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Machine Hearing: An Emerging Field 

f we had machines that could hear 
as humans do, we would expect 
them to be able to easily distinguish 
speech from music and background 
noises, to pull out the speech and 

music parts for special treatment, to 
know what direction sounds are coming 
from, to learn which noises are typical 
and which are noteworthy. Hearing 
machines should be able to organize 
what they hear; learn names for recog­
nizable objects, actions, events, places, 
musical styles, instruments, and speak­
ers; and retrieve sounds by reference to 
those names. These machines should be 
able to listen and react in real time, to 
take appropriate action on hearing 
noteworthy events , to participate in 
ongoing activities, whether in factories, 
in musical performances, or in phone 
conversations. 

APPLICATIONS AND MOTIVATIONS 
John Treichler's "Exploratory DSP" col­
umn "A View of the Future" [1] men­
tions a number of signal processing 
areas that are in the middle of a long tra­
jectory of development; the sound-relat­
ed ones include sonography, seismic 
exploration, telephony, music recording 
and compression, computer-laden auto­
mobiles, telepresence, speech synthesis 
and recognition, and sonar target detec­
tion and classification. Some of these 
(sonography, seismic, sonar) might be 
best served by techniques that have 
nothing to do with hearing. Others 
should benefit by an increased emphasis 
on hearing or on what things "sound 
like" to humans. Still other applications 
are not far enough along to make it on 
the list; for example, a very simple appli­
cation that has been explored a bit in 
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recent years is the personal audio diary: 
an audio recording of your daily life, 
which is now easy and inexpensive to 
capture and store, could be a great 
resource if there were good ways to ana­
lyze, organize, search, index, transcribe, 
and summarize it. 

I envision a coming together of the 
telepresence, computer-laden car, speech, 
and music areas that Treichler mentions 
into a "smart environment" system that 
can converse with its occupants; keep 
track of things; serve as a security, sur­
veillance, and diagnostic system; and 
provide entertainment and communica­
tion services. Since designing and build­
ing such a comprehensive system at this 
point is probably too big a job for anyone 
to take on, it might make sense to 
approach it instead by proliferating prim­
itive hearing machines, which could be 
installed in cars, homes, meeting rooms, 
and portable computers, and open inter­
faces that would allow applications to be 
added incrementally to take advantage of 
these hearing front ends without rein­
venting or redeploying them. Obviously, 
such front ends would need to work well 
for speech, music, and all sorts of mixed 
environmental sounds, so a hearing­
based approach is indicated. 

Besides these real-time and interac­
tive applications, there are lots of appli­
cations in the analysis of stored sound 
media. Our computers are presently 
mostly deaf, in that they have little idea 
what the sounds they store and serve 
represent. At Coogle, we store a lot of 
sound, including some speech data­
bases, but mostly the unanalyzed sound 
tracks of videos . Wouldn't it make sense 
to have our computers listen to all of 
those and note what they're about, to 
categorize, organize, and index them? 
Not just what words are spoken, but 
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what music is played, or what events 
and actions can be heard. The field of 
content-based analysis of images and 
videos has advanced steadily in recent 
years, but content-based analysis of 
sound tracks is somewhat lagging. 
Working video content-based analysis 
systems are low-hanging fruit for 
machine hearing, as sound features can 
easily make them better. 

MACHINE HEARING 
AS A FIELD OF ENDEAVOR 
Most reported work in sound analysis is 
applied to speech and music, but there is 
a much more general set of problems 
that are of interest here. We call this 
emerging, more general, field machine 
hearing. Compared to the diverse and 
active field of machine vision, the 
machine hearing field is still in its infan­
cy, though the pieces of technology need­
ed to move into diverse hearing 
applications are now mostly in hand. In 
this column, I discuss how I see this field 
developing, and how I see it addressing 
important current applications , and I 
make recommendations on strategies 
and approaches that I hope others will 
find useful to help advance the field. 

In machine hearing, we focus on 
pragmatic system structures and real 
applications involving realistic sound 
mixtures in real environments. We hope 
to avoid the kind of split that the vision 
field had over the years, between 
"machine vision" in industry and "com­
puter vision" in academia, and instead 
bring all the speech, music, and hearing 
researchers closer together by focusing 
on more general sound processing that 
provides a clear opportunity for leverage 
via collaboration. 

In being pragmatic, we at the same 
time assume that machine hearing 
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systems will work best when they hear 
like humans do, in the sense that they 
model the human hearing apparatus, 
part of which is shown in Figure 1, and 
that they create internal representations 
based on what things "sound like," as 
opposed to analyzing directly into rep­
resentations of structures that make 
sound, such as vocal tracts. And we 
assume that the input sound will be a 
messy mixture, and so avoid representa­
tions that are optimized for one sound 
type or one sound source. 

We hope and expect that machine 
hearing will emerge as a first-class aca­
demic and industrial field, much like 
machine vision and machine learning. 

A MACHINE HEARING 
SYSTEM STRUaURE 
The machine hearing system structure 
that we are using as a baseline approach 
is one that we have modeled on some 
successful machine vision applications, 
and that has worked well for several 
sound-analysis applications already. Such 
a system consists of four main modules: 

1) A peripheral analyzer: Common to 
all machine applications is a sound­
analysis front end that models the 
amazing action of the cochlea in sepa­
rating sounds into a set of overlapping 

bandpass channels, compressing the 
dynamic range of sounds, and produc­
ing a half-wave-rectified representa­
tion that preserves both the power 
and the fine time structure in all the 
channel waveforms. 
2) One or more auditOly image gen­
erators: This stage demodulates fine 
temporal structure into more slowly 
changing representations, in the form 
of two-dimensional (2-D) moving 
image maps of the sort found in the 
auditory midbrain and projecting to 
the auditory cortex. For example, it 
generates a stabilized auditory image 
or correlogram, embodying joint spec­
tral and temporal detail per Licklider's 
duplex theory of pitch perception [2], 
or a binaural correlogram per 
Jeffress 's place theory of binaural 
localization [3). 

3)A feature extraction module: As in 
machine vision systems, this stage 
gets moving (auditory) images as 
input and extracts the kinds of local 
and global (or multiscale) features 
that will work well with a following 
trainable classifier. 
4)A trainable classifier or decision 

module: For the chosen application, 
appropriate machine learning tech­
niques are applied to learn a mapping 

FIG. 464.-Section through the organ of Corti. Magnified. (G. Retzius.) 
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[FIG1) The organ of Corti, shown here as drawn by anatomist Gustaf Retzius circa 
1880 and reproduced in Gray's Anatomy, is the inner ear's magical transducer 
assembly. The inner hair cells sense sound and drive most of the auditory nerve 
fibers, while the outer hair cells provide mechanical energy to amplify and 
compress traveling waves on the basilar membrane. The micromechanics of the 
organ of Corti is still an active area of research. 

from the features extracted in the pre­
vious stages to the kinds of decisions 
needed by the application. This mod­
ule can operate in a single step, as a 
single-layer percept ron does, or it can 
use or learn multiple layers of inter­
nal structure. 
The first two modules respect human 

hearing, in the sense of having a goal of 
producing representations of what the 
sound stream "sounds like," while trans­
forming the machine hearing problem 
into the form of a ma<;:hine vision prob­
lem-reducing the machine hearing 
problem to the previously unsolved prob­
lem of machine vision, I've been told. 
Solved or not, this reduction allows use­
ful leverage of successful techniques in 
the latter two modules, as well as plenty 
of room to improve at each stage. 

Important concepts that can be 
shared between sound and image tech­
niques include sparse representations, 
compression, multi scale analysis, three­
dimensional (3-D) image-space motion 
analysis , and key-point detection, 
among others. For example, the repre­
sentation might be sparsified as early as 
the output of the first module, where 
each half-wave waveform hump of band­
pass filtered sound can be replaced by a 
discrete event indicating the time and 
size of the hump. 

RESEARCH STRATEGY 
The pursuit of auditory models for auto­
matic speech recognition (ASR) has not 
been entirely successful, due to the highly 
evolved state of ASR system technologies, 
which are finely tuned to existing repre­
sentations and to how phonetic properties 
of speech are manifest in those represen­
tations. BOUl·lard et al. [4) have made the 
point that if we're going to allow novel 
techniques such as auditory models into 
the ASR field, it will have to be done by 
tolerating a temporary performance set­
back and possibly slow recovery. A better 
strategy may be to look outside the main­
stream ASR application, to applications 
that are so far under-served, and in which 
the typical speech models don't work well. 
To some extent, music applications may 
share similar drawbacks, since they tend 
to involve representations highly tuned to 
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the complex mathematical structures of 
musical pitch, rhythm, key and chord 
structures, etc. Therefore, we recommend 
the strategy of focusing on applications 
with mixed and unpredictable sound con­
tent, which can include some speech and 
music, but which are not competing 
directly with existing speech and music 
analysis systems. 

Researchers need to address real 
problems, and evaluate and compare per­
formance on such problems, with real­
world noisy sound, to drive progress. 
Bake-offs such as the Music Information 
Retrieval Evaluation eXchange (MIREX) 
tasks are a great way to motivate conver­
sion of ideas into running systems, and 
to get feedback on how they work, com­
pared to what other researchers are 
doing. That approach helped the speech 
field advance, is helping the music field 
advance, and is needed to help more gen­
eral machine hearing advance. Shared 
development and training data sets can 
be a useful part of this process, along 
with the competitive evaluations. It takes 
a community of some critical mass to 
have the will and the energy to organize 
such data sets and bake-offs, and that's 
something that I believe we're approach­
ing, independent of the pure speech and 
music areas. 

One particularly promising area of 
machine hearing research is computa­
tional auditory scene analysis (CASA). 
To the extent that we can analyze sound 
scenes into separate meaningful compo­
nents, we can achieve an advantage in 
tasks involving processing of those com­
ponents separately. Separating speech 
from interference is one such applica­
tion. This concept has recently been 
applied by Audience Inc. to the problem 
of cleaning up the speech input to a 
mobile phone, in front of the voice cod­
ing [5] . Since the voice coders tend to 
work poorly on sound mixtures, but 
well on clean speech, there is good 
leverage here if interfering sounds can 
be suppressed at the input. The 
Audience technique uses a model of 
binaural hearing and treats the task as a 
CASA problem, with the result that the 
phone's coded speech sounds better and 
is more intelligible. 

For many applications, however, a 
CASA approach is unnecessary even 
when the sound is a complicated mix­
ture. Representations that give a good 
handle on what is in a mixture may be 
usable directly, without explicit identifi­
cation of which parts of that mixture go 
together, or how many sources or 
streams are present. In the next section, 
we describe an example system that we 
implemented at Google, motivated by 
representations such as "bag of words" 
that have been useful in document anal­
ysis and retrieval, and the correspond­
ing analogs that have been useful in 
image retrieval, even though docu­
ments and images contain arbitrary 
content mixtures. 

The system structure that we 
described does not have a clear place for 
incorporating CASA, though the first two 
stages produce the sort of representa­
tions normally used in CASA, and the 
later stages do not precl ude extracting 
stream-specific or source-specific fea­
tures, or learning the properties of 
streams and sources. Strategically, we 
feel that CASA should remain on a 
research track for a few more years, while 
many applications can be addressed prag­
matically without it in the short term. 

With or without CASA, working with 
messy sound data is a strategic impera­
tive, to force us to try to leverage what 
makes human hearing work so much 
better than systems that have been devel­
oped to work with clean speech and sym­
bolic music. 

Leveraging machine vision is 
another key strategy. Besides the use of 
ideas from the vision field, we can also 
leverage existing applications, as men­
tioned, by extending them to be audio­
visual by simply adding sound features. 
We can do closer integrations, to lever­
age true audiovisual effects, for example 
in security and surveillance systems 
that include both cameras and micro­
phones and need to track and identify 
what 's going on. And we can extend 
ideas like visual tracking to more 
abstract kinds of sound tracking. 
Collaboration with machine vision 
researchers will help to grow the 
machine hearing field more quickly. 

THE POLE-ZERO FILTER 
CASCADE PERIPHERAL MODEL 
By analyzing a number of good proper­
ties that we want in model of the 
cochlea, or auditory periphery, we have 
converged on a pole-zero filter cascade 
(PZFC) structure as shown in Figure 2 
[6]. This structure is based on fitting 
the magnitude and delay of basilar 
membrane traveling waves [7] . Recently, 
Mandai et al. have arrived at essentially 
the same cascaded pole-zero filter 
design by a more rigol:oUS derivation 
based on models of impedance of the 
basilar membrane [8]. 

It is not necessarily important that 
the front-end filterbank be very true to 
the auditory system, but it probably can't 
hurt. By using a cascade structure that 
has a close connection to the underlying 
wave mechanics, and that provides excel­
lent fits to both psychoacoustic and 
physiological data, we do get the strate­
gic advantage of staying in closer con­
nection with traditional hearing 
researchers who are advancing the 
understanding of the cochlea and other 
levels of the auditory system. 

A key feature of the PZFC for machine 
hearing is its computational efficiency 
and simplicity, even while reproducing 
the complex nonlinear behavior of the 
magical transducer assembly of the 
organ of Corti. A cascade of simple sec­
ond-order filter sections, one section per 
output channel, is nearly all there is to 
it. To get the nonlinearity, we add feed­
back control of parameters as a way to 
achieve an AGC for dynamic range com­
pression. And we add an instantaneous 
cubic nonlinearity per stage, too, to give 
more very fast compression, and to gen­
erate realistic combination tones 
(Tartini 's tones) that are known to be 
audibly propagating in the hydrome­
chanics of the cochlea. 

THE STABILIZED AUDITORY IMAGE 
Our second module converts the signals 
on the auditory nerve to a more movie­
like representation of the sort that is 
found in 2-D sheets of brain tissue as 
illustrated in Figure 3. 

The stabilized auditory image is a 
representation developed by Patterson 
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Outputs 

[FIG2) Schematic of the PZFC model of peripheral auditory filtering. The (top) 
cascaded filter stages provide a variable peak gain via a variable pole damping, 
which is adjusted by slowly varying feedback control signals from the (bottom) 
automatic gain control (AGC) smoothing network. The AGC loop corresponds to 
control to the cochlea's outer hair cell activity by efferent neurons from the olivary 
complex in the brainstem. 

[9], closely related to the auditory cor­
relogram [10], a realization of the 
duplex theory of pitch perception [2J. 
Patterson's image creation by triggered 
temporal integration is essentially a 
short-time cross-correlation of each 
channel 's signal with a sparse trigger 
impulse signal, for trigger events cho­
sen at prominent waveform peaks. He 
has experimented with a variety of mod­
ifications of the basic scheme, for exam­
ple to create a scale-shift-covariant 
version designed to separate size effects 
from message effects in animal commu­
nications and human speech. 

Many other imagelike or movielike 
auditory image representations 
are possible, for example to map 
interaural time difference and 
interaural level difference cues as 
computed in the brainsteam's oli-
vary complex. In general, auditory 
images have an extra spatial 
dimension beyond the tonotopic 
or frequency dimension that 's 
commonly used in various short-
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the new knowledge into our machine 
hearing systems within the auditory 
image framework. 

EXAMPLE SYSTEM: SOUND 
RETRIEVAL FROM TEXT QUERIES 
Consider a large collection of sound 
files-potentially millions of sound 
effects, recordings, sound tracks, etc. It 
would be useful to find those files that 
are relevant to a user 's text queries, 
such as "loud car crash. " If we can 
learn a relationship between abstract 
sound features and query terms such 
as "loud," "car," and "crash" in a way 
that allows them to be naturally 
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combined, we could support multiword 
queries effectively. 

This was the system that we selected 
for our first machine hearing experi­
ments at Google, partly because of the 
availability of Grangier and Bengio's pas­
sive-aggressive method for image 
retrieval (PAMIR) technology that had 
been recently developed to do the same 
kind of thing for image retrieval [I1J. 

The PAMIR method requires that our 
Stage 3 deliver a "bag of features" to rep­
resent a document (s~)Und file , image 
file, or text file). A bag is like a set but 
with counts of repeated elements; equiv­
alently, it is a histogram of how many 
times each feature occurs in the docu­
ment. With sparse features, the bag is 
itself sparse; that is, since most counts 
are zero, only the nonzero counts need 
to be represented. 

The abstract sparse features that 
worked well for image retrieval were 
multiscale abstract codes for local struc­
ture at locations all over the image. We 
made an analogous representation of the 
frames of an auditory image movie by 
using vector quantization (VQ), as shown 
in Figure 4, of many image patches of 
different sizes and aspect ratios. For 
example, a typical experiment configura­
tion used 49 different patches, or boxes 
as we called them, each quantized 
through its own VQ codebook of 256 typ­
ical patterns specific to that box size and 
location, for a total of about 12,500 fea­
ture dimensions. At each frame, at a rate 

of 50 frames per second, only 
11256 of the features would be 
present; counting these occur­
rences over all the frames in a 
sound file usually resulted in 90% 
or more of the feature dimensions 
still being zero, so sparse repre­
sentations were effective. 

PAMIR uses a fast and robust 

time spectral representations. This 
imagelike dimensionality is moti­
vated by the 2-D structure of audi­
tory cortex, and the various kinds 
of maps found in the auditory ner­
vous system. As more is learned 
about these brain levels, we can 
expect to be able to incorporate 

[FIG3) Example of an auditory image frame in response 
to a spoken vowel sound, using a very simple trigger 
detection method. The periodicity along the time lag 
dimension is a prominent feature of voiced speech, 
while the message, the vowel identity, is in the 
formants, the frequency bands in which the energy is 
concentrated. The image shows a low first formant, 
and high second and upper formants, indicating a high 
front vowel such as "ee." 

training procedure to optimize a 
simple linear mapping from fea­
tures to query terms, given train­
ing data with known tags. The 
query is represented as a sparse 
vector of terms in the tag vocabu­
lary (about 3,000 words), and each 
sound file is given a score respect 
to a query via a linear matrix 
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[FIG4] Generating sparse codes from an "audio document," in four steps: 1) cochlea simulation, 2) stabilized auditory image 
creation, 3) sparse coding by vector quantization of multiscale patches, and 4) aggregation into a "bag of features" 
representation of the entire audio document. Steps 3 and 4 here correspond to the feature extraction module in the four­
module system structure. To the fourth module, a PAMIR-based learning and retrieval system, this entire diagram represents a 
front end providing abstract sparse features for audio document characterization. 

product of features times matrix times 
query. The matrix is trained to optimize 
a ranking criterion, such that it attempts 
to rank "relevant" documents higher, by 
giving them a higher score, than "non­
relevant" ones, in the training set, for a 
large number of training queries that 
include multiword queries formed from 
the tag vocabulary. 

The attractiveness of this approach 
was that we could use PAMIR for our 
Stage 4, since it didn't contain anything 
specific to images, and we could use a 
simple abstract VQ-based feature extrac­
tion for Stage 3, not tied to any particu­
lar sound classes or ideas of where in the 
auditory image the important distin­
guishing infor.mation might be. We com­
pared the PAMIR approach to other 
trainable classifiers, support vector 
machines and mixture of Gaussians, and 

to another front-end representation vec­
tor quanitized mel-frequency cepstral 
coefficients (MFCCs). They all worked 
fairly well, but the PAMIR technique was 
much faster to train, and the auditory 
image features gave the best perfor­
mance, if we increased the dimensional­
ity by going to larger codebooks [12] . 

We are presently doing experiments 
with more challenging, but still con­
trolled, sound mixtures for which we 
have known text tags, constructed for 
example by adding pairs of sound files 
together, and finding that the auditory 
sparse-coding approach shows an advan­
tage in interference. 

LEVERAGING MACHINE VISION 
AND MACHINE LEARNING 
We have dozens of books with "machine 
vision" in the title, exploring techniques 

and applications. Each one can provide 
ideas and inspiration for machine hearing 
techniques and applications. Most applica­
tions are trainable, based on "machine 
learning." The game is mostly about how 
to extract features, from images or sounds, 
that work well with machine learning sys­
tems, and then train these systems to 
meet the needs of an application. 

Some learning systems work best with 
fairly low feature dimensionality. ASR 
systems typically use a 39-dimensional 
MFCC-based feature vector, and learn dis­
tributions in feature space as mixtures of 
Gaussians. Other techniques, such as 
PAMIR from the vision field, deal best 
with very high feature dimensionality and 
don't try to model the distribution in fea­
ture space. By paying attention to what 

(continued on page 139) 
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techniques are working well in machine 
vision applications, we expect to continue 
to find good inspiration for what might 
work well for auditory-image-based 
machine hearing applications. When we 
find ideas worth trying, it may be easy to 
obtain implementations that can be 
adapted to use the output of our auditory 
analysis stages. Such repurposing of 
machine vision systems may provide good 
leverage in machine hearing research. 

CONCLUSION 
The machine hearing field is stalting to find 
its feet. Applications are abundant and many 
are easy to address with known auditory 
front ends, combined with known feature 
extraction and machine learning techniques 
such as those that have proven successful in 
analogous applications in machine vision. 

The signal processing technology 
involved is diverse but not too complex. 
Nonlinear filters, cOlTelators, vector 
quantizers, and online learning algo­
rithms, are involved in ways that can be 

initially fairly simple, yet leave room for 
open-ended research and improvement. 
Cooperation with researchers in auditory 
psychology and physiology will be highly 
valued on both ends. 

Curing our machines' deafness, lever­
aging our knowledge of the amazing 
capabilities of the mammalian cochlea 
and auditory brain is a goal that will keep 
this field busy for a while and that will 
provide rewards on many fronts. 
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