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Abstract

Capsicum is a lightweight operating system capability and sandbox framework planned for inclusion
in FreeBSD 9. Capsicum extends, rather than replaces, UNIX APIs, providing new kernel primitives
(sandboxed capability mode and capabilities) and a userspace sandbox API. These tools support the
compartmentalization of monolithic UNIX applications into logical applications. We demonstrate our
approach by adapting core FreeBSD utilities and Google’s Chromium web browser to use Capsicum
primitives, and compare the complexity and robustness of Capsicum with other sandboxing techniques.

1 Introduction

Capsicum is an API that brings capabilities to UNIX1. Capabilities are unforgeable tokens of authority,
and have long been the province of research operating systems such as PSOS [16] and EROS [23]. UNIX
systems have less fine-grained access control than capability systems, but are very widely deployed. By
adding capability primitives to standard UNIX APIs, Capsicum gives application authors a realistic adoption
path towards one of the ideals of OS security: least-privilege operation.

Today, many popular, security-critical applications have been decomposed into parts with different priv-
ilege requirements. Privilege separation, or compartmentalisation, is a pattern that has been adopted by ap-
plications such as OpenSSH, Apple’s SecurityServer, and, more recently, Google’s Chromium web browser.
Compartmentalisation is enforced using various existing access control techniques, but only with significant
programmer and computational effort; current OS facilities are simply not designed for this purpose.

The two systems of access control in conventional (non-capability-oriented) operating systems are Dis-
cretionary Access Control (DAC) and Mandatory Access Control (MAC). DAC was designed to protect
users from each other: the owner of an object (such as a file) can specify permissions for it, which are
checked by the OS whenever the object is accessed. MAC was designed to enforce system policies: system
administrators specify policies (e.g. “users cleared to Secret may not read Top Secret documents”), which
are checked via run-time hooks inserted into many places in the operating system’s kernel.
∗Generously supported by a grant from Google, Inc.
†Generously supported by the Rothermere Foundation and the Natural Sciences and Research Council of Canada.
1We have built a Capsicum prototype, which is open source and planned for inclusion in FreeBSD 9. Further information and

source code are available at http://www.cl.cam.ac.uk/research/security/capsicum/.
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Neither of these systems was designed to address the case of a single application processing many types
of information on behalf of one user. For instance, a modern web browser must parse HTML, scripting
languages, images and video from many untrusted sources, but also has full access to the user’s home
directory (this privilege is known as ambient authority).

In order to protect user data from malicious JavaScript, Flash, etc., the Chromium web browser is de-
composed into several OS processes. Some of these processes handle content from untrusted sources, but
their access to user data is restricted (the process is sandboxed). The DAC and MAC mechanisms used vary
from platform to platform, but all of them require a significant amount of programmer effort (from hundreds
of lines of code or policy to, in one case, 22,000 lines of C++) and, sometimes, UNIX root privilege, yet all
are vulnerable to simple attacks (see Section 5).

We have modified several applications, including base FreeBSD utilities and Chromium, to use Cap-
sicum primitives. No special privileges are required, and code changes are minimal: the tcpdump utility,
which has been plagued with security vulnerabilities in the past, can be sandboxed with Capsicum in around
ten lines of code, and Chromium can have OS-supported sandboxing in just 100 lines.

In addition to being more secure and easier to use than other sandboxing techniques, Capsicum is highly
performant: unlike pure capability systems where system calls necessarily employ message passing, Cap-
sicum’s capability-aware system calls are just a few percent slower than their UNIX counterparts, and the
gzip utility incurs a constant-time penalty of 2.4 ms for the security of a Capsicum sandbox (see Section 6).

2 Capsicum design

Capsicum is designed to blend capabilities with UNIX. This approach achieves many of the benefits of least-
privilege operation, while preserving existing UNIX APIs and performance, presenting application authors
with a viable adoption path for capability-oriented software architecture.

UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes

Figure 1: Capsicum helps applications self-compartmentalise.

Capsicum extends, rather than replaces, standard UNIX APIs by adding kernel-level primitives (a sand-
boxed capability mode, capabilities and others) and userspace support code (libcapsicum and a capability-
aware run-time linker). Together, these extensions support application compartmentalisation, the decom-
position of monolithic application code into components that will run in independent sandboxes to form
logical applications, as shown in Figure 1.

Capsicum requires application modification to exploit new security functionality, but this may be done
gradually, rather than requiring a wholesale conversion to a pure capability model. Developers can select the
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changes that maximize positive security impact while minimizing unacceptable performance costs; where
Capsicum replaces existing sandbox technology, a performance improvement may even be seen.

This model required a number of pragmatic design choices, not least the decision to eschew micro-
kernel architecture and migration to pure message-passing. While applications may adopt a message-passing
approach, and indeed will need to do so to fully utilize the Capsicum architecture, we provide “fast paths” in
the form of direct system call manipulation of kernel objects through delegated file descriptors. This allows
native UNIX performance for file system I/O, network access, and other critical operations, while leaving
the door open to techniques such as message-passing system calls for cases where that proves desirable.

2.1 Capability mode

Capability mode is a process credential flag set by a new system call, cap enter; once set, the flag is
inherited by all descendent processes, and cannot be cleared. Processes in capability mode are denied
access to global namespaces such as the filesystem and PID namespaces (see Figure 2).2

Namespace Description
Process ID (PID) UNIX processes are identified by unique IDs. PIDs are returned by fork

and used for signal delivery, debugging, monitoring, and status collection.
File paths UNIX files exist in a global, hierarchical namespace, which is protected by

discretionary and mandatory access control.
NFS file handles The NFS client and server identify files and directories on the wire using

a flat, global file handle namespace. They are also exposed to processes to
support the lock manager daemon and optimise local file access.

File system ID File system IDs supplement paths to mount points, and are used for forceable
unmount when there is no valid path to the mount point.

Protocol addresses Protocol families use socket addresses to name local and foreign endpoints.
These exist in global namespaces, such as IPv4 addresses and ports, or the
file system namespace for local domain sockets.

Sysctl MIB The sysctl management interface uses numbered and named entries, used
to get or set system information, such as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and shared memory segments
exist in a flat, global integer namespace.

POSIX IPC POSIX defines similar semaphore, message queue, and shared memory
APIs, with an undefined namespaces: on some systems, these are mapped
into the file system; on others they are simply a flat global namespaces.

System clocks UNIX systems provide multiple interfaces for querying and manipulating
one or more system clocks or timers.

Jails The management namespace for FreeBSD-based virtualised environments.
CPU sets A global namespace for affinity policies assigned to processes and threads.

Figure 2: Global namespaces in the FreeBSD operating kernel

Access to system calls in capability mode is also restricted: some system calls are unavailable (those
which require global namespace access), while others are constrained. For instance, sysctl can be used to

2In addition to these namespaces, there are several system management interfaces that must be protected to maintain UNIX
process isolation. These interfaces include /dev device nodes that allow physical memory or PCI bus access, some ioctl
operations on sockets, and management interfaces such as reboot and kldload, which loads kernel modules.
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query process-local information such as address space layout, but also to monitor a system’s network con-
nections. We have constrained sysctl by explicitly marking ≈30 of 3000 that do not violate containment.

The system calls which require constraints are sysctl, shm open, which is permitted to create anony-
mous memory objects, but not named ones, and the openat family of system calls. These calls already
accept a file descriptor argument as the directory to perform the open, rename, etc. relative to; in capability
mode, they are constrained so that they can only operate on objects “under” this descriptor3.

2.2 Capabilities

The most critical decision in adding capability support to a UNIX system is the relationship between capabil-
ities and file descriptors. Some systems, such as Mach/BSD, have maintained entirely independent notions:
Mac OS X provides each task with both indexed capabilities (ports) and file descriptors. Separating these
concerns is logical, as Mach ports have different semantics from file descriptors; however, confusing results
can arise for application developers dealing with both Mach and BSD APIs, and we wanted to reuse existing
APIs as much as possible. As a result, we chose to extend the file descriptor abstraction, and introduce a
new file descriptor type, the capability, to wrap and protect raw UNIX file descriptors.

File descriptors already have some properties of capabilities: they are unforgeable tokens of authority,
and can be inherited by a child process or passed between processes that share an IPC channel. Unlike “pure”
capabilities, however, they confer very broad rights: even if a file descriptor is read-only, operations on meta-
data such as fchmod are permitted. In the Capsicum model, we restrict these operations by wrapping the
descriptor in a capability and permitting only authorized operations via the capability, as shown in Figure 3.
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Process file 
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Figure 3: Capabilities “wrap” normal file descriptors, masking the set of permitted methods.

The cap new system call creates a new capability given an existing file descriptor and a mask of rights;
if the original descriptor is a capability, the requested rights must be a subset of the original rights. A capa-
bility’s rights are checked by the kernel code converting a file descriptor number to an in-kernel reference,
giving us confidence that no paths exist to access file descriptors without capability checks.

There are roughly 60 capability rights, striking a balance between message-passing (two rights: send
and receive), and MAC systems (hundreds of access control checks). We assigned rights based on logical
methods: system calls implementing semantically identical operations require the same rights, and some
calls may require multiple rights. For example, pread (read to memory) and preadv (read to a memory
vector) both require CAP READ, and read (read bytes using the file offset) requires CAP READ | CAP SEEK.

Capabilities can wrap any type of file descriptor including directories, which can then be passed as argu-
ments to openat and related system calls. The *at system calls begin relative lookups for file operations

3For instance, if file descriptor 4 is a capability allowing access to /lib, then openat(4, "libc.so.7") will succeed,
whereas openat(4, "../etc/passwd") and openat(4, "/etc/passwd") will not.
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with the directory descriptor; we disallow some cases when a capability is passed: absolute paths, paths
containing “..” components, and AT CWD, which requests a lookup relative to the current working directory.
With these constraints, directory capabilities delegate file system namespace subsets, as shown in Figure 4.
This allows sandboxed processes to access multiple files in a directory (such as the library path) without the
performance overhead or complexity of proxying each file open via IPC to a process with ambient authority.

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

Figure 4: Portions of the global filesystem namespace can be delegated to sandboxed processes.

The “..” restriction is a conservative design, and prevents a subtle problem similar to historic chroot
vulnerabilities. A single directory capability that only enforces containment by preventing “..” lookup on
the root of a delegated subtree operates correctly; however, two colluding sandboxes (or a single sandbox
with two capabilities) can race to actively arrange a tree so that this check always passes, allowing escape
from the delegated subset. It is possible to imagine less conservative solutions, such as preventing upward
renames that could introduce exploitable cycles during lookup, or additional synchronisation; these strike
us as more risky tactics, and we have selected the simplest solution, at some cost to flexibility.

2.3 Run-time environment

Even with Capsicum’s kernel primitives, creating sandboxes without leaking undesired resources via file
descriptors, memory mappings, or memory contents is difficult. libcapsicum therefore provides an
API for starting scrubbed sandbox processes, and explicit delegation APIs to assign rights to sandboxes.
libcapsicum cuts off the sandbox process’ access to global namespaces via cap enter, but also closes
file descriptors not positively identified for delegation to the sandbox and flushes the address space. Sand-
box creation returns a UNIX domain socket for applications to use for inter-process communication (IPC)
between host and sandbox; this socket can be used to grant additional rights to the sandbox as required.
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3 Capsicum implementation

3.1 Kernel changes

Many system call and capability constraints are applied at the point of implementation of kernel services,
rather than by simply filtering system calls. The advantage of this approach is that a single constraint, such as
the blocking of access to the global file system namespace, can be implemented in one place, namei, which
is responsible for processing all path lookups. For example, one might not have expected the fexecve

call to cause global namespace access, since it takes a file descriptor as its argument rather than a path for
the binary to execute. However, the file passed by file descriptor specifies its run-time linker via a path
embedded in the binary, which the kernel will then open and execute.

Similarly, capability rights are checked by the kernel function fget, which converts a numeric descrip-
tor into a struct file reference. We have added a new rights argument, allowing callers to declare
what capability rights are required to perform the current operation. If the file descriptor is a raw UNIX de-
scriptor, or wrapped by a capability with sufficient rights, the operation succeeds. Otherwise, ENOTCAPABLE
is returned. Changing the signature of fget allows us to use the compiler to detect missed code paths, pro-
viding greater assurance that all cases have been handled.

One less trivial global namespace to handle is the process ID (PID) namespace, which is used for process
creation, signaling, debugging and exit status, critical operations for a logical application. Another problem
for logical applications is that libraries cannot create and manage worker processes without interfering with
process management in the application itself—unexpected SIGCHLD signals are delivered to the application,
and unexpected process IDs are returned by wait.

Process descriptors address these problems in a manner similar to Mach task ports: creating a process
with pdfork returns a file descriptor that can be used for process management tasks, such as monitoring
for exit via poll. pdfork suppresses generation of SIGCHLD on process termination, and prevents its PID
being returned by wait. This leads to a user experience consistent with that of monolithic processes: when
a user hits Ctrl-C, or the application segfaults, all sub-components of the logical application terminate4.

3.2 The Capsicum run-time environment

Removing access to global namespaces forces fundamental changes to the UNIX run-time environment.
Even the most basic UNIX operations for starting processes and running programs have been eliminated:
fork and exec both rely on global namespaces. Responsibility for launching a sandbox is shared. libcapsicum
is invoked by the application, and responsible for forking a new process, gathering together delegated capa-
bilities from both the application and run-time linker, and directly executing the run-time linker, passing the
sandbox binary via a capability. By directly running the run-time linker, we avoid the need for the kernel to
use a hard-code path to the run-time linker in the ELF header, which is not permitted in capability mode.

Once rtld-elf-cap is executing in the new process, it loads and links the sandbox binary using
shared libraries loaded from library directory capabilities set up by libcapsicum. Once the sandbox is in
execution, started via the cap main entry point rather than the traditional main entry point, libcapsicum
will respond to application requests for delegated capabilities. Using a separate entry point makes it easier
to use a single binary to hold both unsandboxed code and code intended to run in capability mode, rather
than each application establishing its own conventions for command line arguments, etc, to specify these
two, typically quite different, code paths. This process is illustrated in greater detail in Figure 5.

Once in execution, the application is linked against normal C libraries and has access to much of the
traditional C run-time, subject to the availability of system calls that the run-time depends on. An IPC

4This termination will currently not occur if reference cycles exist among processes, suggesting the need for a “logical applica-
tion” primitive—see Section 7.
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             binary fd
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       library fds

Figure 5: Process and components involved in creating a new libcapsicum sandbox

channel, in the form of a UNIX domain socket, is set up automatically by libcapsicum to carry RPCs and
capabilities delegated after the sandbox starts. Capsicum does not provide or enforce the use of a specific
Interface Description Language (IDL), as existing compartmentalized or privilege-separated applications
have their own, often hand-coded, RPC marshaling already. Here, our design choice differs from historic
capability systems, which universally have selected a specific IDL, such as the Mach Interface Generator
(MIG) on Mach.

libcapsicum’s fdlist abstraction allows complex, layered applications to declare capabilities to be
passed into sandboxes, in effect providing a sandbox template mechanism. This avoids encoding specific
file descriptor numbers into the ABI between applications and their sandbox components, a technique we
found used in Chromium that is likely to lead to programmer error. Of particular concern is hard-coding of
file descriptor numbers for specific purposes, when those descriptor numbers may already have been used by
other layers of the system. Instead, application and library components declare process-local names bound
to file descriptor numbers before creating the sandbox, and then matched components in the sandbox query
those names to retrieve (possibly renumbered) file descriptors.

4 Adapting applications to use Capsicum

Adapting applications for use with sandboxing is a non-trivial task, regardless of the framework, as it re-
quires analyzing programs to determine their resource dependencies, and adopting a distributed system
programming style in which components must use message passing or explicit shared memory rather than
relying on a common address space for communication. In Capsicum, programmers have a choice of work-
ing directly with capability mode or using libcapsicum to create and manage sandboxes, and each model
has its merits and costs in terms of development complexity, performance impact, and security:

1. Modify applications to use cap enter directly in order to convert an existing process with ambient
privilege into a capability mode process inheriting only specific capabilities via file descriptors and
virtual memory mappings. This works well for applications with a simple structure like: open all
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resources, then process them in an I/O loop, such as programs operating in a UNIX pipeline, or
interacting with the network for the purposes of a single connection. The performance overhead
will typically be extremely low, as changes consist of encapsulating broad file descriptor rights into
capabilities, followed by entering capability mode. We illustrate this approach with tcpdump.

2. Use cap enter to reinforce the sandboxes of applications with existing privilege separation or com-
partmentalisation. These applications have a more complex structure, but are already aware that some
access limitations are in place, so have already been designed with file descriptor passing in mind. Re-
fining these sandboxes can significantly improve security in the event of a vulnerability, as we show
for dhclient and Chromium; the performance and complexity impact of these changes will be low
because the application already adopts a message passing approach.

3. Modify the application to use the full libcapsicum API, introducing new compartmentalisation
in the application, or reformulating existing privilege separation. This offers significantly stronger
protection, by virtue of flushing capability lists and residual memory from the host environment, but
at higher development and run-time costs. Boundaries must be identified in the application such
that not only is security improved (i.e., code processing risky data is isolated), but so that resulting
performance is sufficiently efficient. We illustrate this technique using modifications to gzip.

Compartmentalized application development is, of necessity, distributed application development, with
software components running in different processes and communicating via message passing. Distributed
debugging is an active area of research, but commodity tools are unsatisfying and difficult to use. While
we have not attempted to extend debuggers, such as gdb, to better support distributed debugging, we have
modified a number of FreeBSD tools to improve support for capability mode development, and take some
comfort in the generally synchronous nature of most compartmentalized applications.

The FreeBSD procstat command inspects kernel-related state of running processes, including file
descriptors, virtual memory mappings, and security credentials. In Capsicum, these resource lists become
capability lists, representing the only rights available to the process. We have extended these modes to
show new Capsicum-related information, such the as capability rights masks on file descriptors and a flag
in process credential listings to indicate capability mode. As a result, developers can directly inspect the
capabilities inherited or passed to sandboxes.

When adapting existing software to run in capability mode, identifying capability requirements can
be tricky; often the best technique is to discover these through dynamic analysis, identifying missing de-
pendencies by tracing real-world use. To this end, capability-related failures return a new errno value,
ENOTCAPABLE distinguishing them from other security failures, and system calls such as open are permit-
ted to enter the kernel before being blocked in namei so that paths are submitted to FreeBSD’s ktrace
facility, or utilized in DTrace scripts.

Another common compartmentalised development strategy is to allow the multi-process logical applica-
tion to be run as a single process for debugging purposes. libcapsicum provides an API to query whether
sandboxing for the current application or component is enabled by policy, making it easy to enable and
disable sandboxing for testing. As RPCs are generally synchronous, the thread stack in the sandbox process
is logically an extension of the thread stack in the host process, which makes the distributed debugging task
less fraught than it otherwise might appear.

4.1 tcpdump

tcpdump provides an excellent example of Capsicum primitives offering immediate wins through straight-
forward changes, but also the subtleties that arise when compartmentalising software not written with that
goal in mind. tcpdump has a simple model: compile a pattern into a BPF filter, configure a BPF device as an
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input source, and loop writing captured packets rendered as text. This structure lends itself to sandboxing:
resources are acquired early with ambient privilege, and later processing depends only on held capabilities,
so can execute in capability mode. A two-line change implements this conversion:

+ if (cap_enter() < 0)
+ error("cap_enter: %s", pcap_strerror(errno));

status = pcap_loop(pd, cnt, callback, pcap_userdata);

This significantly improves security, as historically fragile packet-parsing code now executes with reduced
privilege. However, further analysis is required to confirm that only desired capabilities are held exposed:

% procstat -fC 19184
PID COMM FD T FLAGS CAPABILITIES PRO NAME

19184 tcpdump cwd v --------- - - /usr/home/robert
19184 tcpdump root v --------- - - /
19184 tcpdump 0 v rw------- - - /dev/pts/2
19184 tcpdump 1 v rw------- - - /dev/pts/2
19184 tcpdump 2 v rw------- - - /dev/pts/2
19184 tcpdump 3 v rw------- - - /dev/bpf

While there are few surprises, unconstrained access to a user’s terminal connotes significant rights, such as
reading key presses. This refinement prevents reading stdin, while still allowing normal output:

+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)
+ error("lc_limitfd: unable to limit STDIN_FILENO");
+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDOUT_FILENO");
+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+ error("lc_limitfd: unable to limit STDERR_FILENO");

ktrace reveals another problem, libc DNS resolver code depends on file system access, but not until after
cap enter, leading to denied access and lost functionality:

19318 tcpdump CALL open(0x800caebc3,O_RDONLY,<unused>0x1b6)
19318 tcpdump NAMI "/etc/resolv.conf"
19318 tcpdump RET open -1 errno 45 Operation not supported

This illustrates a subtle problem with sandboxing: highly layered software designs often rely on on-
demand initialisation, lowering or avoiding startup costs, and those initialisation points are scattered across
many components in system and application code. This is corrected by switching to the lightweight resolver,
which sends DNS queries to a local daemon that performs actual resolution, addressing both file system
and network address namespace concerns. Despite these limitations, this example of capability mode and
capability APIs shows that even minor code changes can lead to dramatic security improvements, especially
for a critical application with a long history of security problems.

4.2 dhclient

FreeBSD ships the OpenBSD DHCP client, which includes privilege separation support. On BSD systems,
the DHCP client must run with privilege to open BPF descriptors, create raw sockets, and configure net-
work interfaces. This creates an appealing target for attackers: network code exposed to a complex packet
format while running with root privilege. The DHCP client is afforded only weak tools to constrain opera-
tion: it starts as the root user, opens the resources its unprivileged component will require (raw socket, BPF
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descriptor, lease configuration file), forks a process to continue privileged activities (such as network config-
uration), and then confines the parent process using chroot and the setuid family of system calls. Despite
hardening of the BPF ioctl interface to prevent reattachment to another interface or reprogramming the
filter, this confinement is weak; chroot limits only file system access, and switching credentials offers poor
protection against weak or incorrectly configured DAC protections on the sysctl and PID namespaces.

Through a similar two-line change to that in tcpdump, we can reinforce (or, through a larger change,
replace) existing sandboxing with capability mode. This instantly denies access to the previously-exposed
global namespaces, while permitting continued use of held file descriptors. As there has been no explicit
flush of address space, memory, or file descriptors, it is important to analyze what capabilities have been
leaked into the sandbox, the key limitation to this approach. We use procstat -fC to analyze the file
descriptor array:

PID COMM FD T FLAGS CAPABILITIES PRO NAME
18988 dhclient cwd v --------- - - /var/empty
18988 dhclient root v --------- - - /var/empty
18988 dhclient jail v --------- - - /var/empty
18988 dhclient 0 v rw------- - - /dev/null
18988 dhclient 1 v rw------- - - /dev/null
18988 dhclient 2 v rw------- - - /dev/null
18988 dhclient 3 s rw------- - UDD /var/run/logpriv
18988 dhclient 5 s rw------- - ?
18988 dhclient 6 p rw------- - - -
18988 dhclient 7 v -w------- - - /var/db/dhclient.leas
18988 dhclient 8 v rw------- - - /dev/bpf
18988 dhclient 9 s rw------- - IP? 0.0.0.0:0 0.0.0.0:0

The existing dhclient code has done an effective job at eliminating directory access, but continues to
allow the sandbox direct rights to submit arbitrary log messages to syslogd, modify the lease database, and
a raw socket on which a broad variety of operations could be performed. The last of these is of particular
interest due to ioctl; although dhclient has given up system privilege, many network socket ioctls are
defined, allowing access to system information. These are blocked in Capsicum’s capability mode.

It is easy to imagine extending existing privilege separation in dhclient to use the Capsicum capability
facility to further constrain file descriptors inherited in the sandbox environment, for example, by limiting
use of the IP raw socket to send and recv, disallowing ioctl. Use of the libcapsicum API would
require more significant code changes, but as dhclient already adopts a message passing structure to
communicate with its components, it would be relatively straight forward, offering better protection against
capability and memory leakage. Further migration to message passing would prevent arbitrary log messages
or direct unformatted writes to dhclient.leases.em by constraining syntax.

4.3 gzip

The gzip command line tool presents an interesting target for conversion for several reasons: it implements
risky compression/decompression routines that have suffered past vulnerabilities, it contains no existing
compartmentalisation, and it executes with ambient user (rather than system) privileges. Historic UNIX
sandboxing techniques, such as chroot and ephemeral UIDs are a poor match because of their privilege
requirement, but also because (unlike with dhclient), there’s no expectation that a single sandbox exist—
many gzip sessions can run independently for many different users, and there can be no assumption that
placing them in the same sandbox provides the desired security properties.

The first step is to identify natural fault lines in the application: for example, code that requires ambient
privilege (due to opening files or building network connections), and code that performs more risky activi-
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ties, such as parsing data and managing buffers. In gzip, this split becomes immediately obvious: the main
run loop of the application processes command line arguments, identifies streams and objects to perform
processing on and send results to, and then feeds them to compress routines that accept input and output file
descriptors. This suggests a natural partitioning in which pairs of descriptors are submitted to a sandbox for
processing after the ambient privilege process opens them and performs initial header handling.

We modified gzip to use libcapsicum, intercepting three core functions and optionally proxying
them to a sandbox based on policy queried from libcapsicum using three RPCs:

Function RPC Description
gz compress PROXIED GZ COMPRESS zlib-based compression
gz uncompress PROXIED GZ UNCOMPRESS zlib-based decompression
unbzip2 PROXIED UNBZIP2 bzip2-based decompression

Each RPC passes two file descriptors, one for input and one for output, to the sandbox, as well as miscel-
laneous fields such as returned size, original filename, and modification time. By limiting capability rights
on the passed descriptors to a combination of CAP READ, CAP WRITE, and CAP SEEK, a tightly constrained
sandbox is created, preventing access to any other files in the file system, or other globally named resources,
in the event a vulnerability in compression code is exploited.

These changes add 409 lines (about 16%) to the size of the gzip source code, largely to marshal and
un-marshal RPCs. In adapting gzip, we were initially surprised to see a performance improvement when
sandboxed; this unlikely result revealed that we had failed to propagate the compression level argument into
the sandbox, leading to the incorrect algorithm selection. This oversight occurred because this argument was
passed via a global variable rather than an explicit function arguments. This serves as reminder that code
not originally written for decomposition requires careful analysis, and oversights such as this one will not be
caught by the compiler: the variable was correctly defined in both processes, but its value never propagated.

4.4 Chromium

Google’s Chromium web browser uses a multi-process architecture similar to a Capsicum logical application
to improve robustness [18]. In this model, each tab is associated with a renderer process that performs the
risky and complex task of rendering page contents through page parsing, image rendering, and JavaScript
execution. More recent work on Chromium has integrated sandboxing techniques to improve resilience to
malicious attacks rather than occasional instability; this has been done in various ways on different supported
operating systems, as we will discuss in detail in Section 5.

The FreeBSD port of Chromium did not include sandboxing, and the sandboxing facilities provided as
part of the similar Linux and Mac OS X ports bear little resemblance to Capsicum. However, the existing
compartmentalisation meant that several critical tasks had already been performed:

• Chromium assumes that processes can be converted into sandboxes that limit new object access

• Certain services were already forwarded to renderers, such as font loading

• Shared memory is used to transfer output between renderers and the web browser

• Chromium contains RPC marshaling and passing code in all the required places

The only significant Capsicum change to the FreeBSD port of Chromium was to switch from System
V shared memory (permitted in Linux sandboxes) to the POSIX shared memory code used in the Mac OS
X port (capability-oriented and permitted in Capsicum’s capability mode). Approximately 100 additional
lines of code were required to introduce calls to lc limitfd to limit access to file descriptors inherited by
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sandbox processes, such as Chromium data pak files, stdio, and /dev/random, and to call cap enter.
This compares favourably with the 4.3 million lines of code in the Chromium source tree, but would not
have been possible without existing sandbox support in the design. We believe it should be possible, without
a significantly higher number of lines of code, to explore using the libcapsicum API directly.

5 A comparison of sandboxing technologies

We now compare Capsicum’s compartmentalisation model to existing sandbox mechanisms. Chromium
provides an ideal context for this comparison, as it takes advantage of six sandboxing technologies (see
Figure 6). Of these, the two are DAC-based, two MAC-based and two capability-based.

Operating system Model Line count Description
Windows ACLs 22,350 Windows ACLs and SIDs
Linux chroot 605 setuid root helper sandboxes renderer
Mac OS X Seatbelt 560 Path-based MAC sandbox
Linux SELinux 200 Restricted sandbox type enforcement domain
Linux seccomp 11,301 seccomp and userspace syscall wrapper
FreeBSD Capsicum 100 Capsicum sandboxing using cap enter

Figure 6: Sandboxing mechanisms employed by Chromium.

5.1 Windows ACLs and SIDs

On Windows, Chromium uses a DAC-based mechanism to create sandboxes [18]. The unsuitability of
inter-user protections for the intra-user context is demonstrated well: the model is both incomplete and
unwieldy. Chromium uses Access Control Lists (ACLs) and Security Identifiers (SIDs) to sandbox renderers
on Windows. Chromium creates a modified, reduced privilege, SID, which does not appear in the ACL of
any object in the system, in effect running the renderer as an anonymous “nobody” user5.

However, objects which do not support ACLs do not restrict access by sandboxes. Additional precau-
tions such as an alternate, invisible desktop isolate sandboxes from the user’s GUI environment, but other
ACL-free objects are unprotected. Such objects include FAT filesystems on USB sticks and TCP/IP sockets:
a sandbox cannot read user files directly, but it may be able to communicate with any server on the Internet! 6

Many legitimate system calls are also denied to the sandboxed process. These system calls must be
forwarded by the sandbox module to a trusted process, which is responsible for filtering and serving them.
This forwarding comprises most of the 22,000 lines of code in the Windows sandbox module.

5.2 Linux chroot

Chromium’s suid sandbox mechanism on Linux also attempts to create a privilege-free sandbox using
historic OS access control; however, the result is similarly porous, with the added risk that it requires system
privilege to create the sandbox.

In this model, access to the filesystem is limited to a directory via chroot: the directory becomes the
sandbox’s virtual root directory. Access to other namespaces, including System V shared memory (where

5The Chromium Windows sandbox documentation is quick to point out that this is not strictly the case: the nature of the SID is
such that auditable events are still attributed to the authenticated user.

6USB sticks present a significant concern, as they are frequently used for file sharing, backup, and protection from malware.
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the user’s X window server can be contacted) and network access, is unconstrained, and great care must be
taken to avoid leaking resources when entering the sandbox.

Furthermore, initiating chroot requires a setuid binary: a program that runs with full system priv-
ilege. While comparable to Capsicum’s capability mode in terms of intent, this model suffers significant
sandboxing weakness (for example, permitting full access to the System V shared memory as well as all
operations on passed file descriptors), and comes at the cost of an additional setuid-root binary that runs
with system privilege.

5.3 MAC OS X Seatbelt

On Mac OS X, Chromium uses a MAC-based framework for creating sandboxes. This allows Chromium to
create a stronger sandbox than is possible with DAC, but the rights that are granted to render processes are
still very broad, and security policy must be specified separately from the code that relies on it.

The Mac OS X Seatbelt sandboxing system allows processes to be constrained according to a LISP-
based policy language [1]. It uses MAC Framework to check application activities against this policy;
Chromium uses three policies for different components, allowing access to filesystem elements such as font
directories while restricting access to the global namespace.

Like other techniques, resources are acquired before constraints are imposed, so care must be taken
to avoid leaking resources into the sandbox. Fine-grained filesystem constraints are possible, but other
namespaces such as the POSIX shared memory namespace, are an all-or-nothing affair.

The Seatbelt-based sandbox model is less verbose than other approaches, but like all MAC systems,
security policy must be expressed separately from code. This can lead to inconsistencies and vulnerabilities.

5.4 SELinux

Chromium’s MAC approach on Linux uses SELinux via a Type Enforcement policy [12]. SELinux can be
used for very fine-grained sandboxing, but in practice, broad rights are conferred because fine-grained Type
Enforcement policies are difficult to write and maintain. The requirement that an administrator be involved
in defining new policy and applying new types to the file system is a significant inflexibility: application
policies cannot adapt dynamically, as system privilege is required to reformulate policy and relabel objects.

The Fedora reference policy for Chromium creates a SELinux dynamic domain, chrome sandbox t,
which is shared by all sandboxes, risking potential interference between sandboxes. This domain is assigned
broad rights, such as the ability to read all files in /etc and access to the terminal device. These broad
policies are easier to craft than fine-grained ones, reducing the impact of the dual-coding problem, but they
are also less effective.

5.5 Linux seccomp

Linux provides an optionally-compiled capability mode-like facility called seccomp. Processes in seccomp
mode are denied access to all system calls except read, write, and exit. At face value, this seems
promising, but as OS infrastructure to support applications using seccomp is minimal, application writers
must go to significant effort to use it.

In order to allow other system calls, Chromium constructs a process in which one thread executes in
seccomp mode, and another “trusted” thread that shares the same address space but has normal system
call access. Chromium rewrites glibc and other library system call vectors to pass system calls via shared
memory to the trusted thread, where they are filtered in order to prevent access to inappropriate shared
memory objects, opening files for write, etc. However, this default policy is, itself, quite weak, as read of
any file system object is permitted.
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The Chromium seccomp sandbox includes over a thousand lines of hand-crafted assembly code to set
up the sandbox, implement system call forwarding, a trusted thread, and a basic security policy. Such code is
a risky proposition: difficult to write and maintain, with bugs likely leading to lead to security vulnerabilities.

6 Performance evaluation

Typical operating system security benchmarking is targeted at illustrating zero or near-zero overhead in
the hopes of selling general applicability of the resulting technology. Our thrust is slightly different: we
know that application authors who have already begun to adopt compartmentalization are willing to accept
significant overheads for mixed security return. Our goal is therefore to accomplish comparable performance
with significantly improved security.

We evaluate performance in two ways: first, a set of micro-benchmarks establishing the overhead intro-
duced by Capsicum’s capability mode and capability primitives. As we are unable to measure any noticeable
performance change in our adapted UNIX applications (tcpdump and dhclient) due to the extremely low
cost of entering capability mode from an existing process, we then turn our attention to the performance of
our libcapsicum-enhanced gzip.

All performance measurements have been performed on an 8-core Intel Xeon E5320 system running at
1.86GHz with 4GB of RAM, running either an unmodified FreeBSD 8-STABLE distribution synchronized
to revision 201781 (2010-01-08) from the FreeBSD Subversion repository, or a synchronised 8-STABLE
distribution with our capability enhancements.

6.1 System call performance

First, we consider system call performance through micro-benchmarking. Figure 7 summarizes these results
for various system calls on unmodified FreeBSD, and related capability operations in Capsicum. Figure 6.2
contains a table of benchmark timings.
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Figure 7: Capsicum system call performance compared to standard UNIX calls.

Our first concern is with the performance of capability creation, as compared to raw object creation and
the closest UNIX operation, dup. We observe moderate, but expected, performance overheads for capability
wrapping of existing file descriptors: the cap new syscall is 50.7%±0.08% slower than dup, or 539±0.8ns
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slower in absolute terms7.
Next, we consider the overhead of capability “unwrapping”, which occurs on every descriptor opera-

tion. We compare the cost of some simple operations on raw file descriptors, to the same operations on a
capability-wrapped version of the same file descriptor: writing a single byte to /dev/null, reading a single
byte from /dev/zero; reading 10000 bytes from /dev/zero; and performing a fstat call on a shared
memory file descriptor. In all cases we observe a small overhead of about 0.06µs when operating on the
capability-wrapped file descriptor. This has the largest relative performance impact on fstat (since it does
not perform I/O, simply inspecting descriptor state, it should thus experience the highest overhead of any
system call which requires unwrapping). Even in this case the overhead is relatively low: 10.2%± 0.5%.

6.2 Sandbox creation

Capsicum supports ways to create a sandbox: directly invoking cap enter to convert an existing process
into a sandbox, inheriting all current capability lists and memory contents, and the libcapsicum sandbox
API, which creates a new process with a flushed capability list.

cap enter performs similarly to chroot, used by many existing compartmentalized applications to re-
strict file system access. However, cap enter out-performs setuid as it does not need to modify resource
limits. As most sandboxes chroot and set the UID, entering a capability mode sandbox is roughly twice
as fast as a traditional UNIX sandbox. This suggests that the overhead of adding capability mode support to
an application with existing compartmentalisation will negligible, and replacing existing sandboxing with
cap enter may even marginally improve performance.

Creating a new sandbox process and replacing its address space using execve, however, is an expensive
operation. Micro-benchmarks indicate that the cost of fork is three orders of magnitude more expensive
than manipulating the process credential, and further adding execve or even a single instance of message
passing increases that cost further8. Creating, exchanging an RPC with, and destroying a single sandbox (the
“sandbox” label in Figure 7(b)) has a cost of about 1.5ms, significantly higher than its subset components.

6.3 gzip performance

While the performance cost of cap enter is negligible compared to other activity, the cost of multi-process
sandbox creation (already taken by dhclient and Chromium due to existing sandboxing) is significant.

To measure the cost of process sandbox creation, we timed gzip compressing files of various sizes.
Since the additional overheads of sandbox creation are purely at startup, we expect to see a constant-time
overhead to the capability-enhanced version of gzip, with identical linear scaling of compression perfor-
mance with input file size. Files were pre-generated on a memory disk by reading from a constant-entropy
data source9 (the use of a data source with approximately constant entropy per bit minimizes variation in
overall gzip performance due to changes in the compressor performance as files of different sizes are sam-
pled). The list of files was piped to xargs -n 1 gzip -c > /dev/null, which sequentially invokes a
new gzip compression process with a single file argument, and discards the compressed output. Sufficiently
many input files were generated to provide at least 10 seconds of repeated gzip invocations, and the overall
run-time measured. Since the files were staged on a memory disk, I/O overhead was minimized. The use of

7The micro-benchmarks were run by performing the target operation in a tight loop over an interval of at least 10 seconds,
repeating for 10 iterations. Differences were computed using Student’s t-test at 95% confidence.

8We also found that additional dynamically linked library dependencies (libcapsicum and its system library dependency
libsbuf) imposed an additional 9% cost to the fork syscall, presumably due to the additional virtual memory mappings being
copied to the child process. This overhead was not present on vfork which we plan to use in libcapsicum in the future.

9/dev/zero for perfectly compressible data, /dev/random for perfectly incompressible data, and base 64-encoded
/dev/random for a moderate high entropy data source, with about 24% compression after gzipping.
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Benchmark Time/operation Difference % difference
dup 1.061± 0.000µs - -
cap new 1.600± 0.001µs 0.539± 0.001µs 50.7%± 0.08%
shmfd 2.385± 0.000µs - -
cap new shmfd 4.159± 0.007µs 1.77± 0.004µs 74.4%± 0.181%
fstat shmfd 0.532± 0.001µs - -
fstat cap shmfd 0.586± 0.004µs 0.054± 0.003µs 10.2%± 0.506%
read 1 0.640± 0.000µs - -
cap read 1 0.697± 0.001µs 0.057± 0.001µs 8.93%± 0.143%
read 10000 1.534± 0.000µs - -
cap read 10000 1.601± 0.003µs 0.067± 0.002µs 4.40%± 0.139%
write 0.576± 0.000µs - -
cap write 0.634± 0.002µs 0.058± 0.001µs 10.0%± 0.241%
cap enter 1.220± 0.000µs - -
getuid 0.353± 0.001µs −0.867± 0.001µs −71.0%± 0.067%
chroot 1.214± 0.000µs −0.006± 0.000µs −0.458%± 0.023%
setuid 1.390± 0.001µs 0.170± 0.001µs 14.0%± 0.054%
fork 268.934± 0.319µs - -
vfork 44.548± 0.067µs −224.3± 0.217µs −83.4%± 0.081%
pdfork 259.359± 0.118µs −9.58± 0.324µs −3.56%± 0.120%
pingpong 309.387± 1.588µs 40.5± 1.08µs 15.0%± 0.400%
fork exec 811.993± 2.849µs - -
vfork exec 585.830± 1.635µs −226.2± 2.183µs −27.9%± 0.269%
pdfork exec 862.823± 0.554µs 50.8± 2.83µs 6.26%± 0.348%
sandbox 1509.258± 3.016µs 697.3± 2.78µs 85.9%± 0.339%

Figure 8: Micro-benchmark results for various system calls and functions, grouped by category.

xargs to repeatedly invoke gzip provides a tight loop that minimizes the time between xargs’ successive
vfork and exec calls of gzip itself. Each measurement was repeated 5 times and averaged.

Benchmarking gzip shows high initial overhead, when used to compress single-byte files, but also
that the approach in which file descriptors are wrapped in capabilities and delegated rather than using pure
message passing, leads to asymptotically identical behavior as file size increases and run-time cost are dom-
inated by compression workload, which is unaffected by Capsicum. Specifically, we find that the overhead
of launching a sandboxed gzip is 2.37±0.01 ms, independent of the type of compression stream. For many
workloads, this one-off performance cost is negligible, or can be amortized by passing multiple files to the
same gzip invocation.

7 Future work

Capsicum provides an effective platform for capability work on UNIX platforms. However, both further
research and development are required to bring this project to fruition.

We believe further refinement of the Capsicum primitives would be useful. Performance could be im-
proved for sandbox creation, perhaps employing an Capsicum-centric version of the S-thread primitive
proposed by Bittau. Further, a “logical application” construct might improve termination properties.

Another area for research is in integrating user interfaces and OS security; Shapiro has proposed that
capability-centered window systems are a natural extension to capability operating systems. Improving the
mapping of application security constructs into OS sandboxes would also significantly improve the security
of Chromium, which currently does not consistently assign web security domains to sandboxes.
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Figure 9: Run time per gzip invocation against random data, with varying file sizes; performance of the
two versions of gzip come within 5% of one another at around a 512K file size for random data.

8 Related work

In 1975, Saltzer and Schroeder documented a vocabulary for operating system security based on on-going
work on MULTICS [19]. They described the concepts of capabilities and access control lists, and observed
that in practice, systems combine the two approaches in order to offer a blend of control and performance.
The last 35 years of research have explored these and other security concepts, but the themes remain topical.

8.1 Discretionary and Mandatory Access Control

The principle of discretionary access control (DAC) is that users control protections on objects they own.
While DAC remain relevant in multi-user server environments, the advent of personal computers and mobile
phones has revealed the weakness of DAC as a protection model: on a single-user computer, all the eggs are
kept in one basket. Section 5.1 demonstrates the difficulty of using DAC for malicious code containment.

Mandatory access control allows systemic enforcement of policies representing the interests of system
implementers and administrators, and fall into two general categories. Information flow policies rely on tag-
ging of subject and objects in the system with confidentiality and integrity labels—a fixed set of rules control
information leakage then controls whether reads and writes are permitted. Multi-Level Security (MLS), for-
malized as Bell-LaPadula (BLP), protects confidential information from those who are not authorized to see
it [3]. MLS’s logical dual, the Biba integrity policy, implements a similar scheme protecting the integrity of
systems against corruption, and is frequently used to protect Trusted Computing Bases (TCBs) [4].

MAC policies are robust against the problem of confused deputies, authorised individuals or processes
who can be tricked into revealing confidential information. In reality, however, these policies are highly
inflexible, requiring administrative intervention to change, which precludes the possibility of browsers cre-
ating isolated and ephemeral sandboxes “on demand” for each web site that is visited.

Type Enforcement (TE) in LOCK [20] and, later, SELinux [12] and SEBSD [25], offers greater flex-
ibility by allowing arbitrary labels to be assigned to subjects (domains) and objects (types), and a set of
rules to control their interactions. As demonstrated in Section 5.4, however, the requirement for adminis-
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trative intervention and lack of a facility for ephemeral sandboxes limits applicability for applications such
as Chromium: policy, by design, cannot be modified by users or software authors. Extreme granularity
of control is under-exploited, or perhaps even discourages, highly granular protection—for example, the
Chromium SELinux policy conflates different sandboxes allowing undesirable interference.

8.2 Capability systems, micro-kernels, and compartmentalisation

The development of capability systems has been tied to mandatory access control since inception, as capa-
bilities were considered the primitive of choice for mediation in trusted systems. Neumann et al’s Provably
Secure Operating System (PSOS) [16], and successor LOCK, propose a tight integration of the two models,
with the later refinement that MAC allows revocation of capabilities in order to enforce the *-property [20].

Despite experimental hardware such as Wilkes’ CAP computer [27], the eventual dominance of general-
purpose virtual memory as the nearest approximation of hardware capabilities lead to exploration of object-
capability systems and micro-kernel design. Systems such as Mach [2], and later L4 [11], epitomize this ap-
proach, exploring successively greater extraction of historic kernel components into separate tasks. Trusted
operating system research built on the trend through projects blending mandatory access control with micro-
kernels, such as Trusted Mach [6], DTMach [22] and FLASK [24]. Micro-kernels have, however, been
largely rejected by commodity OS vendors in favour of higher-performance monolithic kernels.

Micro-kernel-centric MAC has spread, without the benefits of enforced reference monitor separation, to
commodity UNIX systems in the form of SELinux [12]. Despite a lack of deployment of capabilities, the
other key security element to micro-kernel systems, research has continued in the form of EROS [23] (now
CapROS), inspired by KEYKOS [9]. These systems, however, have not seen wide deployment.

OpenSSH privilege separation [17] and Privman [10] rekindled interest in micro-kernel-like compart-
mentalization of UNIX software on monolithic kernels, including projects such as the Chromium web
browser [18] and Capsicum’s logical applications. In fact, large application suites compare formidably with
the size and complexity of monolithic kernels: the FreeBSD kernel is composed of 3,869,000 lines of C,
whereas Chromium and WebKit come to a total of 4,136,000 lines of C++. How best to decompose mono-
lithic applications remains an open research question, but Bittau’s Wedge offers a particularly promising
avenue of research in automated identification of software boundaries through dynamic analysis [5].

Seaborn and Hand have attempted to bring stronger application compartmentalisation primitives to
UNIX through capability-centric Plash [21], and Xen-centric [15] approaches, respectively. The former,
however, is built on the same weak UNIX primitives analysed in Section 5, and the latter suffers from simi-
lar problems to seccomp, in that the run-time environment for sandboxes is functionality-poor. Garfinkel’s
Ostia [7] also considers a capability-centric approach, focusing on delegation, but remains preoccupied with
providing sandboxing as an extension, rather than a core OS facility.

A final branch of capability-centric research is capability programming languages. Java and the JVM
have offered a vision of capability-oriented programming: a language run-time in which references and byte
code verification don’t just provide implementation hiding, but also allow application structure to be mapped
directly to protection policies [8]. More specific capability-oriented efforts are E [13], the foundation for
Capdesk and the DARPA Browser [26], and Caja, a capability subset of the JavaScript language [14].

9 Conclusion

We have described Capsicum, a practical capabilities extension to the POSIX API, and a prototype based on
FreeBSD, which is planned for inclusion in FreeBSD 9.0. Our goal has been to address the needs of appli-
cation authors who are already experimenting with sandboxing, but find themselves building on sand when
it comes to effective containment techniques. We have discussed our design choices, contrasting approaches
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from research capability systems, as well as commodity access control and sandboxing technologies, but
ultimately leading to a new approach. Capsicum lends itself to adoption by blending immediate security
improvements to current applications with the long-term prospects of a more capability-oriented future. We
illustrate this through adaptations of widely-used applications, from the simple gzip to Google’s highly-
complex Chromium web browser, showing how firm OS foundations make the job of application writers
easier. Finally, security and performance analyses show that improved security is not without cost, but that
the point we have selected on a spectrum of possible designs improves on the state of the art.
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