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[FIG4] Generating sparse codes from an “audio document,” in four steps: 1) cochlea simulation, 2) stabilized auditory image
creation, 3) sparse coding by vector quantization of multiscale patches, and 4) aggregation into a “bag of features”
representation of the entire audio document. Steps 3 and 4 here correspond to the feature extraction module in the four-

module system structure. To the fourth module, a PAMIR-based learning and retrieval system, this entire diagram represents a

front end providing abstract sparse features for audio document characterization.

product of features times matrix times
query. The matrix is trained to optimize
a ranking criterion, such that it attempts
to rank “relevant” documents higher, by
giving them a higher score, than “non-
relevant” ones, in the training set, for a
large number of training queries that
include multiword queries formed from
the tag vocabulary.

The attractiveness of this approach
was that we could use PAMIR for our
Stage 4, since it didn’t contain anything
specific to images, and we could use a
simple abstract VQ-based feature extrac-
tion for Stage 3, not tied to any particu-
lar sound classes or ideas of where in the
auditory image the important distin-
guishing information might be. We com-
pared the PAMIR approach to other
trainable classifiers, support vector
machines and mixture of Gaussians, and

to another front-end representation vec-
tor quanitized mel-frequency cepstral
coefficients (MFCCs). They all worked
fairly well, but the PAMIR technique was
much faster to train, and the auditory
image features gave the best perfor-
mance, if we increased the dimensional-
ity by going to larger codebooks [12].

We are presently doing experiments
with more challenging, but still con-
trolled, sound mixtures for which we
have known text tags, constructed for
example by adding pairs of sound files
together, and finding that the auditory
sparse-coding approach shows an advan-
tage in interference.

LEVERAGING MACHINE VISION

AND MACHINE LEARNING

We have dozens of books with “machine
vision” in the title, exploring techniques

and applications. Each one can provide
ideas and inspiration for machine hearing
techniques and applications. Most applica-
tions are trainable, based on “machine
learning.” The game is mostly about how
to extract features, from images or sounds,
that work well with machine learning sys-
tems, and then train these systems to
meet the needs of an application.

Some learning systems work best with
fairly low feature dimensionality. ASR
systems typically use a 39-dimensional
MFCC-based feature vector, and learn dis-
tributions in feature space as mixtures of
Gaussians. Other techniques, such as
PAMIR from the vision field, deal best
with very high feature dimensionality and
don’t try to model the distribution in fea-
ture space. By paying attention to what
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techniques are working well in machine
vision applications, we expect to continue
to find good inspiration for what might
work well for auditory-image-based
machine hearing applications. When we
find ideas worth trying, it may be easy to
obtain implementations that can be
adapted to use the output of our auditory
analysis stages. Such repurposing of
machine vision systems may provide good
leverage in machine hearing research.

CONCLUSION
The machine hearing field is starting to find
its feet. Applications are abundant and many
are easy to address with known auditory
front ends, combined with known feature
extraction and machine learning techniques
such as those that have proven successful in
analogous applications in machine vision.
The signal processing technology
involved is diverse but not too complex.
Nonlinear filters, correlators, vector
quantizers, and online learning algo-
rithms, are involved in ways that can be

initially fairly simple, yet leave room for
open-ended research and improvement.
Cooperation with researchers in auditory
psychology and physiology will be highly
valued on both ends.

Curing our machines’ deafness, lever-
aging our knowledge of the amazing
capabilities of the mammalian cochlea
and auditory brain is a goal that will keep
this field busy for a while and that will
provide rewards on many fronts.
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