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Chapter 9

INTRODUCTION

As online advertising has exploded in the past 
decade, it has often been contrasted with tradi-
tional media such as television, print, and radio. 
The inherently connected nature of online content 
has enabled unprecedented tracking and analysis 
of online advertising, and the resulting explo-
sion of data has allowed Internet companies to 

develop ever more sophisticated algorithms for 
allocating and pricing advertising inventory. Using 
user-initiated signals (like “clickthrough”), these 
companies can indirectly measure the relevance 
of ads in specific contexts, and build models to 
predict which ads will most interest future users 
and maximize revenues for online publishers 
(Richardson et al., 2007).

In contrast, traditional television measurement 
has typically relied on relatively small panels of 
pre-selected households to report their viewing 

Sundar Dorai-Raj
Google Inc., USA

Yannet Interian
Google Inc., USA

Igor Naverniouk
Google Inc., USA

Dan Zigmond
Google Inc., USA

Adapting Online Advertising 
Techniques to Television

ABSTRACT

The availability of precise data on TV ad consumption fundamentally changes this advertising medium, 
and allows many techniques developed for analyzing online ads to be adapted for TV. This chapter looks 
in particular at how results from the emerging field of online ad quality analysis can now be applied to TV.
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behavior. This approach often has meant that 
reliable measurements took days or weeks to 
produce, and could not be produced at all for 
niche programming that appealed to very small 
audiences. These methods also did not generate 
enough data to build determine which TV ads 
were most appealing to viewers, nor to predict 
which ads would be most appealing in the future.

However, a new source of TV-related data 
has emerged in recent years, one that is closer to 
Internet scale. The set-top boxes (STBs) used by 
most cable and satellite TV subscribers are often 
capable of collecting data on viewing behavior. 
These data can then be stripped of personally-
identifiable information and anonymously ag-
gregated, allowing for very detailed measurement 
of television viewing behavior. While previous 
panels collected data from thousands or perhaps 
tens of thousands of households, set-top box data 
are available from many million US households 
and similar numbers in other countries.

With these data in hand, it is now possible 
for television to adopt many of the analytical 
techniques pioneered in online advertising. In 
particular, ads can be scored for relevance or 
quality based on statistical models that predict 
how viewers are likely to respond. Ad inventory 
can then be allocated so as to maximize relevance, 
and to compensate publishers for any loss of audi-
ence due to ads.

This chapter will explore this emerging dis-
cipline. We will introduce the basic statistical 
techniques underlying the approach, and give 
examples for how such models can be implemented 
in software. We will also discuss applications of 
these models to television advertising, and some 
of the issues raised in the application of these 
techniques.

TV Audience Measurement

Panel-based audience measurement has a long 
history. In the US, Arthur Nielsen began mea-
suring television audiences in 1950 based on a 

nationwide sample of 300 households (Nielsen, 
2009a). Because there were only 48 commercial 
television stations in the US at the time and no 
more than a handful of viewing choices in any one 
local area, the audience of any given station could 
be adequately estimated with such a small sample. 
The Nielsen Company continues measuring TV 
audiences today, now with a sample of over 9,000 
households (Nielsen, 2009b). Understanding and 
using these audience ratings has evolved into a 
discipline unto itself (see, for example, Webster 
et al., 2006).

Even the modern, expanded panel, however, 
is at times unable to measure the increasing 
fragmented TV audience flocking to niche pro-
gramming (Bachman, 2009). For television ads 
(as opposed to programs), this bias is further 
compounded: attempts to judge the reaction of 
TV audiences to ads have focused on only the 
most popular programming. For the 2009 Super 
Bowl, for example, Nielsen published a likeability 
score and a recall score for the top ads [1]. The 
scores were computed using 11,466 surveys, and 
Nielsen reported only on the top 5 best-liked ads 
and most-recalled ads.

Several companies have started using data 
from STBs to measure TV audiences. In addi-
tion to Google, TNS, CANOE, Retrak, Tivo, and 
The Nielsen Company itself are using STB data 
(Mandese, 2009). Several of these companies will 
make such data available to media researchers on 
a subscription basis.

Measuring Ad Quality

In the world of online advertising, the term “ad 
quality” has taken on a very specific meaning. 
Roughly speaking, an ad quality is “a measure 
of how relevant an ad is” (Yahoo, 2009); in the 
context of Internet keyword search ads, ad qual-
ity scores “measure how relevant [the] keyword 
is to [the] ad text and to a user’s search query” 
(Google, 2009). In other words, ad quality repre-
sents a judgment on an ad primarily from a user’s 
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or viewer’s perspective. It asks, to what extent is 
the ad the viewer would most like to see.

Ad quality is not, in other words, a measure of 
cost effectiveness from an advertiser’s perspective. 
It is easy to imagine ads that viewers consider 
highly enjoyable and relevant, but which are 
ineffective at meeting the goals of the advertis-
ers themselves. Similarly, it is not hard to find 
examples of ads that viewers may dislike, but 
nevertheless seem to be cost-effective. (Much 
“junk mail” and the online equivalent – email 
spam – might fall into this second category.)

However, there are reasons to predict a synergy 
between ad quality (as defined above) and ad 
effectiveness, at least in the long run. If viewers 
become accustomed to seeing relevant ads, they 
may pay more attention and thus increase the 
effectiveness of ads generally. Furthermore, TV 
programmers have a vested interest in keeping 
viewers from changing the channel and so may 
reap an economic benefit from increasing viewer-
perceived ad quality.

SOLUTIONS AND 
RECOMMENDATIONS

Precise television usage data is now available 
from several sources. Google aggregates data col-
lected and anonymized by DISH Network L.L.C., 
describing the precise second-by-second tuning 
behavior for several million of US television set-
top boxes, covering millions of US households, 
for thousands TV ad airings every day. From this 
raw material, we have developed several measures 
that can be used to gauge how appealing and rel-
evant commercials are to TV viewers. One such 
measure is the percentage initial audience retained 
(IAR): how much of the audience, tuned in to an 
ad when it began airing, remained tuned to the 
same channel when the ad completes.

In many respects, IAR is the inverse of on-
line measures like click-through rate (CTR). For 
online ads, CTR is a positive action; advertisers 

want users to click through. This is somewhat 
reversed in television advertising, in which the 
primary action a user can take is a negative one: 
to change the channel. However, we see broad 
similarities in the propensity of users to take action 
in response to both types of advertising. Figure 
1 shows tune-away rates (the additive inverse of 
IAR) for 182,801 TV ads aired in January 2009. 
This plot looks similar to the distribution of CTRs 
for paid search ads also ran that month. Although 
the actions being taken are quite different in the 
two media, the two measures show a comparable 
range and variance.

A significant challenge in interpreting TV 
audience data like this is that many factors appear 
to impact STB tuning during ads, making it dif-
ficult to isolate the effect of the specific ad itself 
on the probability that a STB will tune away. 
Rather than using raw measures of tune-away 
directly, we have developed a “retention score” 
that attempts to capture the creative effect itself.

Definition

We calculate per airing the fraction of initial audi-
ence retained (IAR) during a commercial. This is 
calculated by taking the number of TVs tuned to 
an ad when it began which then remained tuned 
throughout the ad airing as shown in equation (1).

IAR=
Audience that viewed whole ad
Audience at beginning of tthe ad

	

(1)

The hypothesis behind this measure is that 
when an ad does not appeal to a certain audience, 
they will vote against it by changing the channel. 
By including only those viewers who were present 
when the commercial started, we hope to exclude 
some who may be channel surfing. However, even 
these initial viewers may tune away for other 
reasons. For example, a viewer may be finished 
watching the current program on one channel 
and begin looking for something else to watch. 
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We can interpret IAR as the probability of tuning 
away from an ad. In order to isolate extraneous 
factors like the network, day part, and day of the 
week from the effect of the creative, we define 
the Expected IAR of an airing as

IAR=E( IARˆ )x 	 (2)

where x is a vector of features extracted from an 
airing, which exclude any features that identify 
the creative itself; for example, hour of the day 
and TV channel, but not the specific campaign or 
advertiser. Then we define the IAR Residual as in 
equation 3 to be a measure of the creative effect.

IAR Residual IAR IAR= − ˆ 	 (3)

There are a number of ways to estimate IÂR, 
which we will discuss in this chapter. Using equa-
tion 3 we can define underperforming airings as 
the airings with IAR residual below the median. 
We can then formally define the retention score 
(RS) for each creative as one minus the fraction 
of airings that are underperforming.

RS=
Number of underperforming airings

Total number of Airi
1-

nngs
	

(4)

The remainder of this chapter focuses on 
methods for obtaining accurate retention scores. 
We explore four different statistical models based 
on three different algorithms. We will rank each 
method by metrics we have constructed to measure 
its usefulness as a measure of ad quality. We have 
also conducted extensive experiments to validate 
the usefulness of retention scores as an ad quality 
signal. These include comparing retention scores 
to subjected human evaluations for ads, and the 
extent to which past retention scores predict future 
audience retention (Zigmond et al., 2009).

MODEL ESTIMATION

In this section we introduce three estimation al-
gorithms to obtain predictions for IAR. All three 
approaches are based on logistic regression with 

Figure 1. Density of tune away rate for TV ads, defined by the percentage of watchers who click away 
from an ad
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IAR as our response. To motivate the algorithm 
descriptions, consider the following two events:

C
0
= STB tuned to the beginning of an ad leaves before the add ends

STB tuned to the beginning of an ad remains throC
1
= uugh the entire ad,

	

(5)

where Pr(C1) = 1 – Pr(C0). Then, given a vector 
of features xi for observation i, we model the 
log-odds of C1 as

log
Pr( )

Pr( )
.

C

C
xi

i

ij j
j

k
1

0

0
1

x

x












= +

=
∑b b 	 (6)

where β0 is the intercept, β is a length-k vector of 
unknown coefficients. We then obtain estimates of 
(β0, β) by maximizing the binomial log-likelihood 
of Pr(C1 | xi) given the observed IAR:

max log(Pr( )) ( ) log(Pr( ))
,b0

1

1
1

1 0
ββ( )∈ℜ +

+ −{
k N

n C C
i i i i i

IAR IARx x }}












=
∑
i

N

1

,
	

(7)

where ni is the number of viewers at the beginning 
of the ad for observation i and Pr(C1 | xi) is given by

Pr( )
exp{ }

.C
x

i

ij jj

k1

0 1

1

1
x =

+ − −
=∑b b

	

(8)

For this discussion, an “observation” depends 
on the feature list. At its most basic level, an 
observation is an individual STB. However, to 
improve computational efficiency, our algorithms 
aggregate over STBs with identical feature sets, 
where each group of STBs is thought of as a 
single observation. The one exception is the last 
algorithm, which is efficient enough to handle 
each STB as a separate observation.

Glmnet Logistic Regression

The Glmnet algorithm controls overfitting and any 
possible correlations by applying an L1 penalty on 
the coefficients during the estimation. In essence, 
we are still maximizing the log-likelihood given 
by (7) with an additional penalty with the form

max log(Pr( )) ( ) log(Pr( ))
,β0

1

1
1

1 0
ββ( )∈ℜ +

+ −{
k N

n C C
i i i i i

IAR IARx x }}−












= =
∑ ∑
i

N

j
j

k

1 1

λ β ,
	

(9)

where λ is a regularization parameter. Software 
for obtaining coefficient estimates using Glmnet is 
available through the R package glmnet (Friedman 
et al., 2009). R is an open source scripting language 
primarily used for statistical data analysis and 
visualization (R Development Core Team, 2010).

Choice of the regularization parameter λ affects 
the amount of shrinkage applied to each βj. The 
larger λ is, the smaller the resulting βj’s. Some βj’s 
will be shrunk to zero, implying this coefficient 
has no impact on IAR or that it is correlated with 
another feature in the models.

Principal Components 
Logistic Regression

The next algorithm we tried is based on principal 
components logistic regression (Aguilera et al., 
2006). The algorithm is as follows:

1. 	 Build a model matrix X of size n x p, where 
n is the number of rows and p is the number 
of parameters (columns).

2. 	 Assuming X has an intercept, drop the first 
column of X and center and scale the remain-
ing columns. Call the result X*.

3.	 Transform X* using singular value decom-
position (SVD) into matrix components Unxk, 
d(kxk), and V(kxk), where

X UdV* = 	 (10)
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and k = p – 1.

Define W as

W
0

0 V
=

′















1
, 	 (11)

where 0 is a column vector of length k containing 
all zeros.

Define Z as

Z XW= , 	 (12)

which is n x p.

6. 	 Keep only the first m columns of Z. There 
are many published ways for choosing m. 
See Aguilera et al. (2006), for example.

	 Maximize the log-likelihood binomial with 
response IAR against the first m columns of 
Z:

max log(Pr( )) ( ) log(Pr( ))
ββ∗∗∈ℜ =

+ −{ }∑m N
n C C
i i i i i

i

N1
1

1 0
1

IAR IARz z












, 	 (13)

where

Pr( )
exp{ }*

C
z

i

ij jj

m1

1

1

1
z =

+ −
=∑ b

, 	 (14)

and zij is the ijth element of Z, and b
j
*  is the jth 

regression coefficient based on the jth principal 
component of Z. Note that (13) and (14) are fun-
damentally the same to (7) and (8), respectively, 
except that m is typically much smaller than k.

By maximizing (13) with respect to the b
j
* s 

and given our observed IAR, we obtain estimates 

ˆ*b
j

. Since ˆ*b
j

 is estimated in the transformed 
space, we convert back to the original space 
spanned by X by performing a matrix multiplica-
tion given by:

ˆ ˆ*ββ == ββW
m

, 	 (15)

where Wm contains the first m columns of W and 
ˆ*ββ  a column vector containing the ˆ*b

j
s. The re-

sulting vector β̂β  contains coefficients for all 
features in the model. As with the Glmnet estima-
tors, the estimated coefficients will be shrunk 
towards zero as more correlations are present in 
X and the larger m is.

The latter algorithm is used in the demographics 
model because of the strong relationship between 
the makeup of a household and which networks 
viewers in that household watch.

A Proprietary Logistic 
Regression Implementation

The last algorithm we tried is based on proprietary 
logistic regression implementation designed by 
Google to handle very large data sets. The basic 
algorithm optimizes over coefficients βj with 
respect to the log-likelihood function in (7). How-
ever, we apply additional regularization techniques 
to shrink unimportant or highly correlated coef-
ficients while also merging similar coefficients.

The main advantage of this method is effi-
ciency. The algorithm design allows for significant 
parallelization, which means we can model more 
features on a greater number of STBs. In fact, 
unlike the Glmnet and principal component algo-
rithms, with our proprietary algorithm we model 
each STB as an individual observation rather than 
rely on grouping of STBs by feature. Given that 
we have data for several million STBs, that level 
of prediction is not possible with most statistical 
software packages, such as R.
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RETENTION SCORE MODELS

We have devised several models for computing 
retention scores, which help us rank ads based on 
their quality. In this chapter, we will discuss our 
findings in the areas of household demographics 
and user behavior. In addition, we have developed 
metrics to rank our models based accuracy of 
predictions and their ability to discriminate ads 
consistently. In this section we introduce the ba-
sic model first developed by Google, along with 
3 competing models later designed as possible 
improvements.

All model comparisons are based on training 
and test data from October 2009. The primary tool 
for analysis is the R language, which suffers from 
fairly severe memory constraints. For this reason, 
we limited our analysis to the 25 top-viewed 
networks to improve memory efficiency for the 
Glmnet and principal components algorithms. 
For the machine learning algorithm, we used an 
internal software tool that is much more scalable. 
However, for comparison purposes, we still limited 
the analysis to the same networks.

The Basic Model

The first model relates the observed IAR to the 
Day Part, Weekday, Ad Duration, and Network. 
Each feature is described in more detail below. 
All time-based features are EST/EDT.

1. 	 Day Part – a categorical variable with the 
following levels:

2. 	 Weekday – a Boolean variable determining 
whether the ad was placed on the weekday 
(TRUE) versus weekend (FALSE).

3. 	 Ad Duration – the duration of the ad in sec-
onds. Most ads are 15 or 30 seconds, but 45, 
60, and 120-second ads are also shown. In 
the basic model, we treat Ad Duration as a 
numeric variable and not categorical. Doing 
so assumes a linear relationship between 
IAR and Ad Duration.

4. 	 Network – a categorical feature of network 
id. For the Dish population, this variable has 
roughly 100 levels.

Each observation used in the Basic Model 
represents a single airing. We typically use three 
weeks of data to train a model and estimate coef-
ficients, and predict for only a single week.

Demographics Model

The demographics model is motivated by the 
fact that households of certain demographic 
composition tend to watch the same networks. To 
observe this behavior we first conducted a simple 
principal components analysis to determine the 
reduction in dimensionality achieved by model-
ing variations in household makeup rather than 
network viewership. In essence, we attempted to 
determine whether demographics were a proxy for 
network viewership. This would imply we could 
subsequently remove or diminish network from 
our Basic Model as a feature for predicting IAR in 
return for including certain household conditions.

First let us discuss our findings of the principal 
components analysis. For the month of October, 
the percentage of time a given STB was tuned to 
a particular network was recorded, provided the 
STB was tuned to that network for at least 60 sec-
onds and under two hours. As mentioned above, 
only the 25 top-viewed networks were included in 
the analysis. In addition, the actual names of the 
networks have been obfuscated. Table 2 contains 
the demographics we considered in our study.

Figure 2 shows strong correlations between 
113 household demographics and viewership for 
25 networks. To explain this relationship in further 
detail, we performed a principal components 
analysis (PCA) on these percentages. PCA is a 
dimension reduction technique that allows view 
the highly correlated data in Figure 2 with just a 
few uncorrelated variables, or principal compo-
nents (Shaw, 2003).
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Figure 3 shows the cumulative percentage of 
variance for each principal component. As we can 
see, over 95% of the total variation is explained 
in the first three principal components. Figures 4 
and 5 explore these three dimensions even further. 
Figures 4 plots each principal component versus 
the age group and split by presence of children 
and gender. From the first principal component 
we see clear variations due to age. However, there 
also exists a separation due to the presence of 
children. The second principal component also 
shows differences due to age, while the third 
component in particular shows the greatest amount 
of variation is due to gender. This is seen by the 
top two dashed lines, which correspond to house-
holds that contain either a single female or female 
head of household.

Figure 5 shows biplots of the first three prin-
cipal components. Biplots are useful for overlay-
ing the principal components (shown in black) 
with the rotated data (shown in gray) (Gabriel, 
1971). To interpret a biplot, we focus on areas 
where the data and the principal components are 
somewhat aligned. For the biplot containing the 
first and second principal component, we see as 
strong correlation between older adults without 
children and viewership of cable news networks 
such as “News Channel 2” and “News Channel 
1”. In addition, we also see that younger adults 
with children tend to watch “Cartoon Network 2” 

and “Cartoon Channel 3”. The latter observations 
match very well with our comments about the 
first and second principal components in Figure 
4.

For the biplot containing the second and third 
principal components shows a relationship of 
gender and age to network viewership. Note that 
most of the data for females between the ages of 
45 and 64 are in the upper left corner of the plot, 
relating to networks such as “Women’s Network 
1”, “Women’s Network 2”, and “DIY Channel 
2”. In addition, households with males or mixed 
genders along the bottom of the figure show a 
strong correlation to the networks “Documentary 
Channel 2”, “Sports Channel 1”, and “Mixed 
Programming Channel 4”.

For our demographics model we simply 
added the 113 different combinations from Table 
2 along with the same list of features in the Basic 
model, which lead to 143 coefficients in the 
model. Applying the algorithm for principal 
components regression described above, we re-
duced the dimensionality to 125 coefficients, or 
90% of the total variation. This is considerably 
more dimensions than the demographics-to-net-
work PCA discussed in this section. However the 
PCA study described the viewership of networks, 
while our demographics model describes STB 
tune-out at ads.

Table 2. Table of demographics we considered as a partial proxy for network. Note that Single is not the 
opposite of married, as there exists households containing unmarried couples. STBs labeled as unknown 
were removed from the principal components analysis, but are included in the retention score model 

Gender Kids Married Single Age

Male Yes Yes Yes 18-24

Female No No No 25-34

Both Unknown Unknown 35-44

Unknown 45-54

55-64

65-74

75 plus+
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Figure 2. This figure shows the percentage of time over the course of a month that a STB was tuned to 
a particular network (vertical axis) versus the demographic makeup of the household (horizontal axis). 
The darker area, the more time a particular household was tuned to that network. For example, older 
people without kids (upper right) tend to watch “News Channel 2” the most, while younger people with 
kids (upper right) tend to watch more “Cartoon Channel 2” and “Cartoon Channel 3”. This plot shows 
25 networks and 113 demographic groups
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Local User Behavior Model

In this model we monitor STB behavior up to the 
point of a particular ad. Our hypothesis is that 
users how have a channel change closer to an ad 
insertion are more likely to tune away from the ad 
than users have not had a recent channel change. 
In essence we are trying to separate “active” us-
ers from “passive” users based on recent events.

For this model we define the following features:

1. 	 LastEvent – whether the last event occurred 
in the previous minute, 10 minutes, 30 min-
utes, 60 minutes, or greater than 60 minutes.

2. 	 NumberEvents – the number of channel 
changes in the 60 minutes prior to tuning 
away from an ad. STBs with 5 or more 
events are grouped in the same category.

3. 	 MF – Male, Female, Both, or Other.
4. 	 AGE – Over 65, Under 65, or Unknown
5. 	 Network – Limited to the top 25 viewed 

networks.
6. 	 Ad duration (in seconds).

The first two features separate the active view-
ers from the passive ones, which helps us predict 
who is more likely to tune away from an ad. Figure 
7 shows the distribution of IAR for the viewers 
who had an event within the last hour (“Active”) 

Figure 3. This plot shows the cumulative percentage of variance explained by 25 principal components. 
The first three principal components explain more than 95% of the total variation
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versus the IAR for viewers who had no events 
in the past hour. Figure 8 is a similar plot for the 
NumberEvents feature. These two plots clearly 
show a dependence on how much a viewer is 
actively watching TV prior to an ad’s airing.

We also added two demographic features to 
help predict IAR: MF and AGE. We chose these 
two because of the principal components analysis 
discussed earlier in the chapter. However, due to 
the memory constraints of the R language we 
limited the levels of each demographic.

Figure 9 shows the distribution of IAR for 
the two demographic groups in our model. For 
the gender demographic we see that men are less 
tolerant of ads and tend to have a lower IAR than 
women. Similarly, older adults tend to watch more 
ads than younger adults.

A Machine Learning Approach

The machine learning approach relies on our pro-
prietary logistic regression implementation. This 

Figure 4. Plots of first 3 principal components vs. age group, split by gender (lines) and presence of 
children (panels). The first principal component (top row) varies mostly by age differences and presence 
of children. The second principal component (middle row) reveals additional variation in age. The third 
principal component (bottom row) shows that women tend to watch different shows from other gender 
groups
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model greatly expands upon the previous models 
but does not suffer from the memory limitations 
of R. The main features included in this model 
are the following:

1. 	 LN(Time to last event) – the natural log of 
the time to the last event. This is a continuous 
version of the “LastEvent” in the previous 
model.

2. 	 DurationSec and sqrt(DurationSec) – the 
ad duration and its square root. The square 
root transformation controls for longer ads, 

which do not have the same effect on IAR 
as shorter ads.

3. 	 The genre of the show where the ad was 
placed (e.g. adventure, comedy, etc.)

4. 	 Five minutes from the end or beginning of 
show, which models the behavior that view-
ers tend to have higher tune-away rates at 
the beginning or ending of a show.

5. 	 The show name (e.g. Phineas and Ferb, 
Without a Trace, etc.).

6. 	 Network – Not limited to the top 25 networks 
as in the previous models. However, for 
comparison purposes we filtered the results 

Figure 5. This figure shows biplot of principal components 2 vs. 1. From this figure we see that older 
adults with no children present tend to watch “News Channel 2”, “News Channel 1”, and “Nostalgia 
Chanel 1”, while younger adults with children tend to watch more “Cartoon Channel 2” and “Cartoon 
Channel 3”
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to the same airings as the data used in the 
first three models.

7. 	 Household demographics, including those in 
Table 2, as well as ethnicity and occupation.

8. 	 STB time zone and geographic location.
9. 	 Day part (see Table 1).
10. 	 Weekday vs. weekend.
11. 	 Stickiness, which is defined as the total 

percentage of times a STB tuned away from 
an ad over a month of time.

All these features are used in the model. Unlike 
the previous algorithms, this implementation looks 
at more than just the main effects. Because this 

approach is extremely memory efficient, we also 
investigated higher order interactions.

The previous algorithms have no mechanism 
for updating coefficients that may become stale 
over time. However, the machine-learning ap-
proach automatically recalculates the model 
coefficients with the introduction of new data, 
while down weighting the contribution of older 
data to the estimation.

PREDICTIVE POWER

To compare the models introduced in the chapter, 
we need a metric that demonstrates their ability 

Figure 6. This figure shows biplot of principal components 3 vs. 2. From this figure we see women from 
aged 45-74 tend to watch “Women’s Channel 3”, “DIY Channel 2”, and “Mixed Programming Channel 5”
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Figure 7. This figure shows the density of IAR for active viewers versus passive viewers. Active viewers 
changed the channel in the hour prior to an ad, while passive viewers did not

Figure 8. This figure shows the IAR for viewers as number of channel changes increased within the past 
hour. The plot is truncated for to 5 or more events
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to produce accurate retention scores. In this sec-
tion we discuss a metric that measures a models 
capability to predict retention scores. For all the 
algorithms we trained our models on the first 
75% of the airings in October 2009 and predicted 
retention scores the remaining 25% of the airings.

Algorithm

The main metric we use to compare retention 
score models is called predictive power. A model 
with high predictive power accurately predicts 

ad rankings based on current retention scores. 
We interpret this metric as the total percentage 
of ads correctly sorted by our retention score 
algorithm. The following provides the algorithm 
for our metric:

1. 	 Using a training dataset, build a model to 
predict IAR.

2. 	 With the fitted model, obtain predicted IARs 
on a test dataset.

3. 	 Aggregate the observed and predicted IARs 
to the airing level (i.e. each row in the test 
dataset represents a single ad placement).

4. 	 For each airing, use (3) to compute a residual.
5. 	 For each creative, obtain a retention score 

(RS) based on (4).
6. 	 For each airing, determine all other airings 

within the same commercial break, or pod.
7. 	 For each pod, compute the pairwise differ-

ences of observed IAR as well as the pairwise 
differences for the predicted retention scores 
for each airing.

8. 	 For all ad pairs whose difference in RS is 
in the interval (Δ, Δ + 0.01), where 0 < Δ < 

Figure 9. Density plots of IAR by gender and age. Men tend to be tune away from ads more than women. 
We also see that adults under 65 tend to tune away from ads than older adults

Table 1. Category definition for Day Part. Most 
networks start and end their broadcasting day at 
5 am Eastern time 

Day Part Time

Morning 5am to 10am

Daytime 10am to 2pm

Late Afternoon 2pm to 5pm

Evening 5pm to 8pm

Prime 8pm to 12pm

Overnight 12pm to 5am
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1, determine the proportions of those pairs 
whose corresponding observed IAR agrees 
with their respective RS.

9. 	 Define the predictive power as the weighted 
mean of all proportions determined in the 
previous step, with weights determined from 
the total number of ad pairs in each interval.

Illustration Of Predictive Power

Figure 10 illustrates the algorithm for computing 
predictive power. In this example, we have eight 
airings distributed among three pods. The numbers 
in each box are the observed IAR for each airing, 
while the numbers above the box are the reten-
tions scores (RS) of the creative. The RS values 
are determined from one of the models. In Pod 1, 
with four airings, we make six comparisons, of 

which three of the comparisons have the same sign 
while three have opposite sign. All comparisons 
for each pod are shown in Table 3.

Model Comparison

The predictive power for the four models discussed 
in this paper is shown in Table 4. Their relative 
performances can be seen more easily in Figure 
11. The model that faired the best is the “Local 
Events + Demographics” model with 76.5% of all 
ad pair correctly sorted. However, this model is 
not as scalable as the “Machine Learning” model 
and thus loses some of its attractiveness. The 
Machine Learning model is the first of its kind 
that we tried and is easily expandable to include 
other features.

Figure 10. Illustration of how we estimate predictive power. Comparisons of ads are only made within 
a commercial break, or pod, since all factors are essentially the same at this level

Table 3. Table of IAR and RS comparisons for the example shown in Figure 10. The predictive power 
is the percentage of comparisons where IAR agrees with RS. Comparisons agree when ΔRS and ΔIAR 
have the same sign. For this example, there are five comparisons that agree (Y) and three comparisons 
that do not agree (N). The predictive power for this example is 5/8 = 62.5%. 

Pod 1 Pod 2 Pod 3

ΔRS ΔIAR Agrees ΔRS ΔIAR Agrees ΔRS ΔIAR Agrees

2-1 0.1 0.02 Y 0.1 0.01 Y -0.1 -0.01 Y

3-2 0.1 -0.03 N

3-1 0.2 -0.01 N

4-3 0.1 0.02 Y

4-2 0.2 -0.01 N

4-1 0.3 0.01 Y
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CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

In this chapter we have introduced three models 
for predicting ad retention on TV. However, we 
still have room for improvement, of which the 
machine-learning algorithm has the greatest 
potential because of its scalability. This is an 
area ripe for further innovation. Many new (and 
perhaps yet-to-be-developed) machine learning 

algorithms could be applied to this problem, and 
ever-greater quantities of data can be fed to such 
models to produce more accurate predictions of 
future audience behavior.

In the first decade of the twentieth century, 
“offline” media such as TV, radio, and print were 
thought to be in conflict with emerging online 
opportunities, such as Web-based display adver-
tising and paid search ads. In the coming decade, 
however, the distinction between online and offline 
is likely to blur considerably. Content will often 
be available in many forms: traditionally offline 
media such as newspapers will be read on the Web, 
while online videos from sites like YouTube will 
be downloaded to be watched later on possibly 
disconnected devices.

The online-offline division will soon be re-
placed by a new distinction, between measured 
and unmeasured. Data from set-top boxes and 
similar sources will provide a degree of measur-
ability and accountability to TV and other “offline” 
advertising that had previously only been available 
online, and allow the traditional advertising world 

Table 4. Predictive power for each of the models. 
The metric is interpreted as the percentage of all 
ad pairs within a pod that are correctly sorted by 
their respective retention scores. The best model 
is the “Local Events + Demographics” model 
followed by the “Machine Learning” algorithm 

Model Predictive Power

Basic 72.8%

Demographics 65.8%

Local Events + Demographics 76.5%

Machine Learning 73.8%

Figure 11. Comparison of the four retention score models in terms of predictive power. The curves are 
logit trend lines with 95% confidence bands. The size of each point is proportional to the number of ad 
pairs in the denominator of the percentage
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to adopt the quantitative techniques pioneered 
in online settings. We have described one such 
application in this chapter: creating ad quality 
scores for TV ads similar to those first developed 
for paid search advertising.

Because what can be measured can also be 
analyzed and optimized, well-measured media 
will develop a natural efficiency advantage over 
unmeasured. Advertising budgets will naturally 
flow to those media that are best able to generate 
and capitalize on data. Successfully applying the 
quantitative lessons from online advertising will 
become essential for the survival of all advertis-
ing media.
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