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Abstract:  One of the fundamental assumptions for machine-learning based text classification systems is that the underlying 

distribution from which the set of labeled-text is drawn is identical to the distribution from which the text-to-be-labeled is 

drawn. However, in live news aggregation sites, this assumption is rarely correct. Instead, the events and topics discussed in 

news stories dramatically change over time. Rather than ignoring this phenomenon, we attempt to explicitly model the 

transitions of news stories and classifications over time to label stories that may be acquired months after the initial 

examples are labeled.  We test our system, based on efficiently propagating labels in time-based graphs, with recently 

published news stories collected over an eighty day period. Experiments presented in this paper include the use of training 

labels from each story within the first several days of gathering stories, to using a single story as a label. 

1. I�TRODUCTIO� 

The writing, vocabulary, and topic of news stories 
rapidly shift within extremely small periods of time. In 
recent years, new events and breaking, “hot”, stories almost 
instantaneously dominate the majority of the press, while 
older topics just as quickly recede from popularity [19]. For 
typical automated news-classification systems, this can 
present severe challenges. For example, the ‘Political’ and 
‘Entertainment’ breaking news stories of one week may 
have very little in common, in terms of subject or even 
vocabulary, with the news stories of the next week. An 
automated news classifier that is trained to accurately 
recognize the previous day/month/year’s stories may not 
have encountered the type of news story that will arise 
tomorrow. 

Unlike previous work on topic detection and tracking, 
we are not attempting to follow a particular topic over time 
or to determine when a new topic has emerged [1][2][3]. 
Instead, we are addressing a related problem of immediate 
interest to live news aggregation sites: given that a news 
story has been published, in which of the site’s preset 
categories should it be placed? 

The volume of news stories necessitates the use of an 
automated classifier. However, one of the fundamental 
assumptions in machine learning based approaches to news 
classification is that the underlying distribution from which 
the set of labeled-text is drawn is identical to the 
distribution from which the text-to-be-labeled is drawn. 
Because of the rapidly changing nature of news stories, this 
may not hold true. In this paper, we present a graph-based 

approach to address the problem of explicitly capturing 
both strong and weak similarities within news stories over 
time and to use these efficiently for categorization. Our 
approach combines the paradigm of Min-Hashing and label 
propagation in graphs in a novel way.   While Min-Hashing 
is well-understood in information retrieval applications, our 
application of it to create a temporal similarity graph 
appears to be new.  Label propagation is gaining popularity 
in the field of machine learning as a technique for semi-
supervised learning.  Our approach to label propagation 
follows our previous work [4], where equivalent views of a 
basic algorithm termed Adsorption were established, and 
the technique was successfully employed for propagating 
weak information in extremely large graphs to create a 
video recommendation system for YouTube.  

The aims of this paper are to present the following 
techniques that we anticipate will have general applicability 
for data mining in industrial settings: formulation of 
temporal similarities via graphs created using Min-Hashes, 
and the application of label propagation as an off-the-shelf 
tool for classification tasks when very little ground truth is 
available. 

The next section describes the data collected and 
presents a series of experiments to develop strong, realistic, 
baselines for performance. Section 3 gives a detailed 
description of the Adsorption algorithm.  Section 4 presents 
the empirical results to establish the Adsorption baselines 
for this task. Section 5 presents extensive results with tiny 
amounts of labeled data (e.g., a single labeled example). 
Section 6 concludes the paper and offers avenues for future 
exploration.  
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2. DATA A�D I�ITIAL EXPERIME�TS 

For the experiments conducted in this paper, we examined 
11,014 unique news stories published over an 80 day period 
in 2008. The news stories were manually placed into one of 
seven categories (% composition): “Politics” (19.8%), 
“Internet”(6.0%), “Health”(8.8%), “Environment”(8.3%), 
“Entertainment”(10.8%), “Business”(31.6%), or 
“Sports”(14.5%). Figure 1 shows the number of stories 
gathered each day from each class. Note that a few of the 
entries are 0; due to errors, no stories were gathered on 
those days. Although there are numerous methods to pre-
process and represent text [5][6], we chose an extremely 
simple technique for reproducibility. Alternate, more 
sophisticated, pre-pre-processing techniques will improve 
all of the results obtained in this paper. For simplicity, we 
only generated a binary bag-of-words representation for 
each news story by determining the presence (or absence) 
of each word in the vocabulary. The vocabulary consisted 
of all words in the complete set of articles, except those 
words that occurred in less than 10 news stories (too 
infrequent) or those that occurred in more than 15% of the 
documents (too frequent);   these words were simply 
discarded. 

2.1 Initial Experiments 

In the first set of experiments, we examine how two 
standard machine learning techniques, support vector 
machines [7][8] and k-nearest neighbor, perform on the 
standard task of classifying news stories into the 1-of-7 
categories described earlier. This task is constructed as a 
standard machine learning classification task; a total of 

3900 news stories are used (the first 3900 of the set 
described in Section 4). 

In Table 1, we vary the number of labeled examples 
between 100 and 500, and label the examples 500-3900 
using an SVM with linear kernel [8].  Additionally, a full 
set of experiments were conducted with non-linear kernels, 
such as Radial Basis Functions.  The performance did not 
improve over using a linear kernel, this may be due to the 
little labeled data provided. Note that because the SVM is a 
binary classifier, we train 21 SVM models to distinguish 
each class from each other class.  The performance of the 
SVM-system dramatically improved with more labeled 
samples. Additionally, if we continue to ignore the temporal 
nature of the task, we can use the test set as unlabeled data 
and take advantage of unlabeled-training methods. We 
attempted this in the training process for the SVM through 
the use of transductive learning (in SVM-Light [8][9]); 
however, that did not significantly impact the performance 
([18] reported similar results). 

Besides the overall performance, to view the effects of 
degradation of performance over time, we also examine the 
performance of the first (in time) 100 samples classified in 
the test set compared with the last 100 samples classified; 
these results are shown in the last two columns of Table 1. 
Note that, as expected, the unlabeled stories that are 
classified close to the period from which the labeled stories 
were taken are labeled more accurately than those that are 
labeled further away.  

2.2 k-�earest �eighbor 

The experiments with k-nearest neighbor (k-NN) mirror 
those conducted with SVMs in the previous section. 
However, in order to make the k-NN process efficient, there 
must be a rapid method to find the nearest-neighbors. For 
this, we use a hashing scheme based on sparse sketches of 

Stories Acquired over Days

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Day

N
u
m
b
e
r 
A
c
q
u
ir
e
d

Politics Internet Health Environment Entertainment Business Sports

Figure 1: Distribution of Stories Acquired over Testing Period 

 



the news stories. The sketches are created using a Min-Hash 
scheme [10] that is then looked up using an approximate 
hashing approach termed LSH. Previously, this technique 
has been successfully applied to the large-scale lookup of 
music and images [17]. Although a full discussion of these 
approaches is beyond the scope of this paper, both will be 
briefly described since the distance calculations are also 
used as the basis of the weights in the Adsorption graph. 

Min-Hash creates compact fingerprints of sparse binary 
vectors such that the similarity between the two fingerprints 
provides a reliable measure of the probability that the two 
original vectors were identical. Because of the sparseness of 
the bag-of-words presence vector that is used for the news 
stories, it is an ideal candidate for this procedure. Min-Hash 
works as follows: select a random, but known, reordering of 
all the vector positions. We call this a permutation 
reordering. Then for each story, (for a given permutation 
reordering) pick the minimum vector-element that is ‘on’ 
(in our application, ‘on’ refers to the representing a word 
that is present in the news story). It is important to note that 
the probability by which two news stories will have the 
same minimum vector-element is the same as its Jaccard 
coefficient value. Hence, to get better estimates of this 
value, we repeat this process p times, with p different 
permutations to get p independent projections of the bit 
vector. Together, these p values are the signature of the bit 
vector. Various values of p were tried. For the remainder of 
this paper, we use p=500; this is the signature length of 
each vector, and is therefore the length of the representation 
of each news story. 

Even with the compression afforded with Min-Hash, 
efficiently finding near-neighbors in a 500 dimensional 
space is not a trivial task; naïve comparisons are not 
practical. Instead, we use Locality-Sensitive Hashing (LSH) 
[11]. In contrast to standard hashing, LSH performs a series 
of hashes, each of which examines only a portion of the 
sub-fingerprint. The goal is to partition the feature vectors 
(in this case the Min-Hash signatures) into sub-vectors and 
to hash each sub-vector into separate hash tables. Each hash 
table uses only a single sub-vector as input to the hash 
function. Candidate neighbors are those vectors that have 

collisions in at least one of the sub-fingerprint hashes; the 
more collisions the more similar. Together with Min-Hash, 
LSH provides an effective way to represent and lookup 
nearest neighbors of large, sparse binary vectors. The 
results with the k-NN system are given in Table 2. In order 
to make the baselines as competitive as possible, we 
searched over a large range of possible k-values for each 
trial to find the best answer; it is given below. Note that for 
smaller number of training examples, k-NN outperformed 
SVMs; as the number of training examples increased, the 
performance of k-NN dropped below SVMs. 

3. ADSORPTIO� 

The genesis of the family of algorithms that we 
collectively call Adsorption [4] is the following question: 
assuming we wish to classify a node in a graph in terms of 
class-labels present on some of the other nodes, what is a 
principled way to do it?  Perhaps the easiest answer to this 
question is to impose a metric on the underlying graph and 
classify the label by adopting the labels present on its 
nearest neighbor. There are a variety of metrics to choose 
from (e.g., shortest distance, commute time or electrical 
resistance, etc.), but most of these are expensive to 
compute, especially for large graphs. Furthermore, 
conceptually simple ones like shortest distance have 
undesirable properties; for example, they do not take into 
account the number of paths between the labeled and 
unlabeled nodes.  Adsorption provides an intuitive, 
iterative, manner in which to propagate labels in a graph.  

The first step is setting up the problem in terms of a 
graph.   For the news story classification task, the 
embedding is straightforward:  each story is a node in the 
graph, and the weights of the edges between nodes 
represent the similarity between two news stories.  The 
similarity is computed via the MIN-HASH/LSH distance 
described previously; if there is a collision via the LSH 
procedure, then an edge exists and the weights is non-zero 

Table 1: SVM Performance, measured with varying Labeled 
Samples 

Labeled 
Examples 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

0-100 58.5 66 41 

0-200 76.0 86 68 

0-300 81.6 84 72 

0-400 85.2 92 81 

0-500 86.2 95 83 

 

 

Table 2: k-Nearest Neighbor, with Varying Labeled 
Samples, Best Value for k given in Column 1. 

Labeled 

Examples 

(best value 

of k shown) 

Overall 

Performance 

(Samples  

500-3900) 

Initial 

Performance 

(Samples  

500-600) 

Later 

Performance 

(Samples  

3800-3900) 

0-100 (10) 81.3 85 79 

0-200 (1) 80.9 86 78 

0-300 (10) 82.2 90 76 

0-400 (10) 83.3 90 79 

0-500 (10) 83.4 92 80 

 



and positive.  In the simplest version of the algorithm, the 
stories that are labeled, are labeled with a single category.  
The remaining nodes, those to be labeled, will gather 
evidence of belonging to each of the seven classes as 
Adsorption is run. At the end of the algorithm, for each 
node, the class with the largest accumulated evidence is 
assigned to the node (and therefore the news story). When 
designing a label propagation algorithm in this framework, 
there are several overarching, intuitive, desiderata we 
would like to maintain. First, node v should be labeled l 
only when there are short paths, with high weight, to other 
nodes labeled l. Second, the more short paths with high 
weight that exist, the more evidence there is for l. Third, 
paths that go through high-degree nodes may not be as 
important as those that do not (intuitively, if a node is 
similar to many other nodes, then it being similar to any 
particular node may not be as meaningful).   Adsorption is 
able to capture these desiderata effectively. 

Next, we present Adsorption in its simplest form: 
iterated label passing and averaging.  We will also present 
an equivalent algorithm, termed Adsorption-RW, that 
computes the same values, but is based on random walks in 
the graphs. Although not presented in this paper, 
Adsorption can also be defined as a system of linear 
equations in which we can express the label distribution at 
each vertex as a convex combination of the other vertices.  
Our presentation follows our prior work [4], which also 
includes additional details.  These three interpretations of 
the Adsorption algorithm provide insights into the 
computation and direct us to important practical findings; a 
few will be briefly described in Section 3.3. 

3.1 Adsorption via Averaging 

In Adsorption, given a graph where some nodes have 
labels, the nodes that carry some labels will forward the 
labels to their neighbors, who, in turn, will forward them to 
their neighbors, and so on, and all nodes collect the labels 
they receive.  Thus each node has two roles, forwarding 
labels and collecting labels. The crucial detail is the choice 
of how to retain a synopsis that will both preserve the 
essential parts of this information as well as guarantee a 
stable (or convergent) set of label assignments. 

Formally, we are given a graph ),,( wEVG =  where V  
denotes the set of vertices (nodes), E denotes the set of 
edges, and R→Ew :  denotes a nonnegative weight 
function on the edges. Let L denote a set of labels, and 
assume that each node v  in a subset VVL ⊆  carries a 
probability distribution vL  on the label set L . We often 
refer to LV  as the set of labeled nodes. For the sake of 
exposition, we will introduce a pre-processing step, where 
for each vertex LVv∈ , we create a “shadow” vertex v~  
with exactly one out-neighbor, namely v , connected via an 
edge ),~( vv ; furthermore, for each LVv∈ , we will re-locate 
the label distribution vL  from v  to v~ , leaving v  with no 
label distribution. Let V

~
denote the set of shadow vertices, 

{ }LVvvV ∈= |~~
. From now on, we will assume that at the 

beginning of the algorithm, only vertices in V
~
  have non-

vacuous label distributions. See Figure 2 for the full 
algorithm.  

Some comments on Adsorption: (1) In the algorithm, 
we say that convergence has occurred if the label 
distribution of none of the nodes changes in a round. It can 
be shown that the algorithm converges to a unique set of 
label distributions.  (2) Upon convergence, each node 

VVv
~

U∈  carries a label distribution, provided there is a 
path from v  to some node LVu∈ .  (3) We do not update 
the label distribution in each round; rather, we recompute it 
entirely, based on the distributions delivered by the 
neighbors.  (4) Adsorption has an efficient iterative 
computation (similar to PageRank [12]), where, in each 
iteration, a label distribution is passed along every edge.  

Recalling that our goal was to maintain a synopsis of the 
labels that are reachable from a vertex, let us remark that 
the normalization step following the step of computing the 
weighted sum of the neighbors’ label distribution is crucial 
to our algorithm. Labels that are received from multiple (or 
highly-weighted neighbors) will tend to have higher mass 
after this step, so this normalization step renders the 
Adsorption algorithm as a classifier in the traditional 
machine learning sense. The algorithm, as presented, is a 
modification of the label propagation algorithm of Zhu et. 
al. [13][14], where they considered the problem of semi-
supervised classifier design using graphical models. They 
also note that their algorithm is different from a random-
walk model proposed by Szummer and Jaakkola [15]; in the 
next section we will show that there is a very different 
random walk algorithm that coincides exactly with the 
Adsorption algorithm. The latter fact has also been noticed 
independently by Azran [16].  This aspect of the 
Adsorption algorithm distinguishes it from the prior works 
of Zhu et al; the enhanced random walk model we present 
generalizes the work of Zhu et al., and presents a broader 
class of optimization problems that we can address1.   The 
approach of Zhu et al. is aimed at labeling the unlabeled 
nodes while preserving the labels on the initially labeled 

                                                           
1 We thank P. Talukdar (personal communication, November 

2008) for pointing this out. 

Algorithm Adsorption: 

Input: LVLwEVG ,),,,(=  

repeat 

           for each VVv
~

U∈ do: 

                Let ∑= u uv LvuwL ),(  

           end-for 

           Normalize vL to have unit 1L  norm 

until convergence 

Output: Distributions }|{ VvLv ∈  

 

Figure 2: Basic adsorption algorithm 
 



nodes and minimizing the “error” across edges.  In 
Adsorption, there is a subtle, but vital, difference, the 
importance attached to preserving the labels, as well as the 
importance of near vs. far neighbors is explicitly controlled 
through the use of the injection-label weights and 
abandonment probabilities. These will both be described in 
detail in Section 3.3.   The random walk equivalence, under 
the mild conditions of ergodicity, immediately implies an 
efficient algorithm for the problem, a fact not obvious from 
a general formulation as minimizing a convex function.   
From a broader standpoint, it is interesting to note that this 
family of “repeated averaging” algorithms have a long 
history in the mathematical literature of differential 
equations, specifically in the context of boundary value 
problems (i.e., estimating the heat at a point of a laminar 
surface, given the boundary temperatures). 

3.2 Adsorption via Random Walks 

The memoryless property of the Adsorption algorithm 
that we alluded to earlier immediately leads to a closely 
related interpretation. Let us “unwind” the execution of the 
algorithm from the final round, tracing it backwards. For a 
vertex Vv∈ , denote by v0  the probability distribution on 
the set of neighbors of v  described by 

)),(/(),()( ∑=
uv vuwvuwu0  that is, the probability of u  is 

proportional to the weight on the edge ),( vu . The label 
distribution of a vertex v  is simply a convex combination 
of the label distributions at its neighbors, that is, 

∑= u uvv Lu0L )( ; therefore, if we pick an in-neighbor u  
of v .at random according to v0  and sample a label 
according to the distribution uL , then for each label Ll∈ , 

)(lLv is precisely equal to [ ])(Exp lLuu , where the 
expectation arises from the process of picking a neighbor u  
according to v0 . Extending this to neighbors at distance 2, 
it is easy to see that for each label  

[ ])(ExpExp)(, uw lLlLLl wv =∈  where an in-neighbor u  
of v  is chosen according to v0  and an in-neighbor w  of 
u  is chosen according to u0 . Expanding this out, we see 
that  ∑ ∑=

w u
wuvv lLw0u0lL )()()()( . 

 
Notice that )(u0v  is the probability of reaching u from 

v  in one step of a random walk starting from v  and 
picking a neighbor according to v0 , and similarly, )(w0u  
is the probability of picking a neighbor  w   of u   
according to u0  . Notice also the crucial use of the 
Markov property (memorylessness) here: conditioned on 
the random walk having reached u , the only information 
used in picking w  is u0 , which depends only on u , and 
not on where we initiated the random walk from. Finally, 
note that if the random walk ever reaches one of the shadow 
vertices z~  where LVz∈ , then there is no in-edge into z , so 
the random walks stops. Thus vertices in V

~
are “absorbing 

states” of the Markov chain defined by the random walk. A 
simple induction now establishes that the Adsorption 
algorithm is equivalent to the following variation, described 
in terms of random walks on the reverse of the graph G  

together with the edges from V
~
to V .  See Figure 3.  Here, 

pick-neighbor ),,( wEv  returns a node u such that 
Evu ∈),( (so that there is an edge from v  to u  in the 

reversed graph) with probability )),(/(),( ∑u
vuwvuw . 

In our exposition below, the algorithm takes a starting 
vertex v  for the random walk, and outputs a label 
distribution vL  for it when it reaches an absorbing state. 
Thus, the label distribution for each node is a random 
variable, whose expectation yields the final label 
distribution for that vertex. To obtain label distributions for 
all vertices, this procedure needs to be repeated many times 
for every vertex, and the average distributions calculated. 
This yields a very inefficient algorithm; therefore, in 
practice, we exploit the equivalence of this algorithm to the 
averaging Adsorption algorithm in Section 2.2, which has 
very efficient implementations.    

It is instructive to compare algorithm Adsorption-RW 
with typical uses of stationary distributions of random 
walks on graphs, such as the PageRank algorithm [12]. In 
the case of PageRank, a fixed Markov random walk is 
considered; therefore, the stationary probability distribution 
gives, for each node of the graph, the probability that the 
walk visits that node. In the absence of any absorbing node 
(and assuming the walk is ergodic), the initial choice of the 
node from which the random walk starts is irrelevant in 
determining the probability of reaching any particular node 
in the long run. Consequently, these methods do not allow 
us to measure the influence of nodes on each other. In our 
situation, labeled nodes are absorbing states of the random 
walk; therefore, the starting point of the walk determines 
the probability with which we will stop the walk at any of 
the absorbing states. This implies that we may use these 
probabilities as a measure of the influence of nodes on each 
other. 

Figure 3:  Adsorption in terms of random walks. 

Algorithm Adsorption-RW 

Input: LVLwEVG ,),,,(= , distinguished vertex v  

Let }},|)~,{(,
~

(
~

wVvvvEVVG L∈= UU  

Define 1)~,( =vvw  for all LVv∈  

done := false 

vertex := v  

while (not done) do: 

vertex := pick-neighbor ),,( wEv  

if (neighbor V
~

∈ ) 

done := true 

end-while 

u  := vertex 

Output label according to uL . 

 



3.3 Injection and Abandonment 

Probabilities in Adsorption  

The three equivalent renditions of the algorithm 
(averaging, random walk, system of linear equations) lead 
to a number of interesting variations that one may employ. 
For example, in the viewpoint of a linear system of 
equations, it is easy to see how we can restrict which labels 
are allowed for a given node.  In another variation, we can 
model the “amount of membership” of a node to a class.  
Recall the notion of a “shadow” node v~  that act as a 
“labelbearer” for v . A judicious choice of edge weight 
along the edge to the label-bearer, or equivalently the label 
injection probability, helps us control how the random walk 
behaves (this is equivalent to choosing the transition 
probability from v  to v~  in the reversed graph). For 
example, lower transition probabilities to the shadow nodes 
may indicate lower membership in the label class (e.g. a 
news story is ½ in politics as it is only tangentially related, 
etc).  Note that indicating ½ politics label does not imply 
that the other ½ must be assigned to another class.   This 
will be used in experiments described in Section 5. 

Another important insight is realized when examining 
Adsorption in terms of random walks. Instead of 
considering the standard random walk on an edge-weighted 
graph, one may consider a “hobbled walk,” where at each 
step, with some probability, which we call the abandonment 
probability; the algorithm abandons the random walk 
without producing any output label. Our experiments (here 
and in other applications) have confirmed that abandoning 
the random walk with a small probability at each iteration is 
a very useful feature. It slows down the random walk in a 
quantifiable way: the influence of a label l  on a node 
u falls off exponentially in the number of nodes along the 
paths from nodes that carry l  to u .  This strengthens the 
effect of nearby nodes; this has proven crucial to obtaining 
good results in large graphs. 

 

4. I�ITIAL EXPERIME�TS WITH 

ADSORPTIO� 

In the experiments presented in this section, we use the 
same data that was presented in Section 2, and apply the 
Adsorption algorithm.   Given the similarity measurements 
that were computed via the MIN-HASH & LSH 
combination described earlier, the graph and weights are 
constructed by simply setting each story as a node in the 
graph, and the weights of the edges between stories as the 
distance as specified by the distance computation 
mentioned above.   The stories that are in the labeled set 
have shadow nodes attached to them with the correct label; 
stories outside of the labeled set do not have shadow nodes.  
Adsorption computes a label distribution at each node; the 
label with the maximum value at the end of the Adsorption 
run is considered the node’s (and therefore story’s) 
classification. In constructing the graph to use with 
Adsorption, a number of options are available.  Encoding 
domain-specific information into the graph topology may 
be a powerful way to express any a priori or expert 
knowledge of the task.   For example, knowing that the 
most accurate classifications are likely to happen in stories 
temporally close to the labeled stories, connections to nodes 
representing earlier news stories may receive a higher 
weighting; or connections to the labeled set may be 
prioritized over other connections, etc.  Nonetheless, to 
avoid confusing the causes of the performance numbers and 
introducing ad-hoc, domain specific, heuristics, we 
experimented with only domain-independent parameters.   
One of the most salient is when we construct the graph, we 
can limit the number of the closest neighbors that we 
connect with each node.   In Table 3, we experiment with 
connecting each neighbor only with, at most2, its S=10, 100, 
500, 1000 most similar stories3.   Perhaps the most 

                                                           
2 Because there may be fewer than S collisions for a news story in 

the LSH hash-tables that are used to rapidly estimate 

similarity, every node may not have the maximum S 

connections. 
3 Recall that since the connections are undirected, a node may 

have more than S connections. The total number of undirected 

connections will not exceed VS * .  

Table 3: Adsorption, with Varying Number of Connections Per Node, 200 Labeled Nodes 

 Maximum 
Number of 
Connections 
per Node 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

Adsorption 10 80.1 90 72 

100 88.1 92 83 

500 86.6 91 84 

1000 85.8 91 82 

unlimited 82.4 94 80 

 



interesting observation is that increasing the number of 
connections does not necessarily increase the performance. 
As the number of maximum connections is increased, 
eventually the connections encode such weak similarities 
between the news stories that it better not to use them.  
Currently, we set the maximum number of connections 
empirically (to 500); in the future, other methods will be 
explored. 

Having set the connection count, we examine the effects 
of the number of labeled training samples. The Adsorption 
algorithm reveals performance with 100 labeled examples 
that is comparable or exceeds in overall and long-term 
performance to the best k-NN and SVM performance with 
500 labeled examples. Results are shown in Table 4.   

In the next section, we continue the empirical evaluation 
by looking at larger numbers of news stories, and the effects 
of even fewer labels. 

5. FULL-SCALE EXPERIME�TS 

The first full-scale experiment parallels the experiments 
presented to this point.  We assume that we have 100 
labeled examples and that we would like to categorize 
examples that appear up to 80 days later after the labeled 

examples were classified.  The performance is shown in 
Figure 4, each day in which a news story was gathered is 
shown in the graph.   In Figure 4 (right), the comparative 
results for k-NN are given.  The average performance for 
Adsorption is 87.8%, k-NN:  82.5%.   Other techniques 
such as Naïve-Bayes and SVMs were also tried; of these 
other techniques, k-NNs  performed the best.   Specifically, 
Naïve-Bayes performed worse than both SVMs and k-NNs, 
and SVMs performed worse than k-NNs.  

In our second experiment, we explore the ramifications 
of having two orders of magnitude less training data.   Only 
a single example is labeled on day 1.  The goal is to 
examine the articles in the last three days (days 78-81), and 
to rank them according to the probability of being in the 
same class as the single labeled example from the first day.    
This scenario is a proxy for a very common scenario 
encountered in practice in sites like news.google.com and 
other news aggregation sites.   A user may read only a small 
number of articles one day, and then come back to the site 
many days later.   Although there is not much evidence of 
the user’s preferences, we know simply that of all the 
articles the user could have chosen to read on day 1, (s)he 
read a single one.   In this case, the labels from the first 
day’s article are simply 0: article was not read or 1: the 
article was read.  For Adsorption, we weighted the 
examples with label 0 with an injection probability of 0.1 to 

Table 4: Adsorption Performance, with Varying Labeled Samples, 500 connections per node 

 Labeled  
Examples 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

Adsorption 0-100 86.4 91 84 

0-200 86.6 91 84 

0-300 86.4 91 82 

0-400 86.8 92 84 

0-500 86.5 93 83 

 

Adsorption (avg=.878)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41 51 61 71

Days

A
c
c
u
ra
c
y

k -nn (avg=0.825)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41 51 61 71

Days

A
c
c
u
ra
c
y

Figure 4: Performance of Adsorption and k-NN over 81 days 



reflect uncertainty of why the user did not read the article, 
was it because of interest, time, or simply not noticing it?  
The articles labeled 1 (“read”), continued to have an 
injection probability of 1.0. 

The performance was measured as follows.   500 
articles from the last few days of the experiment were 
ranked according to their probability of being from the 
same class as the ‘read’ article.  The full Adsorption 
connectivity graph was used, as described in the previous 
experiments, to propagate the label through time.  In Figure 
5, we examine the top-N (N = 5, 10, 25, 50) of the ranked 
articles, and give the percentage of the N that are from the 
same class.   As can be seen, Figure 5 (Left), even with a 
single example, the average precision rate is approximately 
84% with Adsorption for the top-5 examples, and over 80% 
for the top-10.   In Figure 5(Right), the same experiment is 
performed, but measures the effect of having added a 
second labeled example (from the same class as the first).  
All algorithms improve dramatically over all ranges of N.  
Interestingly, a single additional labeled example provides 
information that all the algorithms effectively exploit.   
Adsorption continues to outperform K-NN and SVMs4 in 
both tests, for all values of N. 

 

6. CO�CLUSIO�S & FUTURE WORK 

In this paper, we have presented an efficient and simple 
procedure in which to incorporate an often ignored signal 
into the task of news classification: time.  Although the 
writing, vocabulary and topics of the news stories rapidly 

                                                           
4 The use of unlabeled samples through transductive learning for 

the SVM was again used here.  It slightly improved 

performance in a few trials; the best of both is given here. 

change over time, we are able to perform the classification 
of news stories with very little training data that is received 
only in the beginning of the testing period.   

There are many avenues for future research, both in 
this task and in the development of Adsorption. First, a 
comparison with different unlabeled data learning systems 
is warranted.  Although, in this study, we used transductive 
SVMs as means to incorporate unlabeled data, it did not 
improve performance significantly. Other methods, such as 
spectral clustering may do better.  Although most other 
techniques do not incorporate a notion of time, perhaps 
combinations of the other methods with the ones presented 
here can be devised; this is potentially large area of interest.    
Second, we used a simple graph structure that did not 
incorporate all of the available domain information (e.g. all 
the labeled examples are at the beginning).  Using the graph 
structure to encode domain knowledge will be very relevant 
in new domains as well.   Further, graph pruning algorithms 
are of interest, especially in the cases in which domain 
knowledge may not be readily available; as was seen in the 
experiments, more connections do not imply improved 
performance.  Finally, this test was conducted over a period 
of approximately 3 months with real examples of rapidly 
shifting news stories that exemplify current news-
aggregation-site challenges; longer tests are forthcoming. 
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