
PLANET: Massively Parallel Learning of Tree Ensembles
with MapReduce

Biswanath Panda, Joshua S. Herbach, Sugato Basu, Roberto J. Bayardo
Google, Inc.

[bpanda, jsherbach, sugato]@google.com, bayardo@alum.mit.edu

ABSTRACT
Classification and regression tree learning on massive datasets
is a common data mining task at Google, yet many state
of the art tree learning algorithms require training data to
reside in memory on a single machine. While more scal-
able implementations of tree learning have been proposed,
they typically require specialized parallel computing archi-
tectures. In contrast, the majority of Google’s computing
infrastructure is based on commodity hardware.

In this paper, we describe PLANET: a scalable distributed
framework for learning tree models over large datasets. PLA-
NET defines tree learning as a series of distributed computa-
tions, and implements each one using the MapReduce model
of distributed computation. We show how this framework
supports scalable construction of classification and regres-
sion trees, as well as ensembles of such models. We discuss
the benefits and challenges of using a MapReduce compute
cluster for tree learning, and demonstrate the scalability of
this approach by applying it to a real world learning task
from the domain of computational advertising.

1. INTRODUCTION
In this paper, we look at leveraging the MapReduce dis-

tributed computing framework for a complex data mining
task of wide interest: learning ensembles of classification or
regression trees. While there are other methods for parallel
and distributed tree learning, building production-ready im-
plementations remains complex and error-prone. With the
wide and growing availability of MapReduce-capable com-
pute infrastructures, it is natural to ask whether such infras-
tructures may be of use in parallelizing common data mining
tasks such as tree learning. For many data mining opera-
tions, MapReduce may offer better scalability with vastly
simplified deployment in a production setting.

MapReduce is a simple model for distributed computing
that abstracts away many of the difficulties in parallelizing
data management operations across a cluster of commodity
machines. MapReduce reduces, if not eliminates, many com-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

plexities such as data partitioning, scheduling tasks across
many machines, handling machine failures, and perform-
ing inter-machine communication. These properties have
motivated many technology companies to run MapReduce
frameworks on their compute clusters for data analysis and
other data management tasks. MapReduce has become in
some sense an industry standard. For example, there are
open source implementations such as Hadoop that can be
run either in-house or on cloud computing services such as
Amazon EC2.1 Startups like Cloudera2 offer software and
services to simplify Hadoop deployment, and companies in-
cluding Google, IBM and Yahoo! have granted several uni-
versities access to Hadoop clusters to further cluster com-
puting research.3

Despite the growing popularity of MapReduce [12], its
application to certain standard data mining and machine
learning tasks remains poorly understood. In this paper we
focus on one such task: tree learning. We believe that a
tree learner capable of exploiting a MapReduce cluster can
effectively address many scalability issues that arise in build-
ing tree models on massive datasets. Our choice of focusing
on tree models is motivated primarily by their popularity.
Tree models are used in many applications because they
are interpretable, can model complex interactions, and can
handle both ordered and unordered features. Recent studies
have shown that tree models, when combined with ensemble
techniques, provide excellent predictive performance across
a wide variety of domains [8, 9].

This paper describes our experiences with developing and
deploying a MapReduce based tree learner called PLANET,
which stands for Parallel Learner for Assembling Numerous
Ensemble Trees. The development of PLANET was moti-
vated by a real application in sponsored search advertising in
which massive clickstreams are processed to develop a pre-
dictor of user experience following the click of a sponsored
search ad [30]. We show how PLANET can be scaled effec-
tively to large datasets, describe experiments that highlight
the performance characteristics of PLANET, and demon-
strate the benefits of various optimizations that we imple-
mented within the system. We show that while MapReduce
is not a panacea, it still provides a powerful basis on which
scalable tree learning can be implemented.

The rest of the paper is organized as follows. In Section
2 we describe the necessary background on which we build,

1http://aws.amazon.com/ec2/
2http://www.cloudera.com/
3For example, see http://www.youtube.com/watch?v=UBrDPRlplyo
and http://www.nsf.gov/news/news summ.jsp?cntn id=111470

including the formal problem definitions of classification and
regression. We also review the process of solving these prob-
lems through tree induction, and describe the MapReduce
paradigm for distributed computation. As a prelude to a
more detailed description of our approach, in Section 3 we
provide an example of how tree induction proceeds in PLA-
NET. This example describes the roles of each of the major
components as well as their high level requirements. Section
4 provides a more formal algorithm description for the case
of learning a single classification or regression tree, and Sec-
tion 5 describes how PLANET can be generalized to produce
ensembles of trees via boosting and/or bagging. In Section
6 we discuss several important details we had to address in
our efforts to develop an efficient and production-ready de-
ployment. We describe the performance of PLANET on our
sponsored search derived clickstream dataset in Section 7.
We review related work in Section 8 and conclude with a
discussion of future work in Section 9.

2. PRELIMINARIES
Let X = {X1, X2, . . . XN} be a set of attributes with do-

mains DX1
, DX2

, . . . DXN
respectively. Let Y be an output

with domain DY . Consider a dataset D∗ = {(xi, yi)|xi ∈
DX1

× DX2
× . . . DXN

, yi ∈ DY } sampled from an unknown
distribution, where the ith data vector xi has an output
yi associated with it. Given the dataset D∗, the goal in
supervised learning is to learn a function (or model) F :
DX1

× DX2
× . . . DXN

→ DY that best approximates the
true distribution of D∗. If DY is continuous, the learning
problem is a regression problem; if DY is categorical, it is a
classification problem.

Let L be a function that quantifies in some way the dis-
crepancy between the function prediction F (xi) on xi and
the actual output yi. A model that minimizes the net loss
P

(xi,yi)∈D∗ L(F (xi), yi) on the training set D∗ may not

generalize well (have low loss) when applied to future data [32].
Generalization is attained through controlling model com-
plexity by various methods, e.g., pruning and ensemble learn-
ing for tree models [5]. The learned model is evaluated by
measuring its net loss when applied to a holdout data set.

2.1 Tree Models
Classification and regression trees are one of the oldest

and most popular data mining models [13]. Tree models
represent F by recursively partitioning the data space DX1

×
DX2

× . . . DXN
into non-overlapping regions, with a simple

model in each region.
Figure 1 shows an example tree model. Non-leaf nodes in

the tree define region boundaries in the data space. Each
region boundary is represented as a predicate on an attribute
in X . If the attribute is ordered, the predicate is of the form
X < v, v ∈ DX (e.g., Node A in Figure 1). Unordered
attributes have predicates of the form X ∈ {v1, v2, . . . vk},
v1 ∈ DX , v2 ∈ DX , . . . vk ∈ DX , (e.g., Node B in Figure 1).
The path from the root to a leaf node in the tree defines
a region. Leaf nodes (e.g., the left child of A in Figure 1),
contain a region prediction which in most cases is a constant
value or some simple function. To make predictions on an
unknown x, the tree is traversed to find the region containing
x. The region containing x is the path from the root to a
leaf in the tree along which all non-leaf predicates are true
when evaluated on x. The prediction given by this leaf is
used as the value for F (x).

Algorithm 1 InMemoryBuildNode

Require: Node n, Data D ⊆ D∗

1: (n→split,DL,DR)=FindBestSplit(D)
2: if StoppingCriteria(DL) then
3: n→left prediction=FindPrediction(DL)
4: else
5: InMemoryBuildNode(n→left,DL)
6: if StoppingCriteria(DR) then
7: n→right prediction=FindPrediction(DR)
8: else
9: InMemoryBuildNode(n→right,DR)

In our example tree model, predicate evaluations at non-
leaf nodes have only two outcomes, leading to binary splits.
While tree models can have non-binary splits, for the sake
of simplicity we will focus on binary splits only for the re-
mainder of this paper. All our techniques also apply to
tree algorithms with non-binary splits with straightforward
modifications.

Tree models are popular because they are interpretable,
capable of modeling complex classification and regression
tasks, and handle both ordered and categorical domains.
Recent work by Caruana et al. [9] has also shown that tree
models, when combined with ensemble learning methods like
bagging [4], boosting [14], and forests [5], outperform many
other popular learning methods in terms of prediction accu-
racy. A thorough discussion of tree models and different en-
semble methods is beyond the scope of this paper — see [29]
for a good review.

2.2 Learning Tree Models
Previous work on learning tree models is extensive. For a

given training dataset D∗, finding the optimal tree is known
to be NP-Hard; thus most algorithms use a greedy top-down
approach to construct the tree (Algorithm 1) [13]. At the
root of the tree, the entire training dataset D∗ is examined
to find the best split predicate for the root. The dataset is
then partitioned along the split predicate and the process
is repeated recursively on the partitions to build the child
nodes.

Finding the best split predicate for a node (Line 1) is the
most important step in the greedy learning algorithm, and
has been the subject of much of the research in tree learn-
ing. Numerous techniques have been proposed for finding
the right split at a node, depending on the particular learn-
ing problem. The main idea is to reduce the impurity (I) in
a node. Loosely defined, the impurity at a node is a measure
of the dissimilarity in the Y values of the training records D

that are input to the node. The general strategy is to pick
a predicate that maximizes I(D)− (I(DL) + I(DR)), where
DL and DR are the datasets obtained after partitioning D

on the chosen predicate. At each step the algorithm greedily
partitions the data space to progressively reduce region im-
purity. The process continues until all Y values in the input
dataset D to a node are the same, at which point the algo-
rithm has isolated a pure region (Lines 2-3 and 6-7). Some
algorithms do not continue splitting until regions are com-
pletely pure, and instead stop once the number of records
in D falls below a predefined threshold.

Popular impurity measures that have been proposed are
derived from measures such as entropy, Gini index, and vari-
ance [29], to name only a few. PLANET uses an impurity

measure based on variance (V ar) to evaluate the quality of
a split. The higher the variance in the Y values of a node,
the greater the node’s impurity. Further details on the split
criteria are discussed in Section 2.3. While we focus con-
cretely on variance as our split criteria for the remainder
of this presentation, as long as a split metric can be com-
puted on subsets of the training data and later aggregated,
PLANET can be easily extended to support it.

2.2.1 Scalability Challenge
The greedy tree induction algorithm we have described

is simple and works well in practice. However, it does not
scale well to large training datasets. FindBestSplit requires
a full scan of the node’s input data, which can be large at
higher levels of the tree. Large inputs that do not fit in main
memory become a bottleneck because of the cost of scanning
data from secondary storage. Even at lower levels of the tree
where a node’s input dataset D is typically much smaller
than D∗, loading D into memory still requires reading and
writing partitions of D∗ to secondary storage multiple times.

Previous work has looked at problem of building tree mod-
els from datasets which are too large to fit completely in
main memory. Some of the known algorithms are disk-based
approaches that use clever techniques to optimize the num-
ber of reads and writes to secondary storage during tree
construction (e.g., [26]). Other algorithms scan the training
data in parallel using specialized parallel architectures (e.g.,
[3]). We defer a detailed discussion of these approaches and
how they compare to PLANET to Section 8. As we will
show in Section 8, some of the ideas used in PLANET have
been proposed in the past; however, we are not aware of any
efforts to build massively parallel tree models on commodity
hardware using the MapReduce framework.

Post-pruning learned trees to prevent overfitting is also a
well studied problem. However, with ensemble models (Sec-
tion 5), post pruning is not always needed. Since PLANET
is primarily used for building ensemble models, we do not
discuss post pruning in this paper.

2.3 Regression Trees
Regression trees are a special case of tree models where

the output attribute Y is continuous [5]. We focus primar-
ily on regression trees within this presentation because most
of our use cases require predictions on continuous outputs.
Note that any regression tree learner also supports binary
(0-1) classification tasks by modeling them as instances of
logistic regression. The core operations of regression tree
learning in Algorithm 1 are implemented as follows:

FindBestSplit(D): In a regression tree, D is split using
the predicate that results in the largest reduction in vari-
ance. Let V ar(D) be the variance of the output attribute
Y measured over all records in D. At each step the tree
learning algorithm picks a split which maximizes

|D| × V ar(D)− (|DL| × V ar(DL) + |DR| × V ar(DR)), (1)

where DL ⊂ D and DR ⊂ D are the training records in the
left and right subtree after splitting D by a predicate.

Regression trees use the following policy to determine the
set of predicates whose split quality will be evaluated:

• For ordered domains, split predicates are of the form
Xi < v, for some v ∈ DXi

. To find the best split, D

is sorted along Xi, and a split point is considered be-
tween each adjacent pair of values for Xi in the sorted
list.

• For unordered domains, split predicates are of the form
Xi ∈ {v1, v2, . . . vk}, where {v1, v2, . . . vk} ∈ P(DXi

),
the power set of DXi

. Breiman [6] presents an algo-
rithm for finding the best split predicate for a categor-
ical attribute without evaluating all possible subsets of
DXi

. The algorithm is based on the observation that
the optimal split predicate is a subsequence in the list
of values for Xi sorted by the average Y value.

StoppingCriteria(D): A node in the tree is not expanded
if the number of records in D falls below a threshold. Al-
ternatively, the user can also specify the maximum depth to
which a tree should be built.

FindPrediction(D): The prediction at a leaf is simply the
average of the all the Y values in D.

2.4 MapReduce
PLANET uses MapReduce [12] to distribute and scale

tree induction to very large datasets. MapReduce provides
a framework for performing a two-phase distributed compu-
tation on large datasets, which in our case is the training
dataset D∗. In the Map phase, the system partitions D∗

into a set of disjoint units which are assigned to workers,
known as mappers. In parallel, each mapper scans through
its assigned data and applies a user-specified map function
to each record. The output of the user’s map function is a
set of 〈key, value〉 pairs which are collected for MapReduce’s
Reduce phase. In the reduce phase, the key-value pairs are
grouped by key and are distributed to a series of workers,
called reducers. Each reducer then applies a user-specified
reduce function to all the values for a key and outputs a
final value for the key. The collection of final values from all
of the reducers is the final output of MapReduce.

3. EXAMPLE
The PLANET framework breaks up the process of con-

structing a tree model into a set of MapReduce tasks. De-
pendencies exist between the different tasks, and PLANET
uses clever scheduling methods to efficiently execute and
manage them. Before delving into the technical details of
the framework, we begin with a detailed example of how
tree induction proceeds in PLANET.

The example introduces the different components in PLA-
NET, describes their roles, and provides a high level overview
of the entire system. To keep the example simple we only
discuss the construction of a single tree. The method ex-
tends naturally to ensembles of trees, as we discuss in Sec-
tion 5.

Example setup: Let us assume that we have a training
dataset D∗ with 100 records. Further assume that tree in-
duction stops once the number of training records at a node
falls below 10. Let the tree in Figure 1 be the model that
will be learned if we ran Algorithm 1 on a machine with suf-
ficient memory. Our goal in this example is to demonstrate
how PLANET constructs the tree in Figure 1 when there is
a memory constraint limiting Algorithm 1 to operating on
inputs of size 25 records or less.

B

C D

G HE F

|D|=25

A
|D|=10 |D|=90

|D|=45 |D|=45

|D|=20 |D|=15 |D|=30

0.42266

X1 < v1

X2 ∈ {v2, v3}

Figure 1: Example Tree. Note that the labels on
the nodes (in boxes) are the split predicates, while
the labels on the edges are the sizes of the dataset
in each branch (|D| denotes the dataset size in that
branch in this figure).

3.1 Components
At the heart of PLANET is the Controller, a single ma-

chine that initiates, schedules and controls the entire tree
induction process. The Controller has access to a compute
cluster on which it schedules MapReduce jobs. In order
to control and coordinate tree construction, the Controller
maintains the following:

• ModelFile (M): The Controller constructs a tree using
a set of MapReduce jobs, each of which builds different
parts of the tree. At any point, the model file contains
the entire tree constructed so far.

Given the ModelFile (M), the Controller determines the
nodes at which split predicates can be computed. In the
example of Figure 1, if M has nodes A and B, then the Con-
troller can compute splits for C and D. This information is
stored in two queues.

• MapReduceQueue (MRQ): This queue contains nodes
for which D is too large to fit in memory (i.e. > 25 in
our example).

• InMemoryQueue (InMemQ): This queue contains nodes
for which D fits in memory (i.e ≤ 25 in our example).

As tree induction proceeds, the Controller dequeues nodes
off MRQ and InMemQ and schedules MapReduce jobs to
find split predicates at the nodes. Once a MapReduce job
completes, the Controller updates M with the nodes and
their split predicates, and then updates MRQ and InMemQ
with new nodes at which split predicates can be computed.
Each MapReduce job takes as input a set of nodes (N), the
training data set (D∗), and the current state of the model
(M). The Controller schedules two types of MapReduce jobs.

• Nodes in MRQ are processed using MR ExpandNodes,
which for a given set of nodes N computes a candidate
set of good split predicates for each node in N .

• Nodes in InMemQ are processed using MR InMemory.
Recall that nodes in InMemQ have input data sets D

that are small enough to fit in memory. Therefore,
given a set of nodes N , MR InMemory completes tree
induction at nodes in N using Algorithm 1.

We defer details of the MapReduce jobs to the next sec-
tion. In the remainder of this section, we will tie the above
components together and walk through the example.

3.2 Walkthrough
When tree induction begins, M, MRQ, and InMemQ are

all empty. The only node the Controller can expand is the
root (A). Finding the split for A requires a scan of the entire
training dataset of 100 (≥ 25) records. Since this set is too
large to fit in memory, A is pushed onto MRQ and InMemQ
stays empty.

After initialization the Controller dequeues A from MRQ
and schedules a job MR ExpandNodes({A}, M, D∗). This
job computes a set of good splits for node A along with
some additional information about each split. Specifically,
for each split we compute (1) the quality of the split (i.e.,
the reduction in impurity), (2) the predictions in the left
and right branches, and (3) the number of training records
in the left and right branches.

The split information computed by MR ExpandNodes gets
sent back to the Controller, which selects the best split for
node A. In this example, the best split has 10 records in the
left branch and 90 records in the right. The selected split
information for node A is then added into the ModelFile.
The Controller next updates the queues with new nodes at
which split predicates can be computed. The left branch of
A has 10 records. This matches the stopping criteria and
hence no new nodes are added for this branch. For the right
branch with 90 records (≥ 25), node B can be expanded and
is pushed onto MRQ.

Tree induction continues by dequeuing node B, and schedul-
ing MR ExpandNodes({B}, M, D∗). Note that for expand-
ing node B we only need the records that went down the
right subtree of A, but to minimize book keeping, PLANET
passes the entire training dataset to the MapReduce. As we
describe in 4.3, MR ExpandNodes uses the current state of
the ModelFile to determine the subset of D∗ that will be
input to B.

Once the Controller has received the results for the MapRe-
duce on node B and updated M with the split for B, it
can now expand both C and D. Both of these nodes get 45
records as input and are therefore pushed on to MRQ. The
Controller can now schedule a single MR ExpandNodes({C,
D}, M, D∗) job to find the best splits for both nodes C and
D. Note that by expanding C and D in a single step, PLA-
NET expands trees breadth first as opposed to the depth
first process used by the in-memory Algorithm 1.

Once the Controller has the obtained the splits for C and
D, it can schedule jobs to expand nodes E, F, G, and H. Of
these, H uses 30 records, which still cannot fit in memory,
and hence gets added to MRQ. The input sets to E, F, G are
small enough to fit into memory and hence tree induction
at these nodes can be completed in-memory. The Controller
pushes these nodes into the InMemQueue.

The Controller next schedules two MapReduce jobs simul-
taneously. MR InMemory({E,F,G}, M, D∗) completes tree
induction at nodes E, F, and G since the input datasets
to these nodes are small. MR ExpandNodes({H}, M, D∗)

Algorithm 2 MR ExpandNodes::Map

Require: NodeSet N , ModelFile M, Training record
(x, y) ∈ D∗

1: n = TraverseTree(M, x)
2: if n ∈ N then
3: agg tupn ← y

4: for all X ∈ X do
5: v = Value on X in x
6: if X is ordered then
7: for all Split point s of X s.t. s < v do
8: Tn,X [s]← y

9: else
10: Tn,X [v]← y

Algorithm 3 MR ExpandNodes::Map Finalize

Require: NodeSet N

1: for all n ∈ N do
2: Output to all reducers(agg tupn)
3: for all X ∈ X do
4: if X is ordered then
5: for all Split point s of X do
6: Output((n, X, s), Tn,X [s])
7: else
8: for all v ∈ Tn,X do
9: Output((n, X), (v, Tn,X [v]))

computes good splits for H. Once the InMemory job returns,
tree induction for the subtrees rooted at E, F, and G is com-
plete. The Controller updates MRQ and InMemQ with the
children of node H and continues tree induction. PLANET
aggressively tries to maximize the number of nodes at which
split predicates can be computed in parallel, and schedules
multiple MapReduce jobs simultaneously.

4. TECHNICAL DETAILS
In this section, we discuss the technical details of PLA-

NET’s major components — the two critical MapReduces
that handle splitting nodes and growing subtrees, and the
Controller that manages the entire tree induction process.

4.1 MR ExpandNodes: Expanding a Single
Node

MR ExpandNodes is the component that allows PLANET
to train on datasets too large to fit in memory. Given a set of
nodes (N), the training dataset (D∗), and the current model
(M), this MapReduce job computes a set of good splits for
each node in N .

Map Phase: The training dataset D∗ is partitioned across
a set of mappers. Each mapper loads into memory the cur-
rent model (M) and the input nodes N . Note that the union
of the input datasets to all nodes in N need not be equal
to D∗. However, every MapReduce job scans the entire
training data set applying a Map function to every training
record. We will discuss this design decision in Section 4.3.

Pseudocode describing the algorithms that are executed
by each mapper appear in Algorithms 2 and 3. Given a
training record (x, y), a mapper first determines if the record
is part of the input dataset for any node in N by traversing
the current model M with (x, y) (Line 1, Alg. 2). Once the
input set to a node is determined, the next step is to evaluate

possible splits for the node, and select the best one.
Recall from Section 2.3 the method for finding the best

split for a node n. For an ordered attribute X, Equation 1
is computed between every adjacent pair of values for the
attribute that appear in the node’s input dataset D. Per-
forming this operation in a distributed setting would require
us to sort D∗ along each ordered attribute and write out the
results to secondary storage. These sorted records would
then have to be partitioned carefully across mappers, keep-
ing track of the range of values on each mapper. Distributed
algorithms implementing such approaches are complex and
end up using additional storage or network resources. PLA-
NET makes a tradeoff between finding the perfect split for
an ordered attribute and simple data partitioning. Splits are
not evaluated between every pair of values of an attribute.
Rather, prior to tree induction we run a MapReduce on D∗

and compute approximate equidepth histograms for every
ordered attribute [25]. When computing splits on an or-
dered attribute, a single split point is considered from every
histogram bucket of the attribute.

On startup, each mapper loads the set of split points to be
considered for each ordered attribute. For each node n ∈ N

and attribute X, the mapper maintains a table Tn,X of key-
value pairs. Keys for the table are the split points to be
considered for X and the values are tuples (agg tup) of the
form {

P

y,
P

y2,
P

1}. For a particular split point s ∈ DX

being considered for node n, the tuple Tn,X [s] contains: (1)
the sum of Y values for training records (x, y) that are input
to n and have values for X that are less than s, (2) the sum
of squares of these values, and (3) the number of training
records that are input to n and have values of X less than
s. Mappers scan subsets of D∗ and compute agg tups for all
split points being considered for each node in N (Lines 7, 8
in Alg. 2). After processing all its input records, each map-
per outputs keys of the form n, X, s and the corresponding
Tn,X [s] as values (Line 6, Alg. 3). As we show later, a re-
duce function will aggregate the agg tups with the same key
to compute the quality of the split X < s for node n.

For computing splits on an unordered attribute X, Sec-
tion 2.3 proposed computing Equation 1 for every subse-
quence of unique values of X sorted by the average Y . Each
mapper performs this computation by maintaining a table
Tn,X of key, agg tup pairs as described before. However, in
this case keys correspond to unique values of X seen in the
input records to node n. Tn,X [v] maintains the same ag-
gregate statistics as described earlier for all training records
that are input to n and have an X value of v (Line 10,
Alg. 2). After processing all input data, the mappers out-
put keys of the form n, X and value 〈v, Tn,X [v]〉 (Line 9,
Alg. 3). Note the difference in key-value pairs output for
ordered and unordered attributes. Quality of a split on an
ordered attribute can be computed independently of other
splits on that attribute, hence the split point s is part of the
key. To run Breiman’s algorithm, all values of an unordered
attribute need to be sorted by average Y value. Hence, the
value v of an attribute is not part of the key. A single re-
ducer processes and sorts all the values of the attribute to
compute the best split on the attribute.

In addition to the above outputs, each mapper also main-
tains agg tupn for each node n ∈ N (Line 3, Alg. 2) and
outputs them to all reducers (Line 2, Alg. 3). These tu-
ples are computed over all input records to their respective
nodes, and help reducers in computing split qualities.

Algorithm 4 MR ExpandNodes::Reduce

Require: Key k,Value Set V

1: if k == n then
2: {Aggregate agg tupn’s from mappers}
3: agg tupn = Aggregate(V)
4: else if k == n, X, s then
5: {Split on ordered attribute}
6: agg tupleft = Aggregate(V)
7: agg tupright = agg tupn - agg tupleft

8: UpdateBestSplit(S [n],X,s,agg tupleft, agg tupright)
9: else if k == n, X then

10: {Split on unordered attribute}
11: for all v,agg tup ∈ V do
12: T [v]← agg tup
13: UpdateBestSplit(S [n],BreimanSplit(X,T ,agg tupn))

Reduce Phase: The reduce phase, which works on the
outputs from the mappers, performs aggregations and com-
putes the quality of each split being considered for nodes
in N . Each reducer maintains a table S indexed by nodes.
S[n] contains the best split seen by the reducer for node n.

The pseudocode executed on each reducer is outlined in
Algorithm 4. A reducer processes three types of keys. The
first is of the form n with a value list V of the all agg tupn tu-
ples output by the mappers. These agg tups are aggregated
to get a single agg tupn with the {

P

y,
P

y2,
P

1} values
for all input records to node n (Line 3, Alg. 4). Reducers
process keys in sorted order so that they process all keys of
type n first. The other types of keys that a reducer processes
belong to ordered and unordered attributes. The keys corre-
sponding to unordered attributes are of the form n, X. Here
the set V associated with each key is a set of pairs consist-
ing of an unordered attribute value v and an agg tup. For
each v the agg tups are aggregated to get {

P

y,
P

y2,
P

1}
over all input records to n where the value of X is v. Once
aggregated, Breiman’s algorithm is used to find the opti-
mal split for X, and S [n] is updated if the resulting split
is better than any previous split for n (Lines 11-13, Alg 4).
For ordered attributes, keys are of the form n, X, s and V is
again a list of agg tups. Aggregating these into agg tupleft

gives the {
P

y,
P

y2,
P

1} values for all records input to n

that fall in the left branch of X < s (Line 6, Alg. 4). Using
agg tupn and agg tupleft it is straightforward to compute
the V ar based quality of the split X < s. If this split X < s

is better than the best split seen by the reducer for n so far,
then S [n] is updated to the current split (Lines 7-8, Alg. 4).

Finally, each reducer outputs the best split S [n] that it
has seen for each node. In addition to the split quality and
predicate, it also outputs the average Y value, and number of
the training records in the left and right branches of the split.
The Controller takes the splits produced by all the reducers
and finds the best split for each node in N , then updates the
ModelFile M with this information. The Controller updates
the queues with the child nodes that should be expanded
using information about the number of training records in
each branch.

4.2 MR InMemory: In Memory Tree Induc-
tion

As tree induction progresses, the size of the input dataset
for many nodes becomes small enough to fit in memory.

Algorithm 5 UpdateQueues

Require: DataSetSize |D|, Node n

1: if not StoppingCriteria(|D|) then
2: if |D| < in memory threshold then
3: InMemQ.append(n)
4: else
5: MRQ.append(n)

Algorithm 6 Schedule MR ExpandNode

Require: NodeSet N ,Current Model M
1: CandidateGoodSplits = MR ExpandNodes(N ,M,D∗)
2: for all n ∈ N do
3: n→split,n→l pred, n→r pred,|DL|,|DR| =

FindBestSplit(n, CandidateGoodSplits)
4: UpdateQueues(|DL|,n→left)
5: UpdateQueues(|DR|,n→right)
6: jobs running - -

At any such point, rather than continuing tree induction
using MR ExpandNodes, the Controller completes tree in-
duction in-memory using a different MapReduce job called
MR InMemory. Like MR ExpandNodes, MR InMemory par-
titions D∗ across a set of mappers. The map function pro-
cesses a training record (x, y) and traverses the tree in M, to
see if the (x, y) is input to some node n ∈ N . If such a node
is found then the map function outputs the node n as the
key and (x, y) as the value. The reduce function receives as
input a node n (as key) and the set of training records that
are input to the node (as values). The reducer loads the
training records for n into memory and completes subtree
construction at n using Algorithm 1.

4.3 Controller Design
The example in Section 3 provides the intuition behind

functionality of the Controller. Here we provide a more de-
tailed look at its roles and implementation.

The main Controller thread (Algorithm 8) schedules jobs
off of its queues until the queues are empty and none of the
jobs it schedules remain running. Scheduled MapReduce
jobs are launched in separate threads so that the Controller
can send out multiple jobs in parallel. When a MR Expand-
Nodes job returns, the queues are updated with the new
nodes that can now be expanded (Algorithm 6). Note that
when MR InMemory finishes running on a set of nodes N

(Algorithm 7), no updates are made to the queues because
tree induction at nodes in N is complete.

While the overall architecture of the Controller is fairly
straightforward, we would like to highlight a few important
design decisions. First, in our example in Section 3, re-
call that the Controller always removed all existing nodes
from MRQ and InMemQ and scheduled MapReduce jobs.
Therefore, it may seem that the Controller need not main-
tain queues and can schedule subsequent MapReduce jobs
directly after processing the output of a MapReduce job.

Algorithm 7 Schedule MR InMemory

Require: NodeSet N ,Current Model M
1: MR InMemory(N ,M,D)
2: jobs running - -

Algorithm 8 MainControllerThread

Require: Model M = ∅, MRQ=∅, InMemQ=∅
1: MRQ.append(root)
2: while true do
3: while MRQ not empty do
4: if TryReserveClusterResources then
5: jobs running ++
6: NewThread(ScheduleMR ExpandNode(⊆MRQ,M))
7: while InMemQ not empty do
8: if TryReserveClusterResources then
9: jobs running ++

10: NewThread(ScheduleMR InMemory(⊆InMemQ,M))
11: if jobs running==0 && MRQ empty && InMemQ

empty then
12: Exit

However, in practice this is not always possible. The mem-
ory limitations on a machine and the number of available
machines on the cluster often prevent the Controller from
scheduling MapReduce jobs for all nodes on a queue at once.

Second, when scheduling a set of nodes, recall that the
Controller does not determine the set of input records re-
quired by the nodes. Instead, it simply sends the entire
training dataset D∗ to every job. If the input to the set of
nodes being expanded by a node is much smaller than D∗,
then this implementation results in the Controller sending
much unnecessary input for processing. On the other hand,
this design keeps the overall system simple. In order to
avoiding sending unnecessary input, the Controller would
need to write out the input training records for each node
to storage. This in turn would require additional bookkeep-
ing for the Controller when operating normally, and would
further complicate important systems like the checkpoint-
ing mechanism (Section 6.3) and ensemble creation (Sec-
tion 5). The amount of unnecessary information sent by
our implementation is also mitigated by breadth-first tree
construction. If we can expand all nodes at level i + 1 in
one MapReduce job, then every training record is part of
the input to some node that is being expanded. Finally,
MapReduce frameworks are already optimized for scanning
data efficiently in a distributed fashion – the additional cost
of reading in a larger dataset can be mitigated by adding
more mappers, if necessary.

5. LEARNING ENSEMBLES
Until now we have described how the PLANET framework

builds a single tree. Ensemble-based tree models have better
predictive power when compared to single tree models [8,
9]. Bagging [4] and boosting [15] are the two most popular
tree ensemble learning methods. In this section we show
how PLANET supports the construction of tree ensembles
through these two techniques.

Boosting is an ensemble learning technique that uses a
weighted combination of weak learners to form a highly
accurate predictive model [14]. Our current boosting im-
plementation uses the GEM algorithm proposed by Fried-
man [15]. In the GEM algorithm, every weak learner is a
shallow tree (depth ≈ 2 or 3). Model construction proceeds
as follows: assume k − 1 weak learners (shallow trees) have
been added to the model. Let Fk−1 be the boosted model of
those trees. Tree k is trained on a sample of D∗ and residual

predictions (z). For a given training record (x, y), the resid-
ual prediction for tree k is z = y − Fk−1(x) for a regression
problem, and z = y − 1

1+exp(−Fk−1(x))
for a classification

problem. The boosting process is initialized by setting F0

as some aggregate defined over the Y values in the training
dataset. Abstracting out the details, we need three main
features in our framework to build boosted models.

• Building multiple trees: Extending the Controller to
build multiple trees is straightforward. Since the Con-
troller manages tree induction by reducing the process
to repeated node expansion, the only change neces-
sary for constructing a boosted model is to push the
root node for tree k onto the MR after tree k − 1 is
completed.

• Residual computation: Training trees on residuals is
simple since the current model is sent to every Map
Reduce job in full. If the mapper decides to use a
training record as input to a node, it can compute the
current model’s prediction, and hence the residual.

• Sampling: Each tree is built on a sample of D∗. Dap-
pers compute a hash of a training record’s id and the
tree id. Records hashing into a particular range are
used for constructing the tree. This hash-based sam-
pling guarantees that the same sample will be used for
all nodes in a tree, but different samples of D∗ will be
used for different trees.

Building an ensemble model using bagging involves learn-
ing multiple trees over independent samples of the training
data. Predictions from each tree in the model are com-
puted and averaged to compute the final model prediction.
PLANET supports bagging as follows: when tree induction
begins at the root, nodes of all trees in the bagged model
are pushed onto the MRQ. The Controller then continues
tree induction over dataset samples as already described. In
this scenario, at any point in time the queues will contain
nodes belonging to many different trees instead of a single
tree, thereby allowing the Controller to exploit greater par-
allelism.

The bagging algorithm proposed by Breiman expects each
tree to be built on a sample of D∗ generated with replace-
ment; however, our framework only supports sampling with-
out replacement at this time. We are still exploring efficient
techniques to do sampling with replacement in a distributed
setting, and comparing how bagged models generated by
sampling with and without replacement differ in practice.

6. ENGINEERING ISSUES
In developing a production-capable deployment of PLA-

NET, we encountered several unanticipated challenges. First,
because MapReduce was not intended to be used for highly
iterative procedures like tree learning, we found that MapRe-
duce start up and tear down costs were primary performance
bottlenecks. Second, the cost of traversing models in order
to determine split points in parallel turned out to be higher
than we expected. Finally, even though MapReduce offers
graceful handling of failures within a specific MapReduce
computation, since our computation spans multiple MapRe-
duce phases, dealing with shared and unreliable commodity
resources remained an issue which we had to address. We
discuss our solutions to each of these issues within this sec-
tion.

Setup−1

Setup−1 Run−MR−1

Run−MR−2

Time

Setup−2

Run−MR−1 Setup−2 Run−MR−2

Figure 2: Forward Scheduling

6.1 Forward Scheduling
Immediately after our initial attempt at deploying PLA-

NET on a live map reduce cluster, we noticed that an inor-
dinate amount of time was spent in setting up and tearing
down MapReduce jobs. Fixing latency due to tear down
time was a simple change to the logic in Algorithms 6 and 8.
Instead of waiting for a MapReduce job to finish running on
the cluster, the Controller ran a thread which would peri-
odically check for the MapReduce’s output files. Once the
output files were available, the thread would load them and
run the FindBestSplit and UpdateQueues logic described in
Algorithm 6.

Addressing the latency caused by job set up was a more
interesting challenge. Set up costs include time spent allo-
cating machines for the job, launching a master to monitor
the MapReduce job, and preparing and partitioning the in-
put data for the MapReduce. To get around this problem we
implemented a simple trick of forward scheduling MapRe-
duce jobs. Figure 2 illustrates the basic idea. Suppose the
Controller has to run two MapReduce jobs to expand level i

and i+1 in the tree. According to our discussion, until now
it would schedule Job-1 first and then Job-2 (upper part of
Figure). However, to eliminate the latency due to Setup-
2, the Controller sets up Job-2 while Job-1 is still running
(lower part of Figure).

To implement forward scheduling, the Controller runs a
background thread which continuously keeps setting up one
or more MapReduce jobs on the cluster. Once the jobs are
set up, the mappers for the job wait on the Controller to send
them a model file and the set of nodes to expand. When
the Controller finds work on MRQ or InMemQ, it sends
the work information out to the waiting mappers for a job
using an RPC. With forward scheduling, lines 6 and 10 of
Algorithm 8 now make RPCs rather than spawning off new
threads, and the previous lines try to reserve one of the
spawned MapReduces.

In practice, the Controller can forward schedule multiple
jobs at the same time depending on the number of MapRe-
duce jobs it expects to be running in parallel. A possible
downside of forward scheduling is that the forward schedul-
ing of too many jobs can result in wasted resources, where
machines are waiting to receive task specifications, or in
some cases receive no tasks since tree induction may be com-
plete. Depending on availability in the cluster and the ex-
pected tree depth and ensemble type, we tune the amount
of forward scheduling in the Controller.

6.2 Fingerprinting
Another significant source of latency that we observed in

our MapReduce jobs was the cost of traversing the model:
an operation performed on every mapper to determine if
the training record being processed is part of the input to
any node being expanded in the job. After careful exam-
ination and profiling, we found that predicate evaluations
at nodes that split on unordered attributes were a bottle-
neck because a single predicate evaluation required multiple
string comparisons, and some of our attributes were long
strings, e.g., URLs. To get around this, for a predicate of
the form X ∈ {v1, v2, . . . vk}, we fingerprint the vi’s and
store a hash set at the node. This simple optimization pro-
vided about 40% improvement in tree traversal costs.

6.3 Reliability
Deploying PLANET on a cluster of commodity machines

presents a number of challenges not normally posed when
running an application on a single machine. Because our
clusters are shared resources, job failures due to preemp-
tion by other users is not uncommon. Similarly, job failures
because of hardware issues occur occasionally. Because of
the frequency of job failures, we require PLANET to have
a mechanism for recovering from failures. Fortunately, the
MapReduce framework provides us guarantees in terms of
job completion. Therefore, we can reason about the system
by considering the expansion of a set of nodes as an atomic
operation and when a single MapReduce fails the Controller
will simply restart the MapReduce again.

To handle the failure of the Controller, we annotate the
model file with metadata marking the completion of each
splitting task. Then, when the Controller fails, we start a
new Controller that reads in the annotated model file gen-
erated during the failed run. Given the annotated model
file, it is simple for the Controller to reconstruct the state
of MRQ and InMemQ prior to any jobs which were running
when the Controller failed. With MRQ, InMemQ and M,
the Controller can then continue with tree induction.

Monitoring turned out to be another issue in deploying
PLANET. As developers and users of the system, we often
needed to be able to monitor the progress of model construc-
tion in real time. To support such monitoring, we added a
dashboard to PLANET to track its currently running tasks
as well as the pending tasks in MRQ and InMemQ. The
dashboard collects training and validation error statistics
and renders a plot of the error of the model as it grows
(and offers a precision-recall curve when training a model
for classification).

7. EXPERIMENTS
In this section we demonstrate the performance of PLA-

NET on a real world learning task in computational adver-
tising. In particular, we study the scalability of the system
and the benefits obtained from the different extensions and
optimizations proposed in the paper.

7.1 Setup
We measure the performance of PLANET on the bounce

rate prediction problem [22, 23]. A click on an sponsored
search advertisement is called a bounce if the click is imme-
diately followed by the user returning to the search engine.
Ads with high bounce rates are indicative of poor user expe-
rience and provide a strong signal of advertisement quality.

The training dataset (AdCorpus) for predicting bounce
rates is derived from all clicks on search ads from the Google

Figure 3: Running time vs data size for various num-
bers of machines.

Figure 4: Running time vs tree depth. Note: the
Sampled R curve was trained on 1/30 of the data used
for the other curves.

search engine in a particular time period. Each record rep-
resents a click labeled with whether it was bounce. A wide
variety of features are considered for each click. These in-
clude the search query for the click, advertiser chosen key-
word, advertisement text, estimated clickthrough rate of the
ad clicked, a numeric similarity score between the ad and
the landing page, and whether the advertiser keyword pre-
cisely matched the query. To improve generalization, we
generalized the query and advertiser keywords into one of
approximately 500 clusters, and used cluster properties as
additional features. Overall, the dataset consisted of 6 cat-
egorical features varying in cardinality from 2 to 500, 4 nu-
meric features, and 314 million records.

All of our experiments were performed on a MapReduce
equipped cluster where each machine was configured to use
768MB of RAM and 1GB of hard drive space (peak utiliza-
tion was < 200MB RAM and 50MB disk). Unless otherwise
noted, each MapReduce job used 200 machines. A single
MapReduce was never assigned more than 4 nodes for split-
ting and at any time a maximum of 3 MapReduce jobs were
scheduled on the cluster. Running time was measured as
the total time between the cluster receiving a request to run
PLANET and PLANET exiting with the learned model as
output. In each experiment, the first run was ignored be-
cause of the additional one-time latency to stage PLANET
on the cluster. To mitigate the effects of varying cluster
conditions, all the running times have been averaged over
multiple runs.

To put the timing numbers that follow into perspective,
we also recorded the time taken to train tree models in R us-
ing the GBM package [28]. This package requires the entire
training data in memory, and hence we train on a sample of
10 million records (about 2 GB). On a machine with 8GB
RAM and sufficient disk, we trained 10 trees, each at depth

between 1 and 10. Peak RAM utilization was 6GB (average
was close to 5GB). The runtime for producing the different
trees varied between 315 and 358 seconds (Figure 4).

7.2 Results
Scalability: Our first experiment measures the scalability
of the PLANET framework. For this experiment, we ran-
domly split the AdCorpus into 5 roughly equal-sized groups
and trained a single depth-3 classification tree, first on a sin-
gle group, then two groups and so on up to five groups. For
each of these increasingly larger training datasets, we exam-
ined the effects of using between 50 and 600 machines. In
this experiment, the Controller never scheduled more than 2
MapReduce jobs at a time, and was configured to schedule
MR ExpandNodes jobs only. In other words, we disabled
the optimization to construct trees entirely in memory and
limited forward scheduling to 1 MapReduce in order to eval-
uate the performance of the algorithm in a constrained (e.g.
shared cluster) environment.

Figure 3 shows the results of this experiment. As ex-
pected, training time increases in proportion to the amount
of training data. Similarly, adding more machines signif-
icantly decreases training time (ignoring the 400 machine
curve for the moment). The most interesting observation in
Figure 3 is the notion of marginal returns. When the dataset
is large, adding more machine reduces costs proportionally,
up to a point. For example, in our experiment, increasing
the number of machines from 200 to 400 per MapReduce
did not improve training time. Similarly, as the training set
size decreases, the benefits of adding more machines also
diminishes. In both these cases, after a certain point the
overhead of adding new machines (networking overhead to
watch the worker for failure, to schedule backup workers, to
distribute data to the worker, and to collect results from the

worker) dominate the benefits from each machine processing
a smaller chunk of data. Empirically, it appears that for our
dataset the optimal number of workers is under 400.

Benefits of MR InMemory: Our next experiment high-
lights the benefits from in memory tree completion. Here,
the Controller was configured to invoke MR InMemory for
nodes whose inputs contained 10M or fewer records. The
reducers in MR InMemory used the GBM package for tree
construction and were configured with 8GB RAM in order
to meet the memory requirements of the package. PLANET
was used to train a single classification tree of varying depths
on the entire AdCorpus.

Figure 4 shows the results. PLANET-NoInMem plots the
training time when MR InMemory is not used by the Con-
troller. In this case training time keeps increasing with tree
depth as the number of MR ExpandNodes jobs keeps in-
creasing. Note that even though we expand trees breadth
first, the increase in training time is not linear in the depth.
This happens because each MR ExpandNodes job is con-
figured (based on memory constraints in the mappers) to
expand four nodes only. At lower levels of the tree a single
MapReduce can no longer expand all nodes in a level, and
hence we see a superlinear increase in training time. On
the other hand, PLANET using a mix of MR ExpandNodes
and MR InMemory scales well and training time does not
increase as significantly with tree depth.

As a reference point for the PLANET running times, we
also provide the running time of Sampled-R in Figure 4,
which shows the running time of the GBM in-memory algo-
rithm on a 2GB sample of AdCorpus.

Figure 5: Error reduction as the number of trees
increases.

Effect of Ensembles: The last experiment we report shows
how error rates decrease in the bounce rate problem. Fig-
ure 5 shows the reduction in training and validation errors

on a 90-10 split of the AdCorpus. The figure plots the re-
duction in variance as more trees are added to a boosted tree
model. Two scenarios are shown – one in which the weak
learners are depth one trees, and the other where the trees
have depth three. For the depth-3 tree ensemble, the reduc-
tion in error is initially higher than with the depth-1 tree
ensemble as expected; but, the reduction asymptotes after
about 100 trees for this dataset. The PLANET dashboard
updates and displays such error graphs in real time. This
enables users to manually intervene and stop model training
when the error converges or overfitting begins.

8. RELATED WORK
Scaling up tree learning algorithms to large datasets is

an area of active research interest. There have been two
main research directions taken by previous work: (1) cen-
tralized algorithms for large datasets on disk to avoid in-
memory limitations, and (2) parallel algorithms on specific
parallel computing architectures. In applying the MapRe-
duce framework to large scale tree learning, PLANET bor-
rows and builds upon several ideas from these previous ap-
proaches.

Centralized Algorithms: Notable centralized algorithms
for scaling decision tree learning to large datasets include
SLIQ [26], CLOUDS [1], RAINFOREST [17], and BOAT [16].
SLIQ uses strategies like pre-sorting and attribute lists in
breadth-first tree-growing to enable learning from large train-
ing data on disk. While PLANET does not use pre-sorting
or attribute lists, it grows the tree breadth-first like SLIQ.
The key insight in RAINFOREST is that the splitting de-
cision at a tree node needs a compact data structure of suf-
ficient statistics (called AVC group in the paper), which in
most cases can be fit in-memory. PLANET similarly main-
tains sufficient statistics on mappers during MR ExpandNo-
des. CLOUDS samples the split points for numeric at-
tributes and uses an estimation step to find the best split
point, resulting in lower computation and I/O cost com-
pared to other tree learning algorithms like C4.5. For effi-
cient estimation of the best split, PLANET uses equidepth
histograms of ordered attributes to estimate split points.
Finally, BOAT uses statistical sampling to construct a tree
based on a small subset of the whole data and then does cor-
rections to the tree based on estimated differences compared
to the actual tree learned on the whole data. In comparison,
PLANET builds the tree from the whole data directly.

Parallel Algorithms: Numerous approaches for paralleliz-
ing tree learning have been proposed. [27] contains an ex-
cellent survey of existing approaches, along with the mo-
tivations for large scale tree learning. Bradford et al. [3]
discuss how the C4.5 decision tree induction algorithm can
be effectively parallelized in the ccNUMA parallel comput-
ing platform. It also mentions other parallel implementa-
tions of decision trees, namely SLIQ, SPRINT, and Scal-
ParC for message-passing systems, and SUBTREE, MWK
and MLC++ for SMPs. Most of these algorithms have
been developed for specific parallel computing architectures,
many of which have specific advantages, e.g., shared mem-
ory to avoid replicating or communicating the whole dataset
among the processors. In comparison, PLANET is based on
the MapReduce platform that uses commodity hardware for
massive-scale parallel computing.

For deciding the split points of attributes, SPRINT [31]
uses attribute lists like SLIQ. Each processor is given a sub-
list of each attribute list, corresponding to the instance in-
dices in the data chunk sent to the processor. While comput-
ing good split points, each processor determines the gains
over the instances assigned to that processor for each ordered
attribute, and sends the master a portion of the statistics
needed to determine the best split. However, this requires
an all-to-all broadcast of instance ids at the end. PLA-
NET takes a simpler and more scalable approach – instead
of considering all possible split points, it computes a repre-
sentative subset of the splits using approximate histograms,
after which the selection of the best split can be done using
only one MapReduce job (details in Section 4.1).

ScalParC [21], which builds on SLIQ and SPRINT, also
splits each attribute list into multiple parts and assigns each
part to a processor. However, rather than building the tree
in a depth-first manner (as done by C4.5, MLC++, etc.), it
does a breadth-first tree growth like SLIQ (and PLANET)
to prevent possible load imbalance in a parallel computing
framework.

Other notable techniques for parallel tree learning include:
(1) parallel decision tree learning on a SMP architecture
based on attribute scheduling among processors, including
task pipelining and dynamic load balancing for speedup [33];
(2) meta-learning schemes that train multiple trees in par-
allel along with a final arbiter tree that combines their pre-
dictions [10]; (3) distributed learning of trees by boosting,
which operates over partitions of a large dataset that are
exchanged among the processors [24]; (4) the SPIES algo-
rithm, which combines the AVC-group idea of RAINFOR-
EST with effective sampling of the training data to obtain a
communication- and memory-efficient parallel tree learning
method [19]; (5) a distributed tree learning algorithm that
uses only 20% of the communication cost to centralize the
data, but achieves 80% of the accuracy of the centralized
version [18].

On the theoretical side, Caragea et al. [7] formulated the
problem of learning from distributed data and showed dif-
ferent algorithm settings for learning trees from distributed
data, each of which is provably exact, i.e., they give the
same results as a tree learned using all the data in a central-
ized setting. Approximate algorithms for parallel learning of
trees on streaming data have also been recently proposed [2,
20].

MapReduce in Machine Learning: In recent years,
some learning algorithms have been implemented using the
MapReduce framework. Chu et al. [11] give an excellent
overview of how different popular learning algorithms (e.g.,
locally weighted linear regression, näıve Bayes classification,
Gaussian discriminative analysis, k-means, logistic regres-
sion, neural networks, principal component analysis, inde-
pendent component analysis, expectation maximization, sup-
port vector machines) can be effectively solved in the MapRe-
duce framework. However, these algorithms have all been
implemented using a shared-memory multi-processor archi-
tecture. Our focus is on scaling learning algorithms (espe-
cially ensemble tree learning) to massive datasets using a
MapReduce framework deployed on commodity hardware.

9. CONCLUSIONS
We have presented PLANET, a framework for large-scale

tree learning using a MapReduce cluster. We are currently
applying PLANET to problems within the sponsored search
domain. Our experience is that the system scales well and
performs reliably in this context, and we expect results would
be similar in a variety of other domains involving large scale
learning problems. Our initial goal in building PLANET
was to develop a scalable tree learner with accuracy compa-
rable to a traditional in-memory algorithm, but capable of
handling much more training data. We believe our experi-
ence in building and deploying PLANET provides lessons in
using MapReduce for other non-trivial mining and data pro-
cessing tasks. The strategies we developed for handling tree
learning should be applicable to other problems requiring
multiple iterations, each requiring one or more applications
of MapReduce.

For future work, our short term focus is to extend the
functionality of PLANET in various ways to support more
learning problems at Google. For example, we intend to sup-
port split metrics other than those based on variance. We
also intend to investigate how intelligent sampling schemes
might be used in conjunction with the scalability offered by
PLANET. Other future plans include extending the imple-
mentation to handle multi-class classification and incremen-
tal learning.

Acknowledgments
We would like to thank Ashish Agarwal, Puneet Chopra,
Mayur Datar, Oystein Fledsberg, Rob Malkin, Gurmeet
Singh Manku, Andrew Moore, Fernando Pereira, D. Scul-
ley and Diane Tang for their feedback and contributions to
this work.

10. REFERENCES
[1] K. Alsabti, S. Ranka, and V. Singh. Clouds: A

decision tree classier for large datasets. Technical
report, University of Florida, 1998.

[2] Y. Ben-Haim and E. Yom-Tov. A streaming parallel
decision tree algorithm. In Large Scale Learning
Challenge Workshop at the International Conference
on Machine Learning (ICML), 2008.

[3] J. P. Bradford, J. A. B. Fortes, and J. Bradford.
Characterization and parallelization of decision tree
induction. Technical report, Purdue University, 1999.

[4] L. Breiman. Bagging predictors. Machine Learning
Journal, 24(2):123–140, 1996.

[5] L. Breiman. Random forests. Machine Learning
Journal, 45(1):5–32, 2001.

[6] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, 1984.

[7] D. Caragea, A. Silvescu, and V. Honavar. A
framework for learning from distributed data using
sufficient statistics and its application to learning
decision trees. International Journal of Hybrid
Intelligent Systems, 1(1–2):80–89, 2004.

[8] R. Caruana, N. Karampatziakis, and A. Yessenalina.
An empirical evaluation of supervised learning in high
dimensions. In International Conference on Machine
Learning (ICML), pages 96–103, 2008.

[9] R. Caruana and A. Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In

International Conference on Machine Learning
(ICML), pages 161–168, 2006.

[10] P. K. Chan and S. J. Stolfo. Toward parallel and
distributed learning by meta-learning. In Workshop on
Knowledge Discovery in Databases at the Conference
of Association for the Advancement of Artificial
Intelligence (AAAI), pages 227–240, 1993.

[11] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In Advances in Neural
Information Processing Systems (NIPS) 19, pages
281–288, 2007.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Symposium on
Operating System Design and Implementation (OSDI),
2004.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley, New York, second edition, 2001.

[14] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In International Conference
on Machine Learning (ICML), pages 148–156, 1996.

[15] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29(5):1189–1232, 2001.

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y.
Loh. BOAT – Optimistic decision tree construction. In
International Conference on ACM Special Interest
Group on Management of Data (SIGMOD), pages
169–180, 1999.

[17] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest
- A framework for fast decision tree construction of
large datasets. In International Conference on Very
Large Data Bases (VLDB), pages 416–427, 1998.

[18] C. Giannella, K. Liu, T. Olsen, and H. Kargupta.
Communication efficient construction of decision trees
over heterogeneously distributed data. In
International Conference on Data Mining (ICDM),
pages 67–74, 2004.

[19] R. Jin and G. Agrawal. Communication and memory
efficient parallel decision tree construction. In SIAM
Conference on Data Mining (SDM), pages 119–129,
2003.

[20] R. Jin and G. Agrawal. Efficient decision tree
construction on streaming data. In SIGKDD
Conference on Knowledge Discovery and Data Mining
(KDD), pages 571–576, 2003.

[21] M. Joshi, G. Karypis, and V. Kumar. Scalparc: A new
scalable and efficient parallel classification algorithm
for mining large datasets. In International Parallel
Processing Symposium (IPPS), pages 573–579, 1998.

[22] A. Kaushik. Bounce rate as sexiest web metric ever.
MarketingProfs, August 2007.
http://www.marketingprofs.com/7/bounce-rate-
sexiest-web-metric-ever-kaushik.asp?sp=1.

[23] A. Kaushik. Excellent analytics tip 11: Measure
effectiveness of your web pages. Occam’s Razor (blog),
May 2007.
http://www.kaushik.net/avinash/2007/05/excellent-
analytics-tip-11-measure-effectiveness-of-your-web-
pages.html.

[24] A. Lazarevic. The distributed boosting algorithm. In
SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD), pages 311–316, 2001.

[25] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. In
International Conference on ACM Special Interest
Group on Management of Data (SIGMOD), pages
251–262, 1999.

[26] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast
scalable classifier for data mining. In International
Conference on Extending Data Base Technology
(EDBT), pages 18–32, 1996.

[27] F. Provost and U. Fayyad. A survey of methods for
scaling up inductive algorithms. Data Mining and
Knowledge Discovery, 3:131–169, 1999.

[28] G. Ridgeway. Generalized boosted models: A guide to
the gbm package.
http://cran.r-project.org/web/packages/gbm, 2006.

[29] L. Rokach and O. Maimon. Data Mining with
Decision Trees: Theory and Applications. World
Scientific Publishing Company, 2008.

[30] D. Sculley, R. Malkin, S. Basu, and R. J. Bayardo.
Predicting bounce rates in sponsored search
advertisements. In SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 1325–1334,
2009.

[31] J. C. Shafer, R. Agrawal, and M. Mehta. Sprint: A
scalable parallel classifier for data mining. In
International Conference on Very Large Data Bases
(VLDB), pages 544–555, 1996.

[32] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag, Berlin, 1995.

[33] M. J. Zaki, C.-T. Ho, and R. Agrawal. Parallel
classification for data mining on shared-memory
multiprocessors. In International Conference on Data
Engineering (ICDE), pages 198–205, 1999.

