






exploratory DSP continued 

Outputs 

[FIG2) Schematic of the PZFC model of peripheral auditory filtering. The (top) 
cascaded filter stages provide a variable peak gain via a variable pole damping, 
which is adjusted by slowly varying feedback control signals from the (bottom) 
automatic gain control (AGC) smoothing network. The AGC loop corresponds to 
control to the cochlea's outer hair cell activity by efferent neurons from the olivary 
complex in the brainstem. 

[9], closely related to the auditory cor
relogram [10], a realization of the 
duplex theory of pitch perception [2J. 
Patterson's image creation by triggered 
temporal integration is essentially a 
short-time cross-correlation of each 
channel 's signal with a sparse trigger 
impulse signal, for trigger events cho
sen at prominent waveform peaks. He 
has experimented with a variety of mod
ifications of the basic scheme, for exam
ple to create a scale-shift-covariant 
version designed to separate size effects 
from message effects in animal commu
nications and human speech. 

Many other imagelike or movielike 
auditory image representations 
are possible, for example to map 
interaural time difference and 
interaural level difference cues as 
computed in the brainsteam's oli-
vary complex. In general, auditory 
images have an extra spatial 
dimension beyond the tonotopic 
or frequency dimension that 's 
commonly used in various short-
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the new knowledge into our machine 
hearing systems within the auditory 
image framework. 

EXAMPLE SYSTEM: SOUND 
RETRIEVAL FROM TEXT QUERIES 
Consider a large collection of sound 
files-potentially millions of sound 
effects, recordings, sound tracks, etc. It 
would be useful to find those files that 
are relevant to a user 's text queries, 
such as "loud car crash. " If we can 
learn a relationship between abstract 
sound features and query terms such 
as "loud," "car," and "crash" in a way 
that allows them to be naturally 
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combined, we could support multiword 
queries effectively. 

This was the system that we selected 
for our first machine hearing experi
ments at Google, partly because of the 
availability of Grangier and Bengio's pas
sive-aggressive method for image 
retrieval (PAMIR) technology that had 
been recently developed to do the same 
kind of thing for image retrieval [I1J. 

The PAMIR method requires that our 
Stage 3 deliver a "bag of features" to rep
resent a document file , image 
file, or text file). A bag is like a set but 
with counts of repeated elements; equiv
alently, it is a histogram of how many 
times each feature occurs in the docu
ment. With sparse features, the bag is 
itself sparse; that is, since most counts 
are zero, only the nonzero counts need 
to be represented. 

The abstract sparse features that 
worked well for image retrieval were 
multiscale abstract codes for local struc
ture at locations all over the image. We 
made an analogous representation of the 
frames of an auditory image movie by 
using vector quantization (VQ), as shown 
in Figure 4, of many image patches of 
different sizes and aspect ratios. For 
example, a typical experiment configura
tion used 49 different patches, or boxes 
as we called them, each quantized 
through its own VQ codebook of 256 typ
ical patterns specific to that box size and 
location, for a total of about 12,500 fea
ture dimensions. At each frame, at a rate 

of 50 frames per second, only 
11256 of the features would be 
present; counting these occur
rences over all the frames in a 
sound file usually resulted in 90% 
or more of the feature dimensions 
still being zero, so sparse repre
sentations were effective. 

PAMIR uses a fast and robust 

time spectral representations. This 
imagelike dimensionality is moti
vated by the 2-D structure of audi
tory cortex, and the various kinds 
of maps found in the auditory ner
vous system. As more is learned 
about these brain levels, we can 
expect to be able to incorporate 

[FIG3) Example of an auditory image frame in response 
to a spoken vowel sound, using a very simple trigger 
detection method. The periodicity along the time lag 
dimension is a prominent feature of voiced speech, 
while the message, the vowel identity, is in the 
formants, the frequency bands in which the energy is 
concentrated. The image shows a low first formant, 
and high second and upper formants, indicating a high 
front vowel such as "ee." 

training procedure to optimize a 
simple linear mapping from fea
tures to query terms, given train
ing data with known tags. The 
query is represented as a sparse 
vector of terms in the tag vocabu
lary (about 3,000 words), and each 
sound file is given a score respect 
to a query via a linear matrix 
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[FIG4] Generating sparse codes from an "audio document," in four steps: 1) cochlea simulation, 2) stabilized auditory image 
creation, 3) sparse coding by vector quantization of multiscale patches, and 4) aggregation into a "bag of features" 
representation of the entire audio document. Steps 3 and 4 here correspond to the feature extraction module in the four
module system structure. To the fourth module, a PAMIR-based learning and retrieval system, this entire diagram represents a 
front end providing abstract sparse features for audio document characterization. 

product of features times matrix times 
query. The matrix is trained to optimize 
a ranking criterion, such that it attempts 
to rank "relevant" documents higher, by 
giving them a higher score, than "non
relevant" ones, in the training set, for a 
large number of training queries that 
include multiword queries formed from 
the tag vocabulary. 

The attractiveness of this approach 
was that we could use PAMIR for our 
Stage 4, since it didn't contain anything 
specific to images, and we could use a 
simple abstract VQ-based feature extrac
tion for Stage 3, not tied to any particu
lar sound classes or ideas of where in the 
auditory image the important distin
guishing infor.mation might be. We com
pared the PAMIR approach to other 
trainable classifiers, support vector 
machines and mixture of Gaussians, and 

to another front-end representation vec
tor quanitized mel-frequency cepstral 
coefficients (MFCCs). They all worked 
fairly well, but the PAMIR technique was 
much faster to train, and the auditory 
image features gave the best perfor
mance, if we increased the dimensional
ity by going to larger codebooks [12] . 

We are presently doing experiments 
with more challenging, but still con
trolled, sound mixtures for which we 
have known text tags, constructed for 
example by adding pairs of sound files 
together, and finding that the auditory 
sparse-coding approach shows an advan
tage in interference. 

LEVERAGING MACHINE VISION 
AND MACHINE LEARNING 
We have dozens of books with "machine 
vision" in the title, exploring techniques 

and applications. Each one can provide 
ideas and inspiration for machine hearing 
techniques and applications. Most applica
tions are trainable, based on "machine 
learning." The game is mostly about how 
to extract features, from images or sounds, 
that work well with machine learning sys
tems, and then train these systems to 
meet the needs of an application. 

Some learning systems work best with 
fairly low feature dimensionality. ASR 
systems typically use a 39-dimensional 
MFCC-based feature vector, and learn dis
tributions in feature space as mixtures of 
Gaussians. Other techniques, such as 
PAMIR from the vision field, deal best 
with very high feature dimensionality and 
don't try to model the distribution in fea
ture space. By paying attention to what 

(continued on page 139) 
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exploratory DSP continued from page 135 

techniques are working well in machine 
vision applications, we expect to continue 
to find good inspiration for what might 
work well for auditory-image-based 
machine hearing applications. When we 
find ideas worth trying, it may be easy to 
obtain implementations that can be 
adapted to use the output of our auditory 
analysis stages. Such repurposing of 
machine vision systems may provide good 
leverage in machine hearing research. 

CONCLUSION 
The machine hearing field is stalting to find 
its feet. Applications are abundant and many 
are easy to address with known auditory 
front ends, combined with known feature 
extraction and machine learning techniques 
such as those that have proven successful in 
analogous applications in machine vision. 

The signal processing technology 
involved is diverse but not too complex. 
Nonlinear filters, cOlTelators, vector 
quantizers, and online learning algo
rithms, are involved in ways that can be 

initially fairly simple, yet leave room for 
open-ended research and improvement. 
Cooperation with researchers in auditory 
psychology and physiology will be highly 
valued on both ends. 

Curing our machines' deafness, lever
aging our knowledge of the amazing 
capabilities of the mammalian cochlea 
and auditory brain is a goal that will keep 
this field busy for a while and that will 
provide rewards on many fronts. 
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