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ABSTRACT 
Smartphones are frequently used in environments where the user 
is distracted by another task, for example by walking or by 
driving. While the typical interface for smartphones involves 
hardware and software buttons and surface gestures, researchers 
have recently posited that, for distracted environments, benefits 
may exist in using motion gestures to execute commands. In this 
paper, we examine the relative cognitive demands of motion 
gestures and surface taps and gestures in two specific distracted 
scenarios: a walking scenario, and an eyes-free seated scenario. 
We show, first, that there is no significant difference in reaction 
time for motion gestures, taps, or surface gestures on 
smartphones. We further show that motion gestures result in 
significantly less time looking at the smartphone during walking 
than does tapping on the screen, even with interfaces optimized 
for eyes-free input. Taken together, these results show that, 
despite somewhat lower throughput, there may be benefits to 
making use of motion gestures as a modality for distracted input 
on smartphones. 
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1. INTRODUCTION 
Modern smartphone devices support two alternative input 
modalities. Users can tap or gesture on the touch-sensitive screen 
of the smartphone, or users can move the smartphone in physical 
space and have their actions sensed by accelerometers or 
gyroscopes. In our research, we are particularly interested in the 
costs and benefits of physical motion of the smartphone as an 
input modality. We call these deliberate movements of the device 
motion gestures. 

Motion gestures have attractive features that recommend them as 
a mechanism for issuing commands on a smartphone. First, these 
motion gestures expand the input bandwidth of modern 
smartphones. For example, motion gestures can either serve as 
modifiers of surface gestures, or they can be mapped to specific 

device commands. Second, alongside the increase in bandwidth, 
motion gestures can represent a set of shortcuts for smartphone 
commands. For actions performed using the touchscreen, the 
phone must typically be in a specific state, e.g. a specific 
application must be running, or a specific toolbar must be 
invoked, whereas for motion gestures, the commands mapped to 
the gestures can be always available. Finally, motion gestures may 
require less visual attention than taps or gestures on the 
touchscreen because the physical location of the smartphone can 
be sensed via proprioception. As a result of the potential 
advantages of motion gestures for smartphone input, researchers 
have explored various aspects of the design of motion gesture 
interaction [1, 22]. 

One specific advantage of proprioceptive sensing is that motion 
gestures may be particularly beneficial as an input modality in a 
subset of tasks where the user is distracted while using the 
smartphone. There are many examples of distracted input on 
smartphones. For example, users frequently access email and text 
messages on their smartphone while walking. Therefore, users 
must split their attention between the task of navigating their 
physical environment and navigating information on the 
smartphone screen. As another example, users frequently invoke 
brief commands on their smartphones while driving. While it may 
be undesirable to have a user interact with their device while 
driving, users will continue to perform short commands. We are 
not the first researchers to note that it makes sense to design input 
techniques that demand limited visual attention from users while 
performing tasks like driving [5, 9, 13]. 

While motion gestures have many theoretical advantages as an 
input technique for distracted users, we are not aware of any 
research that compares motion gestures to on-screen input for 
distracted interaction. As we want to understand motion gestures 
for distracted input in relative to more traditional on-screen input 
methods, we consider surface gestures – directional swipes – and 
taps on pre-defined widgets. In this paper, we compare motion 
gestures, tap and swipe in two experimental conditions where the 
user has limited ability to focus on the smartphone. First, we 
examine user performance when the user is walking around a 
prescribed path and carrying a light object in their non-dominant 
hand. This condition replicates the situation where a user walks 
along a sidewalk while carrying a briefcase or purse and 
interacting with a smartphone. Second, we examine user 
performance in an eyes free setting, where the phone is not visible 
to the user as they perform actions. This condition replicates 
situations where it might be undesirable for a user to focus his or 
her visual attention away from their primary task, for example 
while driving a car. We examine reaction time, walking speed, 
visual focus, and throughput for the walking condition, and 
reaction time and throughput for the eyes-free condition. 

Our experimental results show that users’ response time is not 
significantly different for motion gestures, tap or swipe. 
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Moreover, though participants issue significantly fewer 
commands with motion gestures than with tapping or flicking, and 
the reduction in throughput can be mainly attributed to the 
increased time taken for motion gestures as compared to tap or 
swipe. Surprisingly, we also find for the walking task that 
performing a motion gestures reduces the average walking speed 
of experimental subjects, but that subjects spend less time looking 
at the smartphone device when using motion gestures. Finally, we 
note that motion gestures are more error-prone than other 
techniques, and, specifically, that participant performance seems 
to vary over time. Recognition rates occasionally fall to very low 
levels, particularly during the walking task, and it is very difficult 
for participants to diagnose and correct the errors they are making. 
Our goal in presenting these results is to inform designers of 
motion gestures of the potential benefits and costs of motion 
gestures so that designers can make better decisions on where, 
when, and how to incorporate motion gesture into smartphones as 
an input technique. 

The rest of the paper is organized as follows. We begin with an 
overview of related work in the design and evaluation of motion 
gestures, and in the design of limited attention interfaces. We then 
describe our interaction techniques and their implementation. 
Next, we present our experimental methodology, and describe our 
results. We analyze our results in terms of cognitive demand and 
error rates. We close with a discussion on potential limitations of 
motion gestures as an input modality for distracted smartphone 
input. 

2. Related Work 
Many researchers have explored interaction in distracted contexts. 
For example, Noy et al. found that manipulating items using touch 
is more cognitively demanding than traditional tactile knobs due 
to increased visual demand [17]. More recent work has focused on 
gestural interfaces on the surface of the wheel for use in distracted 
contexts (e.g. [2, 7, 9]). González et al. report significant 
performance improvements and lowered cognitive load when 
using the EdgeWrite eyes-free input over touch-based input [9]. 
Similarly, Döring et al. explored multi-touch gestures on the 
steering wheel and report significantly lower visual demand when 
compared to central console touch interaction [7].  

In the mobile interaction domain, researchers have noted that, 
when users have to divert some of their attention to a relatively 
simple task like walking, their performance with the smartphone 
device is negatively affected. In particular Bergstrom-Lehtovirta 
et al. noted that there is a trade-off between walking speed and 
target accuracy for mobile devices [3]. 

To assess the relative efficacy of different interaction modalities 
on mobile devices during distracted tasks, Bragdon et al. 
examined soft buttons, hardware buttons, and surface gestures [4] 
under conditions of medium and high distraction. They found that 
marking menus (i.e. directional gestures) activated along a 
smartphone’s bevel provided the fastest response time and the 
highest performance on the distractor task.  

While hardware buttons, software buttons, and gestures have been 
the most common input modality for smartphone devices, 
researchers have also explored the use of accelerometers as a 
mechanism for issuing commands to smartphones. Recent work 
has considered such gestural interaction with the device for a wide 
variety of tasks including, text input [12, 19], issuing device 
commands [22], and map navigation [20]. 

In distracted environments, most gestures may lessen the need for 
visual feedback and make use of a user's proprioception to 

substitute for accurate input on the touch screen [18]. In an 
evaluation of motion marking menus, Oakley and Park note that 
users can access up to 19 commands accurately using three-
dimensional gestures [18]. 

While researchers have noted the lower visual feedback of motion 
gestures for input, and have evaluated hardware buttons, software 
buttons, and gestures for distracted input, we are aware of no 
literature that contrasts directly the input modalities of tap and 
swipe to motion gestures, specifically assessing the relative 
cognitive costs of the different input modalities. 

3. EXPERIMENT 
3.1 Participants and Apparatus 
We selected 12 participants aged 22-36 (mean = 25.4, S.D. = 4.8, 
4 females, all right handed) from the student population in the 
Computer Science department at a local university.  

The experiment was performed using a Nexus One smartphone 
running custom software on Android 2.3.3. 

3.2 Experimental Design 
3.2.1 Interfaces 
A goal of this paper is to measure the costs of different input 
modalities—tap, swipe, and motion gestures—in situations where 
the end-user has a limited ability to visually focus on the 
smartphone display. The scenarios we envision include interaction 
during contexts such as walking or driving a car. We call this style 
of interaction distracted input, and we note that typical 
smartphone applications such as email clients, text message 
viewers, and mobile web browsers are poorly designed for 
contexts that require distracted input.  

The guidelines for smartphone application design [8] provide little 
guidance for how to design interfaces for distracted input. 
However, the principles of interaction design for contexts where 
the user is distracted are relatively obvious [9]:  

1. The interface should limit the need for visual attention during 
interaction. 

2. The interface should provide streamlined commands for the 
most common tasks.  

With these two principles in mind, we designed three alternative 
interfaces to support distracted input, one for tap, one for swipe, 
and one for motion gestures (see Figure 1 and Figure 2). Each of 
our interfaces supports four commands:  Left, Right, Up, Down. 
We chose four commands for two reasons. First, the set of 
commands is sufficiently small that users should be able to master 
them within a short period of time during a training block, 
allowing us to measure expert performance with each input 
modality. Second, four commands can easily be mapped to 
navigation directions, Previous, Next, Up, Down, and these 
commands are common shortcuts for tasks such as scanning 
email, scanning text messages, or other monitoring tasks that are 

Figure 1. Distracted motion input: a) our Swipe 
gesture implementation and b) Tap. 



commonly performed in distracted contexts. 

When designing our experimental interface, we considered both 
output (screen display) and input (tap, swipe, or move). As the 
application was designed for situations with limited visual 
attention, the primary mechanism for prompting a participant for a 
command was a simple custom speech-to-text engine that output 
the command through the smartphone speakers. One of the 
researchers recorded each of the four commands. To ensure 
participants could hear the audio command clearly, we carefully 
tuned pitch and volume to ensure the command was easy to hear 
within our experimental environment. As well, the experiment 
was conducted in a 4m by 4m soundproof experimental room. 
One researcher and the participant were the only occupants of the 
room. 

Alongside audio output, the desired command was also displayed 
on the screen. The visual display of the command on the screen 
was primarily for reinforcement. In Tap, the application display 
screen was a black background separated into four quadrants as 
shown in Figure 1b. In the non-active area in the center of the 
screen, a single command was displayed in 12 pt Verdana font. 
The Swipe (Figure 1a) and Move (Figure 2) applications consisted 
of a blank, black screen. As movement (either on screen or in 
physical space) was the sole mechanism for input, no divisions or 
widgets were displayed. In the center of the screen, using identical 
font, color, and location to Tap, the Swipe and Move interfaces 
displayed a single command to be activated. 

For input, Tap simulates a classic widget-based approach in which 
the user clicks with one finger to issue one of the four commands 
on the touch screen. To maximize button size, the touchscreen is 
divided into four quadrants situated around the center of the 
display in manner similar to radial menus [11], as shown in Figure 
1a. The user can issue the four commands necessary for our study 
– up, down, left and right – by tapping within the corresponding 
quadrant on the display. The area in the center of the touchscreen 
serves as a display for the current gesture the user needs to 
perform. Clicking within this small circular area does not activate 
any of the four commands so as to limit potential errors caused by 
clicking at the central intersection of the quadrants. 

Swipe allows the user to perform surface gestures to issue the four 
commands required by the experiment (Figure 1b). Our Swipe 
implementation is a more permissive version of the swipe 
interface evaluated by Bragdon et al. [4]. In Bragdon et al., swipes 

were performed either along the bevel or in the center of the 
display. In our interface, we did not discriminate between a bevel 
swipe and a swipe on the touchscreen away from the bevel. Users 
perform a directional surface swipe gesture to activate one of up, 
down, left, or right, similar to the shortcuts offered by Kurtenbach 
et al.’s Marking Menus [14]. The Swipe recognizer considers a 
stroke’s direction based on its starting and ending points and the 
largest dimension of its bounding box. In order to minimize 
confusion between swipe directions, the system does not 
recognize swipes that are less than 10px (9.9 mm) long or whose 
largest dimension in the bounding box is less than 3 times the 
smallest (i.e. it accepts a stroke if height > width x 3 or vice 
versa). A rejected stroke is logged as an error. 

Finally, our motion gesture interface, Move, used four gestures 
from the consensus set of motion gestures described by Ruiz et al. 
[22]. We used a flick right for Next, a flick left for Previous, a 
flick up for Up, and a flick down for Down. To allow our 
recognizer to reliably segment these gestures from random device 
motion, we also made use of the Double-Flip delimiter for motion 
gestures proposed by Ruiz and Li [21]. To issue a command with 
the system, a user first performs double-flip, and then performs 
the appropriate motion gestures for the desired command. The 
five motion gestures are depicted in Figure 2. To issue a 
command, the end-user first performs a double-flip (Figure 2a) 
and then performs the appropriate motion gestures (any of Figure 
2b – 2e). We implemented the Move recognizer as a Hidden 
Markov Model (HMM) trained with pre-segmented motion 
samples from five expert users.   

Our Move interface has one advantage over Tap and Swipe. With 
Tap and Swipe, the screen’s input space must be modified to 
support distracted input. If the screen is displaying information in 
the background, for example and email message, text message, or 
chat dialog, then the typical on-screen interactions of these 
applications must be disabled to support the more accessible tap 
and swipe gestures tailored to distracted input. In contrast, the 
Move interface can be designed such that the screen continues to 
function as an input modality without modification, and the 
motion gestures present a shortcut for accessing the four optimal 
commands. As the purpose of this paper is to contrast an 
optimized tap, swipe, and motion gesture interface for distracted 
input, we should note that we do not consider the costs associated 
with disabling the standard interaction. We do not claim that our 

 
Figure 2. Our Move implementation: a) shows the Double Flip delimiter, while b)-e) show the four motion gestures.  



tap and swipe interfaces are real-world interfaces. Instead, they 
are an optimized analog to the motion gesture shortcuts, allowing 
us to contrast the benefits and costs of the three input modalities. 

3.2.2 Experimental Tasks 
Based upon previous studies that look at evaluating interaction 
techniques under split attention and concurrent with physical 
motion (e.g. [3, 4, 9], we consider two scenarios of use: i) 
interacting with the phone while walking and ii) in an 
environment with low cognitive load but where visual demand is 
at a premium (e.g. interacting with a phone while stuck in traffic). 

Our study design was focused around the two scenarios of use: 

• Walking -- Interacting while walking in our course 
• Eyes-Free – Interacting with the phone held beneath a desk 

As we wish to evaluate input techniques under distracted 
scenarios, our first scenario, walking, requires participants to 
perform commands while following a closed track in the 
soundproof room. Small arrows were placed on the floor of the 
room to act as a guide for participants. The course is described in 
Figure 3. Participants moved along walls and diagonals from 
position 1 to position 10 then repeated the course. Though 
relatively small, we found that traversing the course acted as a 
moderate distracter; participants had to pause at times to focus on 
the small floor markers telling them their next destination. During 
the walking task, participants held an object in one hand and 
performed the commands with their other hand. While not an 
explicit requirement, as expected all participants chose to hold the 
object in their non-dominant hand and to interact with the phone 
with their dominant hand. 

 
Figure 3. The route participants must traverse in the walking 
task. Participants walk to the corners of the room in the order 

given by the labels 1-10. 

Our second scenario, eyes-free, was designed to mimic contexts 
like driving. In early pilot studies, we evaluated using distracter 
tasks like the Sustained Attention to Response Task (SART) test 
[15], an evaluation of visual attention. However, during 
discussion with pilot study participants, many participants noted 
that, when driving, they would focus on the road during 
cognitively demanding times, and would only partially shift their 
attention to a smartphone device during periods of low cognitive 
load (e.g. an empty street or road with no pedestrian traffic). As a 
result, we made a conscious design decision to eliminate all 
distracter tasks and to simply focus on interaction in scenarios 

where looking at the smartphone was not advisable. Participants 
performed smartphone commands with one hand beneath the 
table. With their other hand, participants were required to hold a 
light object while resting the back of their hand on the table’s 
surface. Again, participants chose to interact with the phone using 
their dominant hand. The experiment was conducted in the same 
soundproof room, reconfigured for the seated task. 

3.3 Experimental Procedure 
Our experiment was a 3 X 2 (3 techniques, 2 scenarios) within-
subjects design with repeated measures. The order of the 
techniques (Tap, Swipe, Move) was fully counterbalanced. As our 
goal was to compare techniques in each scenario separately, we 
did not counterbalance scenario ordering. No comparisons 
between scenarios should be drawn from our data. 

Each participant began with the walking scenario. The experiment 
began by demonstrating all interaction techniques to participants.  

Participants then completed two four-minute blocks in the 
walking scenario with each technique. The first block was a 
practice block. The goal was to familiarize participants both with 
the given interaction technique and with walking the track. 
Following a brief break, the second block tasked participants to 
maximize the number of correct interactions while walking at a 
fast but comfortable pace.  

Once the walking scenario was complete, a desk was positioned in 
the room, and participants performed the same techniques in the 
seated scenario. Participants performed four minutes of gestures 
with each of the Move, Tap and Swipe techniques. No training 
block was included in the seated scenario. 

As part of both scenarios, participants were asked to continually 
perform the available commands (e.g. one of Up, Down, Next, or 
Previous). The order of the commands was randomized, but all 
commands were performed in equal blocks of four. Each function 
was vocally prompted on the smartphone and any detected input, 
whether correct or incorrect, was recorded before the system 
moved to the next command in sequence.  

3.4 Measures 
The software on the smartphone captured the following data 
during the experiment: 

Response Time: The amount of time (in ms) starting from the end 
of the vocal command prompt to the first user action. For Tap and 
Swipe, this time is the time at which the first touch event 
encountered. For Move, response time is taken from the end of the 
vocal command prompt to beginning of the Double-Flip delimiter.  

Commands: The total number of commands issued in the four 
minute block. 

Successful Command Rate: The fraction of commands that were 
recognized as the correct command by the recognizer. 

During the walking scenario, the researcher also captured a set of 
field notes. First, the researcher manually recorded the distance 
traveled during the four minute block. As well, to measure visual 
attention during the walking task, the researcher noted the number 
of 5 second intervals in which participants gazed at the touch 
screen, sampled every 10 seconds. Lastly, the researcher made 
note of the number of times participants lost their way and had to 
reorient themselves around the track as a measure of additional 
cognitive load. We code the data as: 

Speed: The speed of participants as measured by their distance 
traveled around the track within the four minute block. We 
transform this distance measure into meters per second by 



counting the number of corners traversed, multiplying by distance 
between corners, and dividing by 240 seconds. 

Lost: The number of times participants stopped to get their 
bearings and determine their next destination. 

Screen Gaze: The number of five second intervals in which 
participants looked at the screen at least once. 

4. Results 
In this section, we analyze the walking scenario and sitting 
scenarios separately. 

4.1 Walking Scenario 
4.1.1 Response Time 
Response time relates to the difficulty in mapping the given 
commands to the actions required by the interaction technique 
while navigating our closed course. Though we selected mappings 
from gestures to command from Ruiz et al.’s consensus set [22], 
we still expected a difference in reaction times of the Move 
interface when compared to the arguably more “intuitive” motion 
marks-like interface of Swipe and traditional widgets of Tap. 

However, we found no statistical difference in response time for 
any of the techniques (Figure 4a). Using Move, our participants 
averaged 1040ms (S.D. = 628ms) to react from the audio cue to 
the beginning of the Double Flip gesture. In contrast, participants 
averaged 1037ms (S.D. = 259ms) using Swipe and had a mean 
response time of 954ms (S.D. =141ms) while using Tap.  

An analysis of variance with technique as a within-subjects factor 
did not find a significant effect for the differences seen in 
response time (F2,22 = 0.352, ns). The large standard deviation 
while using Move seemed primarily an effect of the variability in 
Success Rates with the gestures. Participants P3, P5 and P12 had 
significant trouble performing motion gestures (i.e. had very low 
Success Rates), and had correspondingly high Response Times 
(mean response time for P3, P5 and P12 was 1950ms).  

4.1.2 Command Throughput 
Throughout the four-minute sessions participants were asked to 
perform as many accurate command activations as possible. As a 
result, the command throughput can be estimated by considering 

how many commands participants attempted to perform, whether 
successful or otherwise, in the four minute session.  

Figure 4b-c shows a summary of our walking condition’s Total 
Commands attempted and associated Success Rate. Participants 
attempted 63.2 commands (S.D. = 11.0) using our motion gestures 
in Move. In contrast, participants attempted 146.5 total commands 
with Swipe (S.D. = 18.9) and 164.3 commands using the Tap 
interface (S.D = 16.2). 

First, we note that an analysis of variance with technique as a 
within-subjects factor found a significant effect on Total 
Commands issued in the walking scenario (F2,22 = 374.45, p < 
0.001). Post-hoc analysis using Bonferroni correction showed that 
the difference in total commands attempted was significant: 
participants issued significantly fewer commands while using 
Move than with Tap or Swipe (p <0.001). Moreover, post hoc 
analysis also demonstrated that participants issued fewer total 
commands with Swipe than with Tap (p <0.05). 

Secondly, an analysis of variance with technique as a within-
subjects factor similarly found that technique had a significant 
effect on Successful Command Rate (F2,22 = 40.017, p < 0.001). 
Post-hoc analysis using Bonferroni correction showed significant 
differences between success rate of Move and Swipe (p < 0.001), 
Move and Tap (p < 0.001) and Swipe and Tap (p < 0.05). 
Participants performed significantly worse in terms of success rate 
with Move (M = 0.73, S.D. = 0.11) than with Swipe (M = 0.89, 
S.D. = 0.07) or Tap (M = 0.97, S.D. = 0.02). 

4.1.3 Physical Characteristics 
Our last metrics – Screen Gaze, Speed, and Lost – give us insight 
into the effects each technique has on user behaviors during the 
walking scenario.  

We first report mean Screen Gaze – the number of times 
participants looked at the device`s display, sampled for five 
seconds every ten seconds – in Figure 4d. An analysis of variance 
with technique as a within-subjects factor found a significant 
effect on Screen Gaze (F2,22 = 4.34, p < 0.05). Post-hoc analysis 
using Bonferroni correction showed significant differences 
between the numbers of times participants gaze at the display with 
Move when compared to Tap (p < 0.01). Specifically, participants 

 
Figure 4. Summary of the Walking Scenario: (a) mean response time, (b) mean total commands attempted, (c) mean success 

rate,  (d)  mean number of screen gazes, (e) mean walking speed in m/s, and (f) mean number of times lost. 



watched the display significantly less with Move (M = 5.2, S.D. = 
4.13) compared to Tap (M=10.3, S.D. = 6.4). No other significant 
differences were found. 

Secondly, Figure 4e shows an aggregate of walking speeds using 
the three interaction techniques. Analysis of variance shows a 
significant effect of technique on Speed (F2,22 = 15.85, p < 0.001). 
Post-hoc analysis using Bonferroni correction showed participants 
walked significantly slower while using Move than while using 
Tap (p < 0.05). Participants walked at an average speed of 0.8m/s. 
(S.D. = 0.18m/s) with Move compared to the brisker pace of 1m/s 
and 0.9m/s while using Swipe and Tap respectively.  

Finally, Figure 4f shows a summary of mean times Lost (that is, 
the number of times participants had to stop and reorient 
themselves). Participants consistently got lost an average of two 
times regardless of interaction technique used (F2,22 = 1.45, p > 
0.2). As expected, the majority of instances where participants 
stopped to reorient themselves happened during their first session 
in the Walking task, regardless of technique used. 

4.2 Eyes-free Scenario 
For the eyes-free scenario, we performed an analysis of variance 
with technique as a within-subjects factor to find significant 
effects of technique on response time, total commands, and 
success rate. The results, shown in Figure 5, mirror those in our 
walking scenario and can be summarized as follows: 

1. There was no significant effect of technique on response time 
(F2,22 = 2.580, p > 0.05). 

2. Technique significantly affected Total Commands issued 
(F2,22 =254.84, p < 0.001). Post-hoc analysis using 
Bonferroni correction showed that participants issued 
significantly fewer commands with Move than with either 
Swipe (p <0.001) or Tap (p < 0.001) .Additionally, 
participants issued fewer commands with Swipe than with 
Tap (p < 0.05). 

3. Again, as expected, technique significantly affected Success 
Rate (F2,22 =23.616, p < 0.001). Post-hoc analysis using 
Bonferroni correction found significant differences between 
the success rate of participants using Move and Tap (p < 
0.001), Swipe and Tap (p < 0.05) and between Move and 
Swipe (p < 0.05). Success rate was significantly lower for 
Move (M = 0.75, S.D. = 0.11) when compared to both Swipe 
(M = 0.85, S.D. = 0.07) and Tap (M = 0.95, S.D. = 0.04). 

In all, participants did not change their behavior while interacting 
in a stationary eyes free scenario from that of walking. 
Participants performed significantly fewer commands with Move 
(M = 74.5, S.D. = 10.6) than with either Swipe (M= 156.8, S.D. = 
13.2) or Tap (M= 170.8, S.D. = 16.4), though their response rates 
were not significantly different. Additionally, the significantly 
lower success rate of 75% for motion gestures in Move mirrors 
the success rate for the walking task.  

5. Discussion 
In this section, we first address the cognitive cost of motion 
gestures. We then examine the issues of command throughput and 
recognition. In our discussion, we focus specifically on the design 
implications of the findings on cognitive cost and throughput. 

5.1 Cognitive Cost 
Our evaluation of motion gestures, tap, and swipe as input 
modalities falls into the broad category of psychometric studies 
known as Recognition Reaction Time experiments [23]. In these 
experiments, an experimental subject responds to a stimulus by 
planning and initiating a sequence of actions. The time between 
the end of the stimulus and the initiation of the response is the 
reaction time. 

Many personal factors can affect deviations in reaction time—
illness, skill, gender, age, handedness, fatigue, distraction. 
However, for a given controlled environment, reaction time is the 
accepted measure of the relative cognitive complexity or cognitive 
cost of different tasks [23]. All other factors being equal, a longer 
reaction time implies a task that is more complex. One specific 
example of the relationship between reaction time and cognitive 
cost that has been leveraged by HCI researchers is Hick’s Law [6, 
10] as a model of menu-selection complexity.  

To control for personal factors, we counterbalanced order of 
techniques (Tap, Swipe, Move) and used a within-subjects 
experimental design. As a result, any differences in reaction time 
observed between the techniques are the result of a longer 
planning phase before onset of action. Techniques with a longer 
planning phase are considered to have higher cognitive cost. 

In our results section, we note that there was no significant 
difference in reaction times while using Move, Swipe or Tap. 
Statistically, users were equally able to successfully build mental 
models that link physical movements with the device with the 
given shortcut commands as they were to map tapping or swiping 
actions to commands. There are two possible interpretations of 
this datum. The first is that there is no additional cognitive 
complexity associated with motion gestures. The second is that, 
although there is a difference, the difference is too small to be 
measured given the inherent noise associated with different 
participants’ reaction times. 

Regardless of which interpretation is true, the design implications 
of this finding are that motion gestures are a potentially beneficial 
input modality for distracted scenarios. The difference in 
cognitive cost between motion gestures, tap, and swipe is 
sufficiently small. Furthermore, because of other benefits 
associated with motion gestures – always-available, 
proprioceptive sensing – the lack of observable increase in 
cognitive cost is a positive result. 

 
Figure 5. Eyes-free Scenario: (a) mean response time, (b) mean total commands attempted, and (c) mean success rate. 



While reaction times were the same, we found that participants 
walked significantly slower with motion gestures than with Tap in 
the Walking scenario. This result surprised us, particularly 
because during the Move technique, participants spent 
significantly less time looking at the interface than during Tap.  

This trend became apparent very early in our experiment. As a 
result, we observed participants and attempted to catalogue why 
participants speed varied. We noted that participants speed was 
particularly affected by the recognition rate of the Move interface. 
Throughout the experimental block, recognition rates would vary 
naturally. As consecutive failures in recognition accumulate, we 
found that participants devoted higher attention to attempting to 
dislodge themselves from the performance trough. For instance, 
consider Figure 6 which outlines the Move interface`s success rate 
over a five-command sliding window of participants P5 and P12. 
Recognition performance begins at a relatively high rate of .8 then 
slowly drifts down to levels at or below .5 before improving again 
over the four-minute block. As these participants approach these 
minima of performance, our field notes suggest that they slowed 
down and took greater care in their motion gestures. Additionally, 
participants gazed at the screen more frequently during these 
periods of poor performance.  

From a design perspective, this does raise questions about 
recognizer reliability. In our experiments, we considered 
simulating reliably high recognition rates; this requirement 
introduces confounds into the data. Motion gestures are 
constrained by the reliability of recognizers we can design. As a 
result, any realistic evaluation of motion gestures must include the 
effect that natural variations in motion gesture performance will 
have on end-user behavior.  

While building a cognitive model of motion gestures does not 
appear to be difficult for our users, the lower speed seems to 
indicate that, when recognition errors occur, our participants slow 
down and look at the device more often so that they can perform 
motion gestures more carefully. Moreover, this trend seems to 
decrease as their performance improves.  

5.2 Interaction Throughput and Recognition 
While motion gestures can be used as an always-available 
shortcut to commands and can be invoked via proprioception 
without requiring a user to gaze at the display screen, motion 
gestures do take longer to perform than either a tap or a swipe.  

To issue any one of the four commands with motion gestures, 
participants would perform a double-flip delimiter followed by the 
appropriate motion gesture. Both the delimiter and the specific 
motion gesture took, on average, 650ms. As a result, a motion 
gesture consumed approximately 1.5 seconds, including a brief 
pause between delimiter and specific command gesture. Because 

taps and swipes consume only a fraction of a second, we would 
expect that Move throughput would be lower than Tap or Swipe.  

Beyond the longer time required to perform motion gestures, we 
also expect that motion gestures will suffer from recognition 
inaccuracies which will negatively impact throughput. Tap 
requires only location mapping, and Swipe can be recognized by a 
simple decision tree. In contrast, a motion gesture, measured 
imperfectly by accelerometer data, requires a carefully trained 
Hidden Markov Model or other trained template recognizer. 

In our observations, we expected that recognizer reliability would 
be poorer for motion gestures. However, the variability in 
recognition rate and its effect on walking speed was something we 
did not anticipate. In analyzing our field notes, one theme that 
emerged from recognizer error was that repeated errors 
compounded problems associated with motion gesture input. 
Participants who experienced repeated failures would try to 
diagnose why those recognition failures were occurring. In the 
case of taps and swipes, diagnosing why an action failed was 
relatively straight-forward. However, in the case of motion 
gestures, participants had no way to characterize why gestures 
failed. As a result, they would try to vary the intensity, the timing, 
the direction, the device angle, etc. In essence, users tried to 
explore the space of recognizer inputs to determine whether some 
other set of parameters of movement would enhance accuracy. 

There are several design implications that can be drawn from our 
observations of motion gesture interaction. Overall, these can be 
separated into implications for recognizer feedback, recognizer 
design, and motion gesture input. First, from the perspective of 
recognizer feedback, it would be beneficial to design techniques 
to communicate to users the parameters of input motion being 
observed by the device’s accelerometers and a comparison 
between those parameters and the parameters associated with a 
specific motion gesture. Then, if users fail to activate a motion 
gesture, they can potentially stop, observe the desired parameters 
of their command, contrast with what the phone is observing, and 
more accurately diagnose recognition problems.  

Second, from the perspective of recognizer design, it may be 
possible to build recognizers that prevent repeated errors by 
adapting in various ways to the end-user. Our recognizer was built 
upon a set of models that were learned from expert users. 
However, additional models that are more permissive may 
increase the reliability of recognition for end-users. For example, 
Negulescu et al. have explored modifying thresholds for 
successful motion gesture activation based on repeated actions of 
users [16]. In this work, if two similar inputs are observed, a more 
permissive model with lower thresholds is used to see if the two 
failed attempts could reasonably map to a specific gesture. 

Finally, for any input modality, there are trade-offs. While 
throughput is significantly lower for motion gestures, the cost of 

 
Figure 6. Success rate of Move over a five-command sliding window of P5 (left) and P12 (right) 



the motion gesture must be balanced against the benefits of 
always-available, eyes-free command activation. Users of 
smartphone systems have been willing to trade off physical 
keyboards on smartphones for smaller, more aesthetically pleasing 
profiles that use on-screen keyboards. The use of on-screen 
keyboards, however, slows text entry. Users have also been 
willing to accept four- or five-inch screens for tasks like web-
browsing and email in place of larger displays. This promotes 
portability, but also slows email browsing and reading. From 
interviews and field notes with our participants, it seems that users 
may also be willing to accept the lower throughput and 
recognition errors of motion gestures if, alongside these costs, the 
benefits of constant availability and eyes-free input are preserved. 
Motion gestures are not a panacea for every potential input 
problem faced by end-users, but, in distracted contexts, they can 
serve a valuable purpose as an alternative modality.  

6. Future Work 
Obviously, a better recognition algorithm would 
disproportionately benefit motion gesture interaction. However, 
recognition algorithms are complex for motion gestures 
particularly because the actual movement of the device is a hidden 
model, observed imperfectly through accelerometers, and then 
recognized from noisy input data caused by walking or holding 
the smartphone. We continue to explore ways to increase the 
reliability of recognition, including experiments with adapting 
thresholds and experiments with techniques like camera-based 
optical flow as another data point for our recognition algorithms. 

Beyond enhancements in recognition, for any novel input 
technique there is a question of long-term acceptance and use. 
Some current smartphone apps support a restricted set of motion 
gestures. For example, the Google App for iPhone makes use of 
proximity and movement to turn on the microphone when a user 
brings the smartphone to their ear. However, end-users seem 
unaware of the existence of these motion gestures, and it is not 
clear whether or not they are used. If motion gestures were 
mapped onto a set of shortcut commands, and if they were 
consistently available, end-user behavior might change. We hope 
to leverage existing contexts with smartphone system software 
providers to experiment with always-available input mechanisms.  

7. Conclusion 
In this paper, we analyze the relative cognitive cost of motion 
gestures, tap and surface gestures as input for smartphone devices 
under conditions of light distraction. We show that, for both 
walking and eyes-free input, the cognitive cost of motion gestures 
(measured as a function of reaction time) is statistically 
indistinguishable from the cognitive costs of taps and gestures. As 
a result, motion gestures represent a viable input alternative for 
situations where eyes-free input may be required. 
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