenarios
3-7.

The base scenario in the multiple-test-period
paradigm is Scenario 4 in Table 2 with the cor-
responding spend profile in Figure 11. In this
scenario, the test period spans the entire 18 day
measurement interval. While the budget is 2B,
the corresponding leverage is 4B because at each
test period transition there is an increase in the
spend for one geo group, and a decrease in spend
for another. This scenario has a confidence in-
terval that is smaller than Scenario 1 by a factor
of (1/2)

√
1− q, and smaller than Scenario 3 by

a factor of
√

1− q.

Additional test group rotations are included in
the 18 day measurement period in scenarios 5
through 9 (also see the spend profiles in Figures
12 through 14). The ROAS measurements are
generated by pooling data across these shorter
test periods. In all these cases, the ad spend
difference is 2B and the ad spend leverage is
4B. The ad spend leverage remains constant be-
cause the more frequent switching is offset by the
shorter length of the test periods. As a result,
the confidence interval remains constant across
these scenarios (see Figure 5). So, once a mea-
surement period is established, there is no bene-
fit, or harm, in rotating the test condition more
frequently with regard to the width of the confi-
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Figure 5: ROAS confidence interval prediction
for the periodic measurement scenarios in Tables
1 and 2.

dence interval 6. Switching more frequently pro-
vides the option of reducing the measurement
period during the analysis phase of the experi-
ment, although it comes with the additional lo-
gistics associated with rotating the test condition
more frequently.

The results demonstrate that multiple-test-
period experiments use budget and/or time more
efficiently than consecutive single test period ex-
periments.

6.3 Isolated Measurement

Now we consider the objective of generating a
single measurement of ad effectiveness. The first
scenario considered follows the isolated measure-
ment approach described in [6], which corre-
sponds to the first row in Table 3. The spend
profile for this scenario is depicted in Figure 15
in Appendix B. The ad spend difference across
the 18 day test period is 2B, as is the ad spend
leverage.

In Scenarios 2-6, the 18 day measurement pe-

6See Section 6.4 for the exception to this rule.

Test Ad Spend C. I.
# Test Period Difference, Half

scen. Periods Length Leverage Width

1 1 18 2B, 2.00 B 1.10
2 2 9 2B, 3.00 B 0.84
3 3 6 2B, 3.33 B 0.75
4 6 3 2B, 3.67 B 0.70
5 9 2 2B, 3.78 B 0.68
6 18 1 2B, 3.89 B 0.64

Table 3: Sequence of isolated measurement sce-
narios. The ad spend leverage approaches twice
the value of the ad spend difference as switching
frequency is increased. See Figures 15 through
18 in Appendix B for the spend profiles associ-
ated with Scenarios 1-4.

Figure 6: ROAS confidence interval prediction
for the isolated measurement scenarios in Table
3.
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riod is partitioned by a set of test group rota-
tions. ROAS measurements are generated by
pooling data across these shorter test periods. In
all of these scenarios, the ad spend difference is
2B, and the ad spend leverage approaches 4B as
the switching frequency increases. The ad spend
leverage is less than 4B because the first switch
does not take place until the start of the sec-
ond test period. As the switching frequency in-
creases, the impact of not having a switch in the
first test period decreases (see Figure 6).

As the switching frequency increases, the confi-
dence interval decreases. In the limit, it becomes
smaller than the confidence interval of Scenario
1 by a factor of (1/

√
2)
√

1− q 7. These results
indicate that, even when the goal is isolated mea-
surement, a multiple-test-period experiment uses
the ad spend difference more efficiently than a
single test period experiment.

6.4 Implications of Delayed Ad Im-
pact

In the fourth set of comparisons the objective is
the same as in Section 6.1: monitor ad effective-
ness over time. However, in this case we consider
the implications of a non-zero delay for the im-
pact of the advertising on the response metric
(i.e. ν > 0). In this situation, more frequent
rotation of the geos through the test condition
results in a reduction in the ad spend difference
and leverage, and a correspondingly larger con-
fidence interval.

The scenarios in Table 4 are the same as the
first six scenarios in Tables 1 and 2, except here
ν = 3 days. Consequently, the ad spend change
is truncated 3 days prior to the end of each test
period to allow the full impact of the advertising

7This reduction in the confidence interval is the same
reduction that would have occurred if an additional 18
day “observation” period were added to the analysis. This
additional period would be used to observe the impact on
the response variable of returning the ad spend to the
baseline level in Group 1, similar to Scenario 2 in Table
1. So, one interpretation of the benefit of switching is
that it allows the length of the analysis period to be cut
in half without impacting the confidence interval.

to be realized within each test period, which is
similar to the situation depicted in Figure 1. As
a result, the ad spend difference and the ad spend
leverage are less than the analogous values in
Tables 1 and 2.

The ad spend difference in Scenario 1 is reduced
by a factor of 2/3 because of the impact delay.
This ad spend reduction increases the confidence
interval by a factor of 1/(2/3) = 1.5. The same
logic extends to scenarios 2-6. For a measure-
ment period of length L, the ad spend is reduced
by a factor of (L−mν)/L, where m is the number
of test periods during the measurement period 8.
The confidence intervals for Scenarios 4-6 in Ta-
ble 4 are larger than the confidence intervals of
the corresponding scenarios in Table 2 by about
a factor of L/(L − mν), where L = 18, ν = 3,
and m=1, 2, 3, respectively.

The confidence intervals for Scenarios 1-6 are
plotted in Figure 7. Even with a delay in ad
impact, the multiple-test-period alternatives to
Scenarios 1 and 3 (i.e. Scenario 2 for pulsed ad
spend difference, and Scenario 4 - for continu-
ous ad spend difference) will always have a lower
confidence interval. However, the larger confi-
dence intervals of Scenarios 5 and 6 demonstrate
that partitioning the measurement interval with
additional switching is not always harmless. The

8Note that mν must be less than L to avoid a situation
in which some of the impact of the ad spend is shared
across adjacent test periods.

Test Ad Spend C. I.
# Test Period Difference, Half

sc. Periods Length Leverage Width

1 1 9 0.67B, 0.67B 2.37
2 2 9 0.67B, 1.33B 1.77
3 2 9 1.33B, 1.33B 1.17
4 2 9 1.67B, 3.33B 0.77
5 3 6 1.33B, 2.67B 1.02
6 6 3 1.00B, 2.00B 1.32

Table 4: Sequence of multiple-test-period scenar-
ios in which the impact of the advertising on the
response metric lasts up to three days.
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Figure 7: ROAS confidence interval prediction
for the delayed ad impact scenarios in Table 4.

presence of a non-zero delay in ad impact makes
it necessary to trade-off confidence interval size
with measurement frequency.

7 Additional Design Notes

The approach described in Appendix A can be
used to analyze a variety of design choices. This
section includes the results of several of these
analyses.

7.1 Impact of Modifying Test Fraction
and Ad Spend Difference

Most advertisers prefer to measure ad effective-
ness with as little impact as possible to their
existing campaigns. Smaller test fractions have
a smaller impact on existing campaigns. How-
ever, they also generate ROAS measurements
with larger confidence intervals. Modifying the
test fraction by a factor of ft changes the ex-
pected confidence interval by a factor of

√
1/ft.

So, reducing the test fraction from 1/4 to 1/8
will increase the confidence interval by a factor

of
√

2.

Note that when the test fraction was scaled by
ft, the magnitude of the aggregate ad spend dif-
ference was also scaled by ft. This additional
scaling keeps the average geo level ad spend dif-
ference, i.e. the intensity of ad spend differ-
ence, constant. However, scaling this intensity
is another way to impact the confidence inter-
val. Smaller intensities correspond to smaller
changes in the existing campaigns. Increasing
the ad spend difference by a factor of fδ modi-
fies the expected confidence interval by a factor
of 1/fδ. This means that halving the ad spend
difference will double the confidence interval.

These results indicate that changing the num-
ber of test geos has less impact on the confi-
dence interval than changing the leverage of the
linear model by modifying the ad spend differ-
ence. However, increasing the magnitude of the
ad spend difference has other implications. The
efficiency of ad spend typically decreases as ad
spend increases. So, the ROAS associated with
a large ad spend difference may be smaller than
the ROAS associated with a smaller one. Unfor-
tunately, the exact relationship between ROAS
and the volume of ad spend is usually unknown.
Using an ad spend difference that is too large
may lower the ROAS and measure ROAS at a
level of ad spend that is not relevant to the ad-
vertiser.

7.2 Trade-off: Test Fraction and Test
Length

Some advertisers may want to limit the impact
of running an experiment on their existing cam-
paigns by using a smaller test fraction, but they
may prefer not to do so at the expense of mea-
surement precision. An alternative is to offset
the use of a smaller test fraction by increasing
the length of the measurement period. If the test
fraction is scaled by ft, then the confidence in-
terval can be kept constant by scaling the length

of the measurement period by f
(−2/3)
t . So, if the

test fraction is cut in half, then the length of
the measurement needs to increase by a factor
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of (1/2)(−2/3) ≈ 1.6 to keep the same confidence
interval.

7.3 Impact of Geo Expansion and Geo
Splitting

One potential method for reducing the confi-
dence interval of ROAS measurement is to add
more geos to the experiment 9. Scaling the num-
ber of geos by fg changes the expected confidence
interval by a factor of

√
1/fg. This means that

doubling the number of geos will decrease the
confidence interval by a factor of 1/

√
2.

An alternative to expanding the geographic cov-
erage of an experiment is to re-partition the
same geographic area into a larger number of
geos. Once again, scaling the number of geos
by fg changes the expected confidence interval
by a factor of

√
1/fg. So, this approach has the

same impact as adding new geos, but it does so
without increasing the aggregate ad spend dif-
ference. The down side of increasing the num-
ber of geos via geographic re-paritioning is that
smaller geos are more likely to suffer from con-
trol/test contamination. Finite geo location ac-
curacy may inconsistently label consumers who
live near boundaries between control and test
geos. Consumers are also more likely to travel
across these boundaries during the course of their
daily activities, including commuting to work.

8 Concluding Remarks

Our previous work demonstrated that geo exper-
iments deserve consideration in many decision-
making situations that require the measurement
of ad effectiveness. They provide the rigor of a
randomized experiment, and they can be applied
to a variety of user behavior while avoiding pri-
vacy concerns that may be associated with alter-
native approaches. Here we have demonstrated
that these experiments can also be used to track

9Decreasing the number of geos included in the exper-
iment is another way to reduce the impact of the experi-
ment on existing campaigns.

ad effectiveness over time. This additional step
expands the applicability of geo experiments to
the common situation in which one time mea-
surement is not sufficient to meet the needs of
advertisers. As an added benefit of generalizing
the application of geo experiments, we also iden-
tified a better framework for both periodic and
isolated measurement of ad effectiveness.
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9 Appendix A

The adjacent test periods in a multiple-test-
period geo experiment allow information to be
used more efficiently than in a single-test-period
experiment. Using Equation 7, along with sev-
eral reasonable assumptions, this efficiency can
be characterized analytically.

For this comparison, we consider the confidence
interval associated with an ROAS measurement
from a single-test-period geo experiment and its
multiple-test-period analog; a single test period
transition from test period j−1 to test period j,
where j > 1. The length of the pretest period in
the single-test-period geo experiment is the same
as the length of test period j − 1. The lengths
of the single test period and test period j from
the multiple-test-period experiment are also the
same, as is the associated ad spend difference.

Now, let p and q be the fraction of geos in the test
group for the single and multiple-test-period ex-
periments, respectively. Assume that all groups
of geos (i.e. the control and test groups in the
single-test-period experiment and the geo-groups
in the multiple-test-period experiment) are sta-
tistically identical. For example, the distribution
of the response metric volume is the same for all
groups of geos. Similarly, the mean ad spend dif-
ference in each group of test geos is the same as
the ad spend difference that would have occurred
in each group of control geos, if they had been
assigned to the test condition. Let δ̄ be the, re-
alized or unrealized, ad spend difference for each
group of geos.

Furthermore, assume that the ad spend differ-
ence of each geo in a test group is proportional
to the response metric in the pretest period. So,
for the single-test-period experiment

|δi| = α yi,0 i ∈ {1, ..., N} (10)

and for the continuous experiment

|δi,j | = α yi,0 i ∈ {1, ..., N}. (11)

This assumption is reasonable since we expect
geos with larger ad spend to have a larger volume

in the response metric, and we expect campaign
changes to have a larger absolute impact on ad
spend in the larger geos. Going one step further,
assume that the impact of the ad spend change
is small relative to the differences in the response
metric volume across geos so that

|δi,j | = α yi,0 ≈ α yi,j i ∈ {1, ..., N}. (12)

In this analysis, the linear model is modified by
ignoring the less important β0j terms. So, for
the standard experiment

X =



y1,0 0
. .
. .

y(1−p)N,0 0

y(1−p)N+1,0 δ(1−p)N+1

. .

. .
yN,0 δN


and

XTWX =


N∑
i=1

wiy
2
i,0

N∑
i=1

wiyi,0δi

N∑
i=1

wiyi,0δi
N∑
i=1

wiδ
2
i

 .
Since wi = 1/yi,0 and |δi| = α yi,0,

N∑
i=1

wiy
2
i,0 =

1

α

N∑
i=1

|δi| =
1

α
N |δ̄|

N∑
i=1

wiyi,0δi =
N∑

i=(1−p)N+1

wiyi,0δi = pNδ̄

N∑
i=1

wi(δi)
2 = α

N∑
i=(1−p)N+1

|δi| = αpN |δ̄|.

Then from Equation 7

var(β̂2) = σ2ε̂

1
αN |δ̄|

[ 1αN |δ̄|][αpN |δ̄|]− [pNδ̄]2

=
σ2ε̂

α N |δ̄| p(1− p)
. (13)
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For the multiple-test-period experiment

X =



y1,j−1 0
. .
. .

y(1−2q)N,j−1 0

y(1−2q)N+1,j−1 δ(1−2q)N+1,j

. .

. .
y(1−q)N,j−1 δ(1−q)N,j
y(1−q)N+1,j−1 δ(1−q)N+1,j

. .

. .
yN,j−1 δN,j


and

XTWX =


N∑
i=1

wiy
2
i,j−1

N∑
i=1

wiyi,j−1δi

N∑
i=1

wiyi,j−1δi
N∑
i=1

wiδ
2
i

 .
Since wi = 1/yi,0 and |δi,j | = α yi,0 ≈ α yi,j−1,

N∑
i=1

wiy
2
i,j−1 ≈

1

α

N∑
i=1

|δi| =
1

α
N |δ̄|

N∑
i=1

wiyi,j−1δi ≈
N∑

i=(1−2q)N+1

δi = 0

N∑
i=1

wi(δi)
2 ≈ α

N∑
i=(1−2q)N+1

|δi| = αN |δ̄|2q.

The off diagonal terms in XTWX are zero
because in X the ad spend difference terms
δ(1−2q)N+1,j , ..., δ(1−q)N,j have the same magni-
tude as the terms δ(1−q)N,j , ..., δN,j , but with the
opposite sign. Then from Equation 7,

var(β̂2) ≈ σ′ε̂
2

1
αN |δ̄|

[ 1αN |δ̄|][α2qNδ̄]

=
σ′ε̂

2

α N |δ̄| 2q
. (14)

With the assumption that σ2ε̂ = σ′ε̂
2, the ra-

tio of Equations 13 and 14 gives the ratio of
var(β̂2) from the single-test-period experiment

and var(β̂2j) from the multiple-test-period ex-
periment,

var(β̂2)

var(β̂2j)
≈ 2q

p(1− p)
. (15)

If p = q = 1/3, then the confidence interval of
the ROAS in the single-test-period experiment
will be

√
3 ∼ 1.73 times greater than it is in the

multiple-test-period experiment. Alternatively,
if we assume that both of the confidence in-
tervals are the same, var(β̂2) = var(β̂2j), then
q ≈ p(1 − p)/2. So, for a case in which p = 1/2
we have q = 1/8. The multiple-test-period ex-
periment delivers the same confidence interval as
the single-test-period geo experiment with a test
fraction that is only 1/4 as large.

10 Appendix B

This appendix contains ad spend profiles for sce-
narios from Tables 1 through 3.

Figure 8: Scenario 1 from Table 1.
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Figure 9: Scenario 2 from Table 1.

Figure 10: Scenario 3 from Table 2.

Figure 11: Scenario 4 from Table 2.

Figure 12: Scenario 5 from Table 2.

Figure 13: Scenario 6 from Table 2.

Figure 14: Scenario 7 from Table 2.
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Figure 15: Scenario 1 from Table 3.

Figure 16: Scenario 2 from Table 3.

Figure 17: Scenario 3 from Table 3.

Figure 18: Scenario 4 from Table 3.
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