
STAGGER: Periodicity Mining of Data Streams using Expanding Sliding
Windows

Mohamed G. Elfeky∗

Google Inc.
mgelfeky@google.com

Walid G. Aref Ahmed K. Elmagarmid
Department of Computer Sciences, Purdue University

{aref, ake}@cs.purdue.edu

Abstract

Sensor devices are becoming ubiquitous, especially in
measurement and monitoring applications. Because of the
real-time, append-only and semi-infinite natures of the gen-
erated sensor data streams, an online incremental approach
is a necessity for mining stream data types. In this paper,
we propose STAGGER: a one-pass, online and incremen-
tal algorithm for mining periodic patterns in data streams.
STAGGER does not require that the user pre-specify the
periodicity rate of the data. Instead, STAGGER discovers
the potential periodicity rates. STAGGER maintains multi-
ple expanding sliding windows staggered over the stream,
where computations are shared among the multiple over-
lapping windows. Small-length sliding windows are im-
perative for early and real-time output, yet are limited to
discover short periodicity rates. As streamed data arrives
continuously, the sliding windows expand in length in order
to cover the whole stream. Larger-length sliding windows
are able to discover longer periodicity rates. STAGGER
incrementally maintains a tree-like data structure for the
frequent periodic patterns of each discovered potential pe-
riodicity rate. In contrast to the Fourier/Wavelet-based ap-
proaches used for discovering periodicity rates, STAGGER
not only discovers a wider, more accurate set of periodici-
ties, but also discovers the periodic patterns themselves. In
fact, experimental results with real and synthetic data sets
show that STAGGER outperforms Fourier/Wavelet-based
approaches by an order of magnitude in terms of the ac-
curacy of the discovered periodicity rates. Moreover, real-
data experiments demonstrate the practicality of the discov-
ered periodic patterns.

1. Introduction

Data streams consist of continuous and time sensitive
data. Periodicity mining is a tool that helps in predicting
∗Work done while at Department of Computer Sciences, Purdue Uni-

versity

the behavior of data streams. For example, periodicity min-
ing allows a telephone company to analyze telephone call-
ing patterns and predict periods of high and low usage so
that proper planning may take place. In this paper, we ad-
dress the problem of mining such periodic patterns over
data streams. We define periodicity mining as the detec-
tion of frequent periodic patterns where the periodicity rate
(period length) is also unknown. Although one may ar-
gue that visual inspection of the time plot of the time series
may lead to the identification of potential periodicity rates,
huge amounts of data and the evolution nature of time se-
ries streams complicate such visual inspection. Moreover,
complex applications like stock market do not follow ob-
vious periodicity rates (daily or weekly). A period may
span a long rate (e.g, quarterly), which is not obvious to
observe visually. Therefore, periodicity mining comprises
mainly two steps. The first step, termedPeriodicity Detec-
tion, is to discover potential periodicity rates. The second
step, termedMining Periodic Patterns, is to detect the fre-
quent periodic patterns of each discovered periodicity rate.
While this two-step process works for traditional time se-
ries data [12, 10], it does not apply well to real-time data
streams. Data streams differ substantially from traditional
time series data. Of particular interest to data mining are
the following two differences. First, while traditional time
series assume that data elements are synchronized, and so
exact mining results can always be obtained; streams data
is often lost, stale, or omitted intentionally. Therefore, min-
ing results must be computed with incomplete information.
Second, traditional time series assume that applications re-
quire no real-time services whereas data streams are real-
time by nature, and therefore require online and incremen-
tal processing. Recently, Papadimitriou et al. [11] have ad-
dressed the problem of periodicity detection (the first step,
above) in data streams using Wavelets. In this paper, we
propose a complete solution to the periodicity mining prob-
lem in data streams, which combines both periodicity detec-
tion and mining periodic patterns in a one-pass algorithm.
Moreover, in contrast to the techniques proposed in this pa-
per, the Wavelet-based approaches are approximate. The

experiments demonstrate that the quality of the proposed
techniques are superior in terms of the accuracy of the dis-
covered periodicity rates.

In this paper, we propose to maintain multiple expand-
ing sliding windows that are staggered over the data stream.
Using a convolution-based algorithm [4, 5], a sliding win-
dow1 of lengthw can discover period lengths up tow/2.
Whereas a small window length is required for early and
real-time output, it limits the period lengths that can be dis-
covered. Therefore, we propose STAGGER, a new algo-
rithm that uses the algorithm in [4] as a building block.
STAGGER allows multiple small sliding windows to ex-
pand in length to cover the whole data stream, i.e., STAG-
GERstaggersthe stream with multiple and concurrent ex-
panding sliding windows. Computations are shared among
the multiple overlapping windows. Thus, STAGGER is
able to produce interactive output as well as to discover a
wide range of potential period lengths. Subsequently, we
maintain a max-subpattern tree [6] for each potential pe-
riod length, which discovers the periodic patterns for that
length. We propose an approximate incremental technique
for building and maintaining max-subpattern trees.

A related problem to online mining of data streams is
that of oscillating patterns. Traditional data mining tech-
niques employ a single frequency threshold value. A pat-
tern is reported as frequent only if its frequency is above
that threshold. When data arrives continuously, a pattern
may oscillate between being frequent and being infrequent.
Maintaining a data structure for frequent patterns, e.g., the
max-subpattern tree, such an oscillating pattern loses its his-
tory information every time it becomes infrequent. When it
becomes frequent again, the pattern’s history has already
gone without being stored. Losing a pattern’s history de-
teriorates the accuracy of one-pass online stream mining
algorithms. A näıve solution is to keep all patterns’ his-
tories even for those patterns that become infrequent. How-
ever, this solution requires an excessive amount of storage.
We propose a new approach, termed“hysteresis” thresh-
olding, that maintains two thresholds. A pattern is consid-
ered frequent if its frequency is above the higher threshold
value, and is considered infrequent if its frequency is be-
low the lower threshold value. The distance between the
two threshold values acts as a period of time during which
a pattern is given a chance to stabilize rather than to oscil-
late. As we demonstrate on the experimental section, the
proposed “hysteresis” thresholding approach shows signif-
icant performance improvement over that of the traditional
thresholding approach.

The contributions of this paper can be summarized as
follows:

1. We propose STAGGER, an online incremental algo-
1A window is defined in terms of number of symbols rather than a time

window

rithm that uses expanding sliding-windows in order
to discover potential periodicity rates in data streams.
STAGGER uses and shares the execution among mul-
tiple expanding sliding-windows that are staggered
over the data stream, in order to produce interactive
output. This way, STAGGER discovers a wide range
of potential periodicity rates.

2. We propose a new incremental technique for main-
taining the max-subpattern tree that is used for mining
periodic patterns in data streams. The proposed tech-
nique requires only one pass over the data stream and
no reprocessing of data that has been previously seen.

3. We propose using “hysteresis” thresholding for main-
taining the mining thresholds. This approach is very
relevant to one-pass online stream mining algorithms
and is conservative in terms of preserving the history
of candidate frequent patterns.

The rest of this paper is organized as follows. In the
remaining of this section, we introduce the notation used
throughout the paper. We outline STAGGER in Section 2.
In Section 3, we present the proposed technique for online
periodicity detection. In Section 4, we present the proposed
technique for incremental mining of periodic patterns. In
Section 5, we evaluate the performance of STAGGER, and
compare it to other approaches using both synthetic and real
data. Finally, we conclude the paper in Section 6.

1.1. Notation

A data stream of events is an infinite sequence of
timestamped events drawn from a finite set of nominal2

event types. An example is an event stream in a computer
network that monitors the various events. Letei be the event
occurring at timestampi, then the data streamS is repre-
sented asS = e0, e1, . . . , ei, Each event type can be
denoted by a symbol (e.g.,a, b, c). The set of event types
can be denotedΣ = {a, b, c, · · ·}. Thus, the data streamS
can be considered a sequence of infinite length over a finite
alphabetΣ.

A data stream may also be an infinite sequence of
timestamped values collected by a sensor measuring a spe-
cific feature. For example, the feature in a data stream for
stock prices might be the final daily stock price of a spe-
cific company. If we discretize3 the data stream feature val-
ues into nominal discrete levels and denote each level (e.g.,
high, medium, low) by a symbol (e.g.,a, b, c), then we can
use the same notation above.

2Nominal values are distinguished by name only, and do not have an
inherent order or a distance measure.

3The problem of discretizing time series into a finite alphabet is orthog-
onal to our problem and is beyond the scope of this paper. See [3, 7] for an
exhaustive overview of discretization and segmentation techniques, and [9]
for streaming implications of discretization techniques.

Time

��

3�/2

2�

�1 �2 �3

�/2

(a) A window of lengthw slidesw/2 positions

�1
3�1/2

2�1

Time �1 �3 �4

�1/2

�2 �5 �8

�2
3�2/2

2�2 �2/2

�6 �10

�3
3�3/2

2�3 �3/2

�7 �12 �15

(b) Three sliding windows of lengthsw1, w2 andw3

Figure 1. Expanding sliding windows

2. Algorithm Outline

In this section, we outline STAGGER algorithmic behav-
ior. The input is a data stream for which we output its peri-
odic patterns. We are given a periodicity threshold (or two
periodicity thresholds if the “hysteresis” thresholding ap-
proach is used). Arbitrarily, we selectm different windows
of lengthsw1 < w2 < . . . < wm. Notice thatwm can
be selected as large as the buffer size that is allocated for
buffering the data stream. STAGGER maintains an event-
based priority queue where an event is triggered by the ar-
rival of new data in the stream. The events in the priority
queue are sorted in increasing order of their timestamps.

STAGGER is outlined in the following steps:

• Initialize the priority queue by the events that corre-
spond to the arrival of a number of symbols equal to
w1, w2, . . . , wm (e.g., events at Timest1, t2, andt6 of
Figure 1(b)).

• Get the next event from the priority queue.

• If the event corresponds to considering a new window
wi (e.g., events at Timest1, t2, andt6 of Figure 1(b)),
then apply a convolution-based algorithm [4] over the
window wi (Section 3.2), sharing the results from the
previous windowwi−1 (Section 3.3.2).

• If the event corresponds to sliding the windowwi (e.g.,
events at Timest3, t5, and t10 of Figure 1(b)), then
update the results of this window (Section 3.3.1).

• Analyze the results from the previous step (Sec-
tion 3.2) to obtain potential period lengthspj , and their
corresponding maximal periodic patterns.

• For eachpj , build a max-subpattern tree [6]Rpj
us-

ing pj ’s corresponding maximal periodic pattern (Sec-
tion 4).

• Schedule the next event that corresponds to sliding
the current windowwi a number of positions equal to
wi/2, and insert that event in the priority queue (e.g.,
in Figure 1(b), the event at Timet5 schedules the event
at Timet8).

3. Periodicity Detection

Periodicity detection, in our terms, stands for discov-
ering potential rates at which the data stream is periodic.
For example, a data stream of the closing price of a spe-
cific stock may have a periodicity rate of 7 that describes
its weekly periodic pattern. A periodic pattern describes the
periodic behavior at, not necessarily all, the points in the pe-
riod. For example, the closing price of a specific stock may
be high every Friday andlow every Tuesday, yet may not
have any regularity on the other week days. That descrip-
tion of periodic patterns implies that the technique devised
for periodicity detection should consider symbol periodici-
ties. Recall that a symbol may represent an event in an event
data stream or a nominal discrete level in a discretized real-
valued data stream.

3.1. Symbol Periodicity

In a data streamS, a symbols is said to be periodic with
a period of lengthp if s exists “almost” everyp timestamps.
For example, in the data streamS = abcabbabdb, the sym-
bol b is periodic with a period of length 4 sinceb exists
every four timestamps (positions 1, 5 and 9). Moreover, the
symbola is periodic with a period of length 3 sincea ex-
ists almost every three timestamps (positions 0, 3, and 6 but
not 9). Letπp,l(S) denote the projection of a data streamS
according to a periodp starting from positionl:

πp,l(S) = el, el+p, el+2p, . . . , el+(m−1)p,

where0 ≤ l < p, m = d(n − l)/pe, andn is the length of
S. For example, ifS = abcabbabdb, thenπ4,1(S) = bbb,
andπ3,0(S) = aaab. Intuitively, the ratio of the number of
occurrences of a symbols in a certain projectionπp,l(S) to
the length of this projection indicates how often this sym-
bol occurs everyp timestamps. This ratio, however, is not
quite accurate since it captures all the occurrences includ-
ing the outliers. In the example above,π3,0(S) = aaab im-
plies that the symbolb is periodic with a period of length 3

with a frequency of1/4, which is not quite true. As an-
other example, if for a certainS, πp,l(S) = abcbac, then
the symbol changes everyp timestamps and hence no sym-
bol should be considered periodic with a period of lengthp.
We remedy this problem by considering only the consecu-
tive occurrences. A consecutive occurrence of a symbols in
a certain projectionπp,l(S) indicates that the symbols has
reappeared inS after p timestamps from the previous ap-
pearance. LetF2(s, S) denote the number of times the sym-
bol s occurs in two consecutive positions in the data stream
S. For example, ifS = abbaaabaa, thenF2(a, S) = 3 and
F2(b, S) = 1. Therefore, the ratio of the number of con-
secutive occurrences of a symbols in a certain projection
πp,l(S) to the length of this projection (F2(s,πp,l(S))

d(n−l)/pe−1) indi-
cates how often the symbols occurs everyp timestamps in
a data streamS.

Definition 1 If a data streamS of lengthn contains a sym-
bol s such that∃l, p where0 ≤ l < p, andF2(s,πp,l(S))

d(n−l)/pe−1 ≥ τ

where0 ≤ τ ≤ 1; then s is said to be periodic inS with
a period of lengthp at positionl with respect to periodicity
thresholdτ .

For example, in the data streamS = abcabbabdb,
F2(a,π3,0(S))
d10/3e−1 = 2/3, thus the symbola is periodic with a

period of length 3 at position 0 with respect to a periodicity
thresholdτ ≤ 2/3. Similarly, the symbolb is periodic with
a period of length 3 at position 1 with respect to a periodic-
ity thresholdτ ≤ 1.

The main advantage of Definition 1 is that not only does
it determine the candidate periodic symbols and their cor-
responding periods, but also it locates their corresponding
positions. In other words, each symbol that exhibits period-
icity according to Definition 1 produces a frequent single-
symbol periodic pattern.

Definition 2 In a data streamS of a finite alphabetΣ, a
pattern of lengthp is a sequenceq = q0 · · · qp−1, such that
qi ⊆ Σ.

Definition 3 If a data streamS of lengthn contains a sym-
bol s that is periodic with a period of lengthp at posi-
tion l, then a frequent single-symbol periodic patternq =
q0 · · · qp−1 of lengthp is formed by setting allqi’s to the
empty set except forql that is set to{s}.

For example, in the data streamS = abcabbabdb, for a
periodicity threshold that is less than2/3, the pattern4 a ∗ ∗
is a frequent single-symbol periodic pattern of length 3, and
so is the single-symbol periodic pattern∗b∗.

4For simplicity, the symbol∗ denotes the empty set, and the set brackets
are omitted when anyqi is a singleton (contains only one element). Note
that∗ is a place-holder for only one element.

As will be described in Section 4, frequent single-symbol
periodic patterns are used to form a maximal periodic pat-
tern that is the root node of the max-subpattern tree of the
corresponding period length.

Given these definitions, in the next sections, we discuss
how STAGGER detects all the potential period lengths and
all the corresponding frequent single-symbol periodic pat-
terns in one pass over the data stream. At the core of STAG-
GER is a symbol periodicity detection algorithm [4], called
SPD, that deals with data stream portions (windows) of
known lengths. We present the SPD algorithm (Section 3.2)
partly to render this paper self-contained, but also to facili-
tate introducing the multiple sliding windows online incre-
mental technique for infinite data streams (Section 3.3).

3.2. The SPD Algorithm

Assume that the period lengthp is known for some sym-
bols of a specific portion, sayS, of a data stream. Then,
the problem is reduced to miningS for the frequent single-
symbol periodic patterns of period lengthp. In other words,
the problem is to detect the symbols that are periodic with
period lengthp within S. A way to solve this simpler prob-
lem is to shiftS by p positions, denoted asS(p), and then
compareS(p) to S. For example, ifS = abcabbabcb, then
shifting S three positions results inS(3) = ∗ ∗ ∗abcabba.
ComparingS to S(3) results in four symbol matches. If the
symbols are mapped in a particular way, we can deduce that
these four matches are actually two for the symbola and
two for the symbolb.

The SPD algorithm [4] relies on two main ideas to de-
tect symbol periodicities in fixed-length data stream por-
tions. The first idea is to use the concept of convolution
in order to shift and compare the data stream portion for
all possible values at once. The second idea is to obtain a
mapping scheme for the symbols, which reveals, upon com-
parison, the identity of which symbols that match and their
corresponding positions. The remaining part of this section
describes these ideas in detail. The convolution is covered
in Section 3.2.1 while the mapping scheme is covered in
Section 3.2.2.

3.2.1. Convolution

A convolution [2] is defined as follows. LetX =
[x0, x1, . . . , xn−1] andY = [y0, y1, . . . , yn−1] be two fi-
nite length sequences of numbers5, each of lengthn. The
convolution ofX andY is defined as another finite length
sequenceX ⊗ Y of lengthn such that

(X ⊗ Y)i =
∑i

j=0 xjyi−j

5The general definition of convolution does not assume equal-length
sequences. We adapt the general definition to conform to our problem, in
which convolutions only take place between equal-length sequences.

for i = 0, 1, . . . , n−1. LetX ′ = [x′0, x
′
1, . . . , x

′
n−1] denote

the reverse of the vectorX, i.e.,x′i = xn−1−i. Taking the
convolution ofX ′ andY , and obtaining its reverse leads to
the following:

(X ′ ⊗ Y)′i = (X ′ ⊗ Y)n−1−i =
∑n−1−i

j=0 x′jyn−1−i−j =∑n−1−i
j=0 xn−1−jyn−1−i−j ,

i.e.,

(X ′ ⊗ Y)′0 = x0y0 + x1y1 + · · ·+ xn−1yn−1,
(X ′ ⊗ Y)′1 = x1y0 + x2y1 + · · ·+ xn−1yn−2,
...
(X ′ ⊗ Y)′n−1 = xn−1y0.

In other words, the component of the resulting sequence at
positioni corresponds to shifting one of the input sequences
i positions and comparing it to the other input sequence.

The SPD algorithm performs the following steps:
(i) Convert the data stream portionS into two finite se-
quences of numbersΦ(S) andΦ(S)′, whereΦ(S)′ is the
reverse ofΦ(S) (based on the mapping schemeΦ described
in Section 3.2.2), (ii) Perform the convolution between the
two sequencesΦ(S)′ ⊗ Φ(S), and (iii) Reverse the output(
Φ(S)′ ⊗ Φ(S)

)′
. The component values of the result-

ing sequence correspond to shifting and comparing the data
stream portion for all possible values.

It is well known that convolution can be computed by the
fast Fourier transform (FFT) [8] as follows:

X ⊗ Y =FFT−1
(

FFT(X)·FFT(Y)
)

.

This computation reduces the time complexity of the convo-
lution to O(n log n). The brute-force approach of shifting
and comparing the data stream portion for all possible val-
ues has the time complexityO(n2).

3.2.2. Mapping Scheme

Let S = e0, e1, . . . , en−1 be a data stream portion of
lengthn, whereei’s are symbols from a finite alphabetΣ
of sizeσ. Let Φ be a mapping for the symbols ofS such
that Φ(S) = Φ(e0), Φ(e1), . . . , Φ(en−1). Let C(S) =(
Φ(S)′⊗Φ(S)

)′
, andci(S) be theith component ofC(S).

The mapping scheme of the SPD algorithm satisfies two
conditions: (i) While matched symbols contribute a non-
zero value in the productΦ(ej) · Φ(ei−j), unmatched sym-
bols contribute 0, and (ii) the value of each component of
C(S), ci(S) =

∑n−1−i
j=0 Φ(en−1−j) ·Φ(en−1−i−j), identi-

fies the matched symbols and their corresponding positions.
The SPD algorithm maps the symbols to the binary rep-

resentation of increasing powers of 2. For example, if a
data stream contains only the 3 symbolsa, b, andc, then a
possible mapping would bea : 001, b : 010, andc : 100,

which correspond to power values of 0, 1, and 2, respec-
tively. Hence, a data stream portion of lengthn is con-
verted to a binary vector of lengthσn. For example, let
S = acccabb, thenS is converted to the binary vector̄S =
001100100100001010010. Using convolution results in a
sequenceC(S̄) of lengthσn. Considering just then posi-
tions0, σ, 2σ, . . . , (n− 1)σ that are the exact start positions
of the symbols, gives back the sequenceC(S). The latter
derivation ofC(S) can be written asC(S) = πσ,0(C(S̄))
using the notation defined in Section 3.1.

The SPD algorithm modifies the definition of convolu-
tion as follows:

(X ⊗ Y)i =
∑i

j=0 2jxjyi−j .

Notice that this definition still preserves that

X ⊗ Y =FFT−1
(

FFT(X)·FFT(Y)
)

.

The reason for adding the coefficient2j is to get a different
contribution for each match. For example, Figure 2 illus-
trates an example whereS = acccabb. The powers of 2
in the value ofc1(S) are 1, 11, and 14. Examining those
powers modulo 3, which is the size of the alphabet in this
particular example, results in 1, 2 and 2, respectively, which
correspond to the symbolsb, c, andc, respectively.

T̄ : 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0
T̄ (3) : 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0
c3(T̄) = c1(T) = 214 + 211 + 21

T̄ : 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0
T̄ (12) : 0 0 1 1 0 0 1 0 0
c12(T̄) = c4(T) = 26

Figure 2. A clarifying example for the mapping
scheme

Figure 2 gives another example forc4(S) that has only
one power of 2, which is 6, that corresponds to the symbol
a since6 mod 3 = 0 anda was originally mapped to the
binary representation of20. This means that comparingS
toS(4) results in only one match of the symbola. Moreover,
the power value of 6 reveals that the symbola is at position 0
in S(4). Therefore, the power values reveal not only the
number of matches of each symbol at each period, but also
the corresponding starting positions. This latter observation
complies with the definition of symbol periodicity. Hereby,
we direct the reader to [4] for a complete discussion of that
algorithm.

3.3. Online Symbol Periodicity Detection

The idea of STAGGER is to perform the SPD algorithm
incrementally on multiple sliding windows of expanding

lengths. Sliding a window implies discarding an earlier por-
tion of the data stream and considering a more recent por-
tion. After sliding a window, the results are carried from
the previous step to the current one. The SPD algorithm is
performed only over the recent portion of the data stream
without losing any information about the discarded portion.
Moreover, the results are shared among the multiple win-
dows in order to avoid recomputing what has been com-
puted earlier.

We introduce the notion of a single sliding window as the
basic step of STAGGER (Section 3.3.1). Then, we justify
the need for multiple sliding windows, and show how the
results are shared among them (Section 3.3.2).

3.3.1. Single Sliding-Window

Let S = e0, e1, . . . be an infinite length data stream, where
ei’s are symbols from a finite alphabetΣ of sizeσ. Con-
sider a window of lengthw, and letSi,w denote the portion
of the data streamS that is of lengthw and starts at position
i. Performing the SPD algorithm over the very first win-
dowS0,w discovers all potential periods of values that range
from 1 to w/2. Clearly, periods larger thanw/2 are not sig-
nificant in a data stream window of lengthw. Therefore,
we focus on the valuesci(S0,w) for i = 1, 2, . . . , w/2 in
the sequenceC(S0,w). As mentioned earlier, these values

correspond to comparingS0,w to its shifted versionsS(i)
0,w

for i = 1, 2, . . . , w/2. Let the window slidez ≤ w posi-
tions such that the current portion of the data stream isSz,w.
The SPD algorithm executes overSz,w and the results from
the previous and the current portions should be combined.
We observe that ifz > w/2, some comparisons would be
missed. For example, ifS = e0, e1, . . . andw = 6, then
c3(S0,w) corresponds to comparingS0,w = e0, e1, . . . , e5

to S
(3)
0,w = ∗ ∗ ∗e0, e1, e2. For z = 4, c3(Sz,w) corre-

sponds to comparingSz,w = e4, e5, . . . , e9 to S
(3)
z,w =

∗ ∗ ∗e4, e5, e6. Although comparinge6 to e3 should be part
of comparing the entire data streamS = e0, e1, . . . , e9

to S(3) = ∗ ∗ ∗e0, e1, . . . , e6, it is not included in either
c3(S0,w) or c3(Sz,w). Hence, we can deduce that a win-
dow of lengthw should not slide more thanw/2 positions
in order not to lose any comparison information. More-
over, using the same example, we observe that the lower
the value ofz is, the more overlap we get in symbol com-
parisons. Consequently, we choose to slide a window of
lengthw a number of positions equal tow/2, as illustrated
in Figure 1(a).

Recall that the SPD algorithm uses a binary mapping and
a modified convolution to perform the shift and compare op-
erations all at once. In such terms, we can define the com-
bined values for the entire data stream, which has arrived so
far, as follows:

ci(S̄kw/2,w) =∑n−1−i
j=0 2n−1−j ēn−1−j+kw/2 · ēn−1−i−j+kw/2,

ci(S̄0,w+kw/2) =
2σw/2ci(S̄0,w+(k−1)w/2) + ci(S̄kw/2,w)

∀0 ≤ i ≤ σw − 1, ∀k ≥ 0

At every stage of sliding the window withw/2 positions,
the previous values are shifted to the left and are added to
the new values. Since we deal with powers of 2, shifting
w/2 positions to the left before the addition operation en-
sures that every single match has a different power of 2 in
the total sum. Hence, we are able to take care of the overlap
and discard any overlapped values. Note that in the previ-
ous equations,i ranges up to onlyσw − 1 even when the
data stream has been extended in length. In other words,
only the firstw components of the sequenceC(S0,w+kw/2)
are computed.

3.3.2. Multiple Sliding-Windows

After sliding a single windowk times, the entire data stream
has become of lengthw + kw/2. However, we are still lim-
ited to potential period lengths up tow/2. Even if we con-
sider period length values larger thanw/2, we are bounded
by w as the maximum period length to be discovered. Thus,
the smaller the length of the window, the more potential
periods that are missed. On the other hand, the larger the
length of the window is, the more time the algorithm waits
until it produces interactive output.

Illustrated in Figure 1(b), the solution we propose is
to have multiple sliding windows of different expanding
lengths that are staggered over the data stream. The com-
putations are shared among the multiple windows in a way
similar to that of sliding a single window. Assume that we
have two windows of lengthsw1 < w2, and that all the first
w1 components of the sequenceC(S0,w1) are computed.
Only the firstw1/2 components are of particular interest to
discover the potential period lengths up tow1/2. We are
now interested in the firstw2 components of the sequence
C(S0,w2). We observe that the components that lie between
w1/2 andw2 are the only ones to be computed for the win-
doww2. The firstw1/2 components are updated in the next
sliding of the windoww1. Therefore, for the windoww2,
we combine the results of the components betweenw1/2
andw1, and compute the new components betweenw1 and
w2.

ci(S̄0,w2) =



2σw1/2ci(S̄0,w1) +
∑n−1−i

j=0 2n−1−j ēn−1−j · ēn−1−i−j

∀σw1/2 ≤ i < σw1∑i
j=0 2n−1−j ēn−1−j · ēn−1−i−j ∀σw1 ≤ i < σw2

This process is carried out between each two consecutive
windowsw1 < w2 < . . . < wm. The selection ofwm is

bounded by the buffer size allowed by the system for buffer-
ing the data stream. Therefore,wm/2 is the maximum pe-
riod length value that we can discover.

4. Mining Periodic Patterns

The max-subpattern tree [6] has proved to be efficient in mining
periodic patterns in time series data. Han et al. [6] have presented
a two-pass algorithm for building such a tree. Aref et al. [1] have
presented an incremental version of the algorithm that maintains
the max-subpattern tree during continuously arriving data. How-
ever, the algorithm in [1] requires two passes over the new data
and a possible reprocessing of the previously seen data. In this
section, we propose a new incremental technique that fits the data
stream model. Data is not stored and hence a reprocessing of the
previously seen data is not possible. The produced results are ap-
proximate compared to the exact results produced by the two-pass
algorithms [6, 1]. Yet, this approximation is unavoidable and is
empirically reasonable as the accuracy exceeds90%.

We give an overview of the max-subpattern tree [6] (Sec-
tion 4.1). Then, we introduce how STAGGER maintains the max-
subpattern tree incrementally over a data stream (Section 4.2).
Subsequently, we introduce the “hysteresis” approach for main-
taining the periodicity thresholds over the data stream (Sec-
tion 4.3).

4.1. The Max-Subpattern Tree

Figure 3 gives an example of a max-subpattern tree built with
a period of length 4. Every node represents a candidate periodic
pattern and has a count that reflects the number of occurrences of
this pattern in the data. Recall that, according to Definition 2, a
pattern is a sequence of subsets over the entire alphabet. A node is
a parent to another if the pattern of the latter node is a subpattern
of the pattern of the former node. A patternq′ is called a subpat-
tern of another patternq if for each positioni, q′i ⊆ qi. The direct
link between a parent node and a child node is labeled by the dif-
ference between their two patterns. Notice that a pattern may be a
subpattern of more than one pattern. Therefore, the data structure
is actually a graph rather than a tree. In order to preserve the data
structure as a tree and decrease the complexity of insertion and
search, not all the parent-child links are kept. The dotted lines in
Figure 3 represent those links that are not kept.

Clearly, the root node of the max-subpattern tree should rep-
resent the candidate periodic pattern that all the other candidate
periodic patterns are subpatterns of. Hence, the root node pattern
is called themaximalperiodic patternQ. The algorithm of [6] de-
terminesQ by extracting all thesingle-symbolpatterns of length
p from a first pass over the data. The frequent single-symbol pat-
terns are determined with respect to the periodicity threshold, and
Q is computed by the union operation of all these frequent single-
symbol patterns. For example, if the frequent single-symbol pe-
riodic patterns of length 4 are∗b ∗ ∗, ∗c ∗ ∗, a ∗ ∗∗, and∗ ∗ d∗,
thenQ = a{b, c}d∗.

A second pass over the data combines everyp symbols and
inserts the formed pattern, filtered by the maximal periodic pattern,
into the max-subpattern tree. Once it is built, the max-subpattern
tree is traversed in order to detect those actual frequent periodic

patterns with respect to the periodicity threshold. Note that the
count of every pattern is actually the count of its corresponding
node plus all the counts of its parent nodes (both the direct parent
and the other hidden parents).

Note that in STAGGER, that first pass is not conducted. The
periodicity detection technique (Section 3) reveals not only the po-
tential period lengths but also their single-symbol periodic patterns
that form their corresponding maximal periodic patterns.

4.2. Approximate Incremental Technique

The idea of our proposed technique for mining periodic pat-
terns in data streams is to maintain the max-subpattern tree over
the continuous arrival of new data. The arrival of new data may up-
date the maximal periodic patternQ due to the discovered single-
symbol periodic patterns. Accordingly, the max-subpattern tree
should be updated. LetQ andQ′ be the maximal periodic patterns
before and after the update, respectively. Letcj andc′j be the com-
ponents at positionj of Q andQ′, respectively. Ifc′j 6= cj , then
updatingcj to c′j implies deletion and/or insertion of one or more
symbols. For example, ifQ = a{b, c}d∗ andQ′ = a{b, e}df,
then updatingQ to Q′ implies deleting the symbolc from po-
sition 2, and inserting the symbolse and f at positions 2 and 4,
respectively.

STAGGER updates the max-subpattern tree in two steps: a
deletion step followed by an insertion step. LetQt be the pat-
tern resulting from deleting the necessary symbols fromQ, e.g.,
in the previous example, deleting the symbolc from position 2
results inQt = abd∗. If the original max-subpattern treeR con-
tains a node representing the patternQt, then STAGGER converts
that node to be the root of the updated max-subpattern tree. Oth-
erwise, STAGGER creates a new root node representing the pat-
tern Qt. There are two aspects concerning that intermediate re-
sulting tree. First, the counts must be fixed since some deleted
nodes were parents to some retained nodes (e.g., in Figure 3, delet-
ing the root node means a missing count of 10 for all its children
nodes). Second, the non-linked children fromR should be added.
To consider both of these two aspects simultaneously, STAGGER
scans the original max-subpattern treeR and insertsR’s patterns
into the intermediate max-subpattern tree with their corresponding
counts. For example, in Figure 3, whereQ = a{b, c}d∗, assume
that Q′ = a{b, e}df, thenQt = abd∗. The intermediate max-
subpattern tree is given in Figure 4(a). Notice that, without fix-
ation, the intermediate max-subpattern tree would have had only
two nodes: one for the patternabd∗ with a count of 40, and one
for the patternab ∗ ∗ with a count of 2.

In the insertion step, STAGGER creates a new root node for
the updated max-subpattern tree that represents the updated maxi-
mal periodic patternQ′. Nevertheless, the updated max-subpattern
tree is not accurate since it has no information about those inserted
symbols. In other words, the counts of the newly created nodes
along the path from the new root to the old root are set to 0. The
only way to have their real counts is to reprocess the previous data,
which is not possible. This is why STAGGER is considered an
approximate algorithm. For example, Figure 4(b) shows the max-
subpattern tree updated from Figure 4(a) to haveQ′ = a{b, e}df
as its root node. Although the previously seen data might contain
patterns that had the symbolf in position 4, the fact that this sym-

a{b,c}d*

* {b,c}d* acd* abd* a{b,c}**

a d
c b

* cd* * bd* a* d* ab** ac**

b c c
d d

18 8 5 19 2

2 50 40 32

10

Figure 3. An example of a max-subpattern tree

abd*

ab** a* d*

b d

55 34

50

* bd* 10

a

(a) After deleting the symbolc

abd*

ab** a* d*

b d

55 34

50

* bd* 10

a

abdf 0

a{b,e}df 0

e

 f

(b) After inserting the two symbolse andf

Figure 4. Updating the max-subpattern tree

bol was not frequent before had prohibited us from including any
pattern containing this symbol in the max-subpattern tree.

Now that the max-subpattern tree is updated to reflect the
change of the maximal periodic pattern, the newly arrived data pat-
terns are inserted into the updated tree. Thus, the max-subpattern
tree now represents approximately the whole data stream.

4.3. The “Hysteresis” Thresholding Approach

The proposed technique, as well as any traditional data mining
technique, handles the patterns as follows. As long as a pattern,
sayq, is not frequent,q is not included in the max-subpattern tree.
As soon asq becomes frequent, it is added to the max-subpattern

tree, and its history starts. As long asq is frequent, it is kept in the
max-subpattern tree updating its history. As soon asq becomes
infrequent, it is removed from the max-subpattern tree losing its
history information. The frequency of the pattern is determined
by a single threshold. This approach is illustrated in Figure 5(a).
A disadvantage of this approach is that it fails to handle a pat-
tern that oscillates between being frequent and being infrequent.
Such a pattern, sayq, will lose all the history information (max-
subpattern tree counts) as soon as it becomes infrequent. When
q becomes frequent again, it will be treated as a newly appeared
frequent pattern which has no history information.

One can think of several approaches for overcoming that disad-
vantage. One of which is to not remove an infrequent pattern from
the max-subpattern tree as it may become frequent later. This ap-
proach, however, suffers the disadvantage that the max-subpattern
tree will be huge and will contain several infrequent patterns, espe-
cially when a data stream has a rather lengthy transient component.
Another approach is to have another max-subpattern tree for those
patterns that are infrequent but are candidates to be frequent later.
Those patterns are determined by a lower threshold value than the
original one. Yet, this approach migrates the problem to that other
max-subpattern tree, which will suffer the same disadvantage with
a lower threshold value.

We propose a tradeoff approach whose idea comes from the
Physics domain. Hysteresis represents thehistorydependence of
physical systems6. The proposed approach utilizes two thresholds,
as illustrated in Figure 5(b). A pattern is considered frequent if
its frequency is above the higher threshold value, and is consid-
ered infrequent if its frequency is below the lower threshold value.
All the patterns whose frequencies are above the lower threshold
value are kept in the max-subpattern tree. However, only those
whose frequencies are above the higher threshold value are con-
sidered frequent patterns. In other words, The max-subpattern tree
is built using the lower threshold value, yet the frequent periodic
patterns are extracted using the higher threshold value. The dis-
tance between the two threshold values acts as a period of time
during which a pattern is given a chance to stabilize rather than to
oscillate.

6If you push on something, it will yield, and when you release, if it
does not spring back completely, then it is exhibiting hysteresis.

Infrequent Level

Frequent Level

One Threshold

(a) Traditional thresholding approach

Infrequent Level

Frequent Level

Threshold 1

(1)

(2)

(3) (4)

(5)

Threshold 2

(b) Hysteresis thresholding approach

The big wide arrows show the path of an infrequent-becoming-frequent pattern, and the small solid
arrows show the path of a frequent-becoming-infrequent pattern.

Figure 5. Hysteresis versus traditional thresholding approaches

5. Experimental Study

This section contains the results of an experimental study that
examines STAGGER for different aspects. In Section 5.1, experi-
ments are conducted using synthetic data in order to examine the
accuracy and the time performance of STAGGER. In Section 5.2,
the practicality and usefulness of the output are explored using real
data experiments.

We generate controlled synthetic data by tuning some parame-
ters, namely, data distribution, period length, alphabet size, and
noise amount. Both uniform and normal data distributions are
considered. First, inerrant data is generated by repeating a partial
pattern that is randomly generated from the specified data distri-
bution. Then, noise is introduced randomly and uniformly over
the whole data stream. Noise is introduced by altering a symbol
by another, inserting a new symbol, or deleting the current symbol
at a randomly selected position in the data stream. Unless stated
otherwise, data streams lengths of 1M symbols are used with al-
phabet size of 10, and the values collected are averaged over 100
runs. With respect to the period lengths, we consider values that
divide the whole data stream length as well as values that do not.
We thus inspect STAGGER bias, if any, towards any particular set
of period length values.

STAGGER is the first one-pass online incremental periodicity
mining algorithm for data streams that combines both periodicity
detection and periodic patterns mining. Hence, there is no direct
comparison between STAGGER and any of the algorithms in the
literature. However, we compare our periodicity detection tech-
nique to the periodicity detection algorithm, AWSOM [11]. AW-
SOM uses Wavelets to approximate data streams and hence dis-
covers potential periodicity rates.

5.1. Synthetic Data Experiments

The first experiment studies the accuracy of the proposed in-
cremental technique for mining periodic patterns. The fact that
STAGGER is approximate in building the max-subpattern tree in
one pass implies how the accuracy is measured. The approximate
tree is compared to the accurate tree that is built offline in a two-
pass algorithm [6]. The relative error of each node count in the
tree is computed and averaged over the total number of nodes in

the tree. In Figure 6, we use the symbols “U” and “N” to denote the
uniform and the normal distributions, respectively; and the symbol
“P” to denote the embedded period length.

When a single sliding window is used, Figure 6(a) shows ex-
pectedly that increasing the window length increases the accuracy
since the effect of transient frequent periodic patterns is reduced.
Furthermore, as the stream data continuously arrives, the accuracy
increases, as shown in Figure 6(b), since the data becomes pro-
gressively more stable. Therefore, the frequent periodic patterns
are determined and the probability of adding new frequent peri-
odic patterns is very low. Both Figures 6(a) and 6(b) show that
STAGGER is highly accurate (in the90% level).

Figure 6(c) gives the results of inspecting the “hysteresis”
thresholding approach by varying the distance between the two
threshold values. A zero distance means only one threshold value,
that is the traditional thresholding approach. Figure 6(c) shows
that the “hysteresis” thresholding approach increases the accuracy
of the approximate max-subpattern tree. As the distance between
the two threshold values increases, the accuracy increases since
we allow more time for a pattern not to lose its history (max-
subpattern tree counts). After some distance level, the accuracy
does not increase more since the allowed time is more than enough
for all patterns to keep their history.

The next experiment inspects the accuracy of STAGGER with
respect to the discovered potential period lengths. The accuracy
measure that we use is the ability of STAGGER to detect all the
period lengths that were artificially embedded into the synthetic
data. To discover a period length accurately, it is not enough to
discover it at any periodicity threshold value. In other words, the
period lengths discovered with a high periodicity threshold value
are better candidates than those discovered with a lower period-
icity threshold value. Therefore, we define the confidence of a
discovered period length to be the minimum periodicity threshold
value required to detect this period length. The accuracy is mea-
sured by the average confidence of all the period lengths that are
embedded artificially into the synthetic data. Figure 7 gives the
results of this experiment. Recall that synthetic data is generated
such that the embedded period lengths are:P, 2P,

Using a single sliding window, Figure 7(a) shows that increas-
ing the window length increases the accuracy since this allows the
algorithm to detect more period lengths (of larger lengths). Sub-

0 200 400 600 800 1000

Window Size

85.0

90.0

95.0

100.0

A
c
c
u

ra
c
y
 (

%
)

U, P=25

N, P=25

U, P=32

N, P=32

(a)

0.0 5.0 10.0 15.0 20.0

Data Size (Million Symbols)

85.0

90.0

95.0

100.0

A
c
c
u

ra
c
y
 (

%
)

U, P=25

N, P=25

U, P=32

N, P=32

(b)

0.00 0.10 0.20 0.30 0.40 0.50

Thresholds Distance

50.0

60.0

70.0

80.0

90.0

100.0

A
c
c
u

ra
c
y
 (

%
)

U, P=25

N, P=25

U, P=32

N, P=32

(c)

Figure 6. Accuracy of the approximate max-subpattern tree

0 200 400 600 800 1000

Window Size

0.0

0.2

0.4

0.6

0.8

1.0

C
o

n
fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(a)

P 2P 3P . . .

Period

0.50

0.60

0.70

0.80

0.90

1.00

C
o

n
fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(b)

1 2 3 4 5

Sliding Windows

0.50

0.60

0.70

0.80

0.90

1.00

C
o

n
fi
d

e
n

c
e

U, P=25

N, P=25

U, P=32

N, P=32

(c)

Figure 7. Accuracy of symbol periodicity detection

sequently, using a single sliding window of maximum buffer size,
Figure 7(b) shows an unbiased behavior with respect to the em-
bedded period length. Moreover, Figure 7(c) shows that the accu-
racy does not rely on the number of expanding sliding windows
as far as the largest sliding window is selected to be as large as
the buffer size in order to detect all possible period lengths. Both
Figures 7(b) and 7(c) show that STAGGER achieves an average
of 80% accuracy, i.e., STAGGER detects all the artificially em-
bedded period lengths at a periodicity threshold value of80%.

To compare STAGGER to the periodicity detection algorithm
of [11] (AWSOM), we consider both the time performance and the
accuracy of the discovered potential periodicity rates. AWSOM
has two main limiting features. First, AWSOM discovers only pe-
riodicity rates of lengths that are powers of two. This limitation is
due to the use of Wavelets to approximate the data stream. Period-
icity rates of lengths that are not powers of two will be missed by
AWSOM. The second limitation of AWSOM is that it discovers
periodicities that are complete, e.g., full sinusoidal periods. If a
period has only few periodic symbols, AWSOM fails to discover

such a period. On the other hand, STAGGER does not suffer ei-
ther disadvantage as (i) it uses convolution to consider all possi-
ble period lengths, and (ii) it defines the periodicity in terms of
its symbols. Figure 8(a) shows empirically this latter property.
The experiment compares STAGGER to AWSOM based on their
ability to discover semi-full periods. The experiment considers
only periodicity rates of powers of two. Figure 8(a) shows that
both algorithms achieve80% accuracy at a full period (1.0 period
fullness). However, for semi-full periods, STAGGER outperforms
AWSOM with an order of magnitude.

On the other hand, Figure 8(b) shows that AWSOM outper-
forms STAGGER with respect to the processing time. AWSOM
is a Wavelet-based algorithm that takesO(n) time to compute.
However, STAGGER takesO(n log n) time to compute the convo-
lution. In conclusion, STAGGER trades processing time for more
accurate periodicity rates, more general periodicities in terms of
symbols, and more discovered information (the periodic patterns
themselves). In contrast, AWSOM trades accuracy for processing
time by the Wavelet approximation that may lead to discarding

0.0 0.2 0.4 0.6 0.8 1.0

Period Fullness

0.0

0.2

0.4

0.6

0.8

1.0

C
o

n
fi
d

e
n

c
e

STAGGER

AWSOM

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0

Data Size (Million Symbols)

0.0

10.0

20.0

30.0

40.0

50.0

P
ro

c
e

s
s
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

STAGGER

AWSOM

(b) Time Performance

Figure 8. STAGGER versus AWSOM

0 2 4 6 8 10

Sliding Windows

30.0

40.0

50.0

60.0

70.0

80.0

P
ro

c
e

s
s
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

Geometric

Equi−Distance

Arbitrary

(a)

0 0.2 0.4 0.6 0.8 1.0

Data Size (Million Symbols)

0.0

50.0

100.0

150.0

P
ro

c
e

s
s
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

Geometric

Equi−Distance

Arbitrary

(b)

0 2 4 6 8 10

Sliding Windows

0.0

10.0

20.0

30.0

40.0

50.0

A
v
e

ra
g

e
 W

a
it
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

Geometric

Equi−Distance

Arbitrary

(c)

Figure 9. Time performance of STAGGER

potential periodicities.

To evaluate the time performance of STAGGER, we observe
that the number of expanding sliding windows is the key factor of
the processing time, as depicted in Figure 9(a). We have three dif-
ferent settings for the lengths of the expanding sliding windows:
arbitrary, geometric. and equi-distance settings. Letm be the
number of expanding sliding windows of lengthsw1 < w2 <
. . . < wm such thatwm is selected to be as large as the buffer
size. For alli = 1, 2, . . . , m−1, while the arbitrary setting selects
wi randomly, the geometric setting selectswi to equalwi+1/2,
and the equi-distance setting selectswi to equal(i/m)wm. Fig-
ure 9(a) shows that the arbitrary setting gives the least processing
time while the geometric setting gives the most processing time.

Figure 9(b) shows that the processing time of both the geo-
metric and the equi-distance settings increases gradually over time
(as the data stream increases in size), whereas the processing time
of the arbitrary setting increases irregularly. The importance of
the gradual increase is that it gives a bound on the data arrival
rate that STAGGER can manage without dropping any data sym-

bols. For example, Figure 9(b), drawn with 10 expanding sliding
windows, shows that STAGGER with the geometric setting has
processed 1M symbols in approximately 100 seconds. This means
that STAGGER can cope with an arrival rate of 10,000 symbols per
second. Of course, this high rate is due to the high speed processor
we used in our experiments.

The most important advantage of having expanding sliding
windows is shown in Figure 9(c), that is a much better average
waiting time over a single sliding window. Clearly, the more the
number of expanding sliding windows, the less average waiting
time between consecutive outputs. Moreover, Figure 9(c) shows
that the geometric setting of the expanding sliding windows has
the best performance with respect to the average waiting time.

5.2. Real Data Experiments

A real-world database that contains sanitized data of timed
sales transactions for some stores over a period of 15 months
serves the purpose of real data experiments. Timed sales trans-
actions data, of size 130 Megabytes is streamed to STAGGER. Al-

Periodicity # Output Some Output
Threshold (%) Periods Periods

50 3164 263, 409
55 2777 337, 385
60 2728 481
65 2612 503
70 2460 505
75 2447 577, 3961
80 2328 647
85 2289 791
90 2285 721
95 2281 24, 168

Table 1. Symbol periodicity detection output

Periodic Pattern Frequency(%)
aaaa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ aaa 49.78166
aaaa ∗ ∗ ∗ b ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ aaa 42.57642
aaaa ∗ ∗ ∗ b ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d ∗ ∗ ∗ aaa 38.56768
∗ ∗ ∗ ∗ ∗bbbbc ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗aa 35.80786

Table 2. Mining periodic patterns output

though this data stream has a slow arrival rate (one value per hour),
the purpose of the experiment is to demonstrate the practicality of
the discovered periodic patterns. The numeric data values are dis-
cretized into five levels, i.e., the alphabet is of size 5. The levels
arevery low, low, medium, high, andvery high. Discretization is
based on manual inspection of the values (very lowcorresponds
to zero transactions per hour,low corresponds to less than 200
transactions per hour, and each level has a 200 transactions range).
Notice that although data is in terms of transactions per hour, the
algorithm streams the data at a much higher rate.

Table 1 gives the output of STAGGER symbol periodicity
detection for the real data for different values of the periodic-
ity threshold. Clearly, STAGGER outputs fewer period lengths
for higher threshold values, and the period lengths detected with
respect to a certain value of the threshold are enclosed within
those detected with respect to a lower value. To verify its ac-
curacy, STAGGER should at least output the period lengths that
are expected in the data. Our real data has an expected period
of length 24 that corresponds to the daily pattern of number of
transactions per hour. Table 1 shows that a period of length 24 is
detected when the threshold is95% or less. In addition, STAG-
GER detects many more period lengths, some of which are quite
interesting. A period of length 168 (24×7) can be explained as
the weekly pattern of number of transactions per hour. A period
of length 3961 shows a periodicity of exactly 5.5 months plus one
hour, which can be explained as the daylight savings hour. One
may argue against the clarity of this explanation, yet this proves
that there may be obscure periods, unknown a priori, that STAG-
GER can detect.

Analyzing the output for the period of length 24, there
are 13 symbol periodicities (single-symbol periodic patterns)
with respect to a periodicity threshold of50%. The pattern

aaaa ∗ bbbbc ∗ ∗ ∗ ∗ ∗ ∗ ∗ d ∗ ∗ ∗ aaa is discovered to be the
maximal periodic pattern of length 24. Table 2 gives the final out-
put of STAGGER only for the period of length 24. Knowing the
meaning of every symbol leads to useful interpretation of the pat-
terns. For example, the first pattern enunciates that on about50%
of the days, the number of transactions that occur at the first 4
hours and the last 3 hours of the day (9:00PM – 4:00AM) is equal
to zero. This periodic pattern, and alike ones, can help the store
manager to decide when to close the store, or when to reduce the
number of sales assistants.

6. Conclusions

In this paper, we have proposed an online and incremen-
tal algorithm, named STAGGER, for periodicity mining in
data streams. STAGGER is novel in the sense that it de-
tects periodicity rates and discovers frequent periodic pat-
terns in one pass through the data. This feature is essential
when dealing with potentially infinite streams. To maximize
the coverage over the stream, STAGGER uses expanding
sliding windows to detect all periodicity rates. STAGGER
maintains a tree-like data structure to discover the frequent
periodic patterns. We have proposed a new approach for
handling the thresholds in order to improve the accuracy
of STAGGER. An empirical study using synthetic and real
data validates the accuracy of STAGGER, shows the use-
fulness of the output, and shows the tradeoff between ac-
curacy (favoring STAGGER) and processing time (favoring
Wavelet-based techniques).

References

[1] W. Aref, M. Elfeky, and A. Elmagarmid. Incremental, online, and
merge mining of partial periodic patterns in time-series databases.
IEEE TKDE, 16(3), 2004.

[2] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts, 1990.

[3] C. Daw, C. Finney, and E. Tracy. A review of symbolic analysis of
experimental data.Review of Scientific Instruments, 74(2), 2003.

[4] M. Elfeky, W. Aref, and A. Elmagarmid. Using convolution to mine
obscure periodic patterns in one pass. InEDBT, 2004.

[5] M. Elfeky, W. Aref, and A. Elmagarmid. Periodicity detection in
time series databases.IEEE TKDE, 17(7), 2005.

[6] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic
patterns in time series databases. InICDE, 1999.

[7] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series:
A survey and novel approach. In M. Last, A. Kandel, and H. Bunke,
editors,Data Mining in Time Series Databases. World Scientific
Publishing, June 2004.

[8] D. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, 1981.

[9] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representa-
tion of time series, with implications for streaming algorithms. In
DMKD, 2003.

[10] S. Ma and J. Hellerstein. Mining partially periodic event patterns
with unknown periods. InICDE, 2001.

[11] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, hands-
off stream mining. InVLDB, 2003.

[12] J. Yang, W. Wang, and P. Yu. Mining asynchronous periodic pat-
terns in time series data. InKDD, 2000.

