

Keywords: Text analysis, Text Classification, Machine Learning, Graph Algorithms, Preference Propagation, Semi supervised learning,

Natural Language Processing, Adsorption

Abstract: One of the fundamental assumptions for machine-learning based text classification systems is that the underlying

distribution from which the set of labeled-text is drawn is identical to the distribution from which the text-to-be-labeled is

drawn. However, in live news aggregation sites, this assumption is rarely correct. Instead, the events and topics discussed in

news stories dramatically change over time. Rather than ignoring this phenomenon, we attempt to explicitly model the

transitions of news stories and classifications over time to label stories that may be acquired months after the initial

examples are labeled. We test our system, based on efficiently propagating labels in time-based graphs, with recently

published news stories collected over an eighty day period. Experiments presented in this paper include the use of training

labels from each story within the first several days of gathering stories, to using a single story as a label.

1. I�TRODUCTIO�

The writing, vocabulary, and topic of news stories
rapidly shift within extremely small periods of time. In
recent years, new events and breaking, “hot”, stories almost
instantaneously dominate the majority of the press, while
older topics just as quickly recede from popularity [19]. For
typical automated news-classification systems, this can
present severe challenges. For example, the ‘Political’ and
‘Entertainment’ breaking news stories of one week may
have very little in common, in terms of subject or even
vocabulary, with the news stories of the next week. An
automated news classifier that is trained to accurately
recognize the previous day/month/year’s stories may not
have encountered the type of news story that will arise
tomorrow.

Unlike previous work on topic detection and tracking,
we are not attempting to follow a particular topic over time
or to determine when a new topic has emerged [1][2][3].
Instead, we are addressing a related problem of immediate
interest to live news aggregation sites: given that a news
story has been published, in which of the site’s preset
categories should it be placed?

The volume of news stories necessitates the use of an
automated classifier. However, one of the fundamental
assumptions in machine learning based approaches to news
classification is that the underlying distribution from which
the set of labeled-text is drawn is identical to the
distribution from which the text-to-be-labeled is drawn.
Because of the rapidly changing nature of news stories, this
may not hold true. In this paper, we present a graph-based

approach to address the problem of explicitly capturing
both strong and weak similarities within news stories over
time and to use these efficiently for categorization. Our
approach combines the paradigm of Min-Hashing and label
propagation in graphs in a novel way. While Min-Hashing
is well-understood in information retrieval applications, our
application of it to create a temporal similarity graph
appears to be new. Label propagation is gaining popularity
in the field of machine learning as a technique for semi-
supervised learning. Our approach to label propagation
follows our previous work [4], where equivalent views of a
basic algorithm termed Adsorption were established, and
the technique was successfully employed for propagating
weak information in extremely large graphs to create a
video recommendation system for YouTube.

The aims of this paper are to present the following
techniques that we anticipate will have general applicability
for data mining in industrial settings: formulation of
temporal similarities via graphs created using Min-Hashes,
and the application of label propagation as an off-the-shelf
tool for classification tasks when very little ground truth is
available.

The next section describes the data collected and
presents a series of experiments to develop strong, realistic,
baselines for performance. Section 3 gives a detailed
description of the Adsorption algorithm. Section 4 presents
the empirical results to establish the Adsorption baselines
for this task. Section 5 presents extensive results with tiny
amounts of labeled data (e.g., a single labeled example).
Section 6 concludes the paper and offers avenues for future
exploration.

TEXT CLASSIFICATIO� THROUGH TIME:
Efficient Label Propagation in Time-Based Graphs

Shumeet Baluja, Deepak Ravichandran, D. Sivakumar
Google, Inc. 1600 Amphitheatre Parkway, Mountain View, CA, 94043, USA

{shumeet, deepakr, siva}@google.com

2. DATA A�D I�ITIAL EXPERIME�TS

For the experiments conducted in this paper, we examined
11,014 unique news stories published over an 80 day period
in 2008. The news stories were manually placed into one of
seven categories (% composition): “Politics” (19.8%),
“Internet”(6.0%), “Health”(8.8%), “Environment”(8.3%),
“Entertainment”(10.8%), “Business”(31.6%), or
“Sports”(14.5%). Figure 1 shows the number of stories
gathered each day from each class. Note that a few of the
entries are 0; due to errors, no stories were gathered on
those days. Although there are numerous methods to pre-
process and represent text [5][6], we chose an extremely
simple technique for reproducibility. Alternate, more
sophisticated, pre-pre-processing techniques will improve
all of the results obtained in this paper. For simplicity, we
only generated a binary bag-of-words representation for
each news story by determining the presence (or absence)
of each word in the vocabulary. The vocabulary consisted
of all words in the complete set of articles, except those
words that occurred in less than 10 news stories (too
infrequent) or those that occurred in more than 15% of the
documents (too frequent); these words were simply
discarded.

2.1 Initial Experiments

In the first set of experiments, we examine how two
standard machine learning techniques, support vector
machines [7][8] and k-nearest neighbor, perform on the
standard task of classifying news stories into the 1-of-7
categories described earlier. This task is constructed as a
standard machine learning classification task; a total of

3900 news stories are used (the first 3900 of the set
described in Section 4).

In Table 1, we vary the number of labeled examples
between 100 and 500, and label the examples 500-3900
using an SVM with linear kernel [8]. Additionally, a full
set of experiments were conducted with non-linear kernels,
such as Radial Basis Functions. The performance did not
improve over using a linear kernel, this may be due to the
little labeled data provided. Note that because the SVM is a
binary classifier, we train 21 SVM models to distinguish
each class from each other class. The performance of the
SVM-system dramatically improved with more labeled
samples. Additionally, if we continue to ignore the temporal
nature of the task, we can use the test set as unlabeled data
and take advantage of unlabeled-training methods. We
attempted this in the training process for the SVM through
the use of transductive learning (in SVM-Light [8][9]);
however, that did not significantly impact the performance
([18] reported similar results).

Besides the overall performance, to view the effects of
degradation of performance over time, we also examine the
performance of the first (in time) 100 samples classified in
the test set compared with the last 100 samples classified;
these results are shown in the last two columns of Table 1.
Note that, as expected, the unlabeled stories that are
classified close to the period from which the labeled stories
were taken are labeled more accurately than those that are
labeled further away.

2.2 k-�earest �eighbor

The experiments with k-nearest neighbor (k-NN) mirror
those conducted with SVMs in the previous section.
However, in order to make the k-NN process efficient, there
must be a rapid method to find the nearest-neighbors. For
this, we use a hashing scheme based on sparse sketches of

Stories Acquired over Days

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Day

N
u
m
b
e
r
A
c
q
u
ir
e
d

Politics Internet Health Environment Entertainment Business Sports

Figure 1: Distribution of Stories Acquired over Testing Period

the news stories. The sketches are created using a Min-Hash
scheme [10] that is then looked up using an approximate
hashing approach termed LSH. Previously, this technique
has been successfully applied to the large-scale lookup of
music and images [17]. Although a full discussion of these
approaches is beyond the scope of this paper, both will be
briefly described since the distance calculations are also
used as the basis of the weights in the Adsorption graph.

Min-Hash creates compact fingerprints of sparse binary
vectors such that the similarity between the two fingerprints
provides a reliable measure of the probability that the two
original vectors were identical. Because of the sparseness of
the bag-of-words presence vector that is used for the news
stories, it is an ideal candidate for this procedure. Min-Hash
works as follows: select a random, but known, reordering of
all the vector positions. We call this a permutation
reordering. Then for each story, (for a given permutation
reordering) pick the minimum vector-element that is ‘on’
(in our application, ‘on’ refers to the representing a word
that is present in the news story). It is important to note that
the probability by which two news stories will have the
same minimum vector-element is the same as its Jaccard
coefficient value. Hence, to get better estimates of this
value, we repeat this process p times, with p different
permutations to get p independent projections of the bit
vector. Together, these p values are the signature of the bit
vector. Various values of p were tried. For the remainder of
this paper, we use p=500; this is the signature length of
each vector, and is therefore the length of the representation
of each news story.

Even with the compression afforded with Min-Hash,
efficiently finding near-neighbors in a 500 dimensional
space is not a trivial task; naïve comparisons are not
practical. Instead, we use Locality-Sensitive Hashing (LSH)
[11]. In contrast to standard hashing, LSH performs a series
of hashes, each of which examines only a portion of the
sub-fingerprint. The goal is to partition the feature vectors
(in this case the Min-Hash signatures) into sub-vectors and
to hash each sub-vector into separate hash tables. Each hash
table uses only a single sub-vector as input to the hash
function. Candidate neighbors are those vectors that have

collisions in at least one of the sub-fingerprint hashes; the
more collisions the more similar. Together with Min-Hash,
LSH provides an effective way to represent and lookup
nearest neighbors of large, sparse binary vectors. The
results with the k-NN system are given in Table 2. In order
to make the baselines as competitive as possible, we
searched over a large range of possible k-values for each
trial to find the best answer; it is given below. Note that for
smaller number of training examples, k-NN outperformed
SVMs; as the number of training examples increased, the
performance of k-NN dropped below SVMs.

3. ADSORPTIO�

The genesis of the family of algorithms that we
collectively call Adsorption [4] is the following question:
assuming we wish to classify a node in a graph in terms of
class-labels present on some of the other nodes, what is a
principled way to do it? Perhaps the easiest answer to this
question is to impose a metric on the underlying graph and
classify the label by adopting the labels present on its
nearest neighbor. There are a variety of metrics to choose
from (e.g., shortest distance, commute time or electrical
resistance, etc.), but most of these are expensive to
compute, especially for large graphs. Furthermore,
conceptually simple ones like shortest distance have
undesirable properties; for example, they do not take into
account the number of paths between the labeled and
unlabeled nodes. Adsorption provides an intuitive,
iterative, manner in which to propagate labels in a graph.

The first step is setting up the problem in terms of a
graph. For the news story classification task, the
embedding is straightforward: each story is a node in the
graph, and the weights of the edges between nodes
represent the similarity between two news stories. The
similarity is computed via the MIN-HASH/LSH distance
described previously; if there is a collision via the LSH
procedure, then an edge exists and the weights is non-zero

Table 1: SVM Performance, measured with varying Labeled
Samples

Labeled
Examples

Overall
Performance
(Samples
500-3900)

Initial
Performance
(Samples
500-600)

Later
Performance
(Samples
3800-3900)

0-100 58.5 66 41

0-200 76.0 86 68

0-300 81.6 84 72

0-400 85.2 92 81

0-500 86.2 95 83

Table 2: k-Nearest Neighbor, with Varying Labeled
Samples, Best Value for k given in Column 1.

Labeled

Examples

(best value

of k shown)

Overall

Performance

(Samples

500-3900)

Initial

Performance

(Samples

500-600)

Later

Performance

(Samples

3800-3900)

0-100 (10) 81.3 85 79

0-200 (1) 80.9 86 78

0-300 (10) 82.2 90 76

0-400 (10) 83.3 90 79

0-500 (10) 83.4 92 80

and positive. In the simplest version of the algorithm, the
stories that are labeled, are labeled with a single category.
The remaining nodes, those to be labeled, will gather
evidence of belonging to each of the seven classes as
Adsorption is run. At the end of the algorithm, for each
node, the class with the largest accumulated evidence is
assigned to the node (and therefore the news story). When
designing a label propagation algorithm in this framework,
there are several overarching, intuitive, desiderata we
would like to maintain. First, node v should be labeled l
only when there are short paths, with high weight, to other
nodes labeled l. Second, the more short paths with high
weight that exist, the more evidence there is for l. Third,
paths that go through high-degree nodes may not be as
important as those that do not (intuitively, if a node is
similar to many other nodes, then it being similar to any
particular node may not be as meaningful). Adsorption is
able to capture these desiderata effectively.

Next, we present Adsorption in its simplest form:
iterated label passing and averaging. We will also present
an equivalent algorithm, termed Adsorption-RW, that
computes the same values, but is based on random walks in
the graphs. Although not presented in this paper,
Adsorption can also be defined as a system of linear
equations in which we can express the label distribution at
each vertex as a convex combination of the other vertices.
Our presentation follows our prior work [4], which also
includes additional details. These three interpretations of
the Adsorption algorithm provide insights into the
computation and direct us to important practical findings; a
few will be briefly described in Section 3.3.

3.1 Adsorption via Averaging

In Adsorption, given a graph where some nodes have
labels, the nodes that carry some labels will forward the
labels to their neighbors, who, in turn, will forward them to
their neighbors, and so on, and all nodes collect the labels
they receive. Thus each node has two roles, forwarding
labels and collecting labels. The crucial detail is the choice
of how to retain a synopsis that will both preserve the
essential parts of this information as well as guarantee a
stable (or convergent) set of label assignments.

Formally, we are given a graph),,(wEVG = where V
denotes the set of vertices (nodes), E denotes the set of
edges, and R→Ew : denotes a nonnegative weight
function on the edges. Let L denote a set of labels, and
assume that each node v in a subset VVL ⊆ carries a
probability distribution vL on the label set L . We often
refer to LV as the set of labeled nodes. For the sake of
exposition, we will introduce a pre-processing step, where
for each vertex LVv∈ , we create a “shadow” vertex v~
with exactly one out-neighbor, namely v , connected via an
edge),~(vv ; furthermore, for each LVv∈ , we will re-locate
the label distribution vL from v to v~ , leaving v with no
label distribution. Let V

~
denote the set of shadow vertices,

{ }LVvvV ∈= |~~
. From now on, we will assume that at the

beginning of the algorithm, only vertices in V
~
 have non-

vacuous label distributions. See Figure 2 for the full
algorithm.

Some comments on Adsorption: (1) In the algorithm,
we say that convergence has occurred if the label
distribution of none of the nodes changes in a round. It can
be shown that the algorithm converges to a unique set of
label distributions. (2) Upon convergence, each node

VVv
~

U∈ carries a label distribution, provided there is a
path from v to some node LVu∈ . (3) We do not update
the label distribution in each round; rather, we recompute it
entirely, based on the distributions delivered by the
neighbors. (4) Adsorption has an efficient iterative
computation (similar to PageRank [12]), where, in each
iteration, a label distribution is passed along every edge.

Recalling that our goal was to maintain a synopsis of the
labels that are reachable from a vertex, let us remark that
the normalization step following the step of computing the
weighted sum of the neighbors’ label distribution is crucial
to our algorithm. Labels that are received from multiple (or
highly-weighted neighbors) will tend to have higher mass
after this step, so this normalization step renders the
Adsorption algorithm as a classifier in the traditional
machine learning sense. The algorithm, as presented, is a
modification of the label propagation algorithm of Zhu et.
al. [13][14], where they considered the problem of semi-
supervised classifier design using graphical models. They
also note that their algorithm is different from a random-
walk model proposed by Szummer and Jaakkola [15]; in the
next section we will show that there is a very different
random walk algorithm that coincides exactly with the
Adsorption algorithm. The latter fact has also been noticed
independently by Azran [16]. This aspect of the
Adsorption algorithm distinguishes it from the prior works
of Zhu et al; the enhanced random walk model we present
generalizes the work of Zhu et al., and presents a broader
class of optimization problems that we can address1. The
approach of Zhu et al. is aimed at labeling the unlabeled
nodes while preserving the labels on the initially labeled

1 We thank P. Talukdar (personal communication, November

2008) for pointing this out.

Algorithm Adsorption:

Input: LVLwEVG ,),,,(=

repeat

 for each VVv
~

U∈ do:

 Let ∑= u uv LvuwL),(

 end-for

 Normalize vL to have unit 1L norm

until convergence

Output: Distributions }|{ VvLv ∈

Figure 2: Basic adsorption algorithm

nodes and minimizing the “error” across edges. In
Adsorption, there is a subtle, but vital, difference, the
importance attached to preserving the labels, as well as the
importance of near vs. far neighbors is explicitly controlled
through the use of the injection-label weights and
abandonment probabilities. These will both be described in
detail in Section 3.3. The random walk equivalence, under
the mild conditions of ergodicity, immediately implies an
efficient algorithm for the problem, a fact not obvious from
a general formulation as minimizing a convex function.
From a broader standpoint, it is interesting to note that this
family of “repeated averaging” algorithms have a long
history in the mathematical literature of differential
equations, specifically in the context of boundary value
problems (i.e., estimating the heat at a point of a laminar
surface, given the boundary temperatures).

3.2 Adsorption via Random Walks

The memoryless property of the Adsorption algorithm
that we alluded to earlier immediately leads to a closely
related interpretation. Let us “unwind” the execution of the
algorithm from the final round, tracing it backwards. For a
vertex Vv∈ , denote by v0 the probability distribution on
the set of neighbors of v described by

)),(/(),()(∑=
uv vuwvuwu0 that is, the probability of u is

proportional to the weight on the edge),(vu . The label
distribution of a vertex v is simply a convex combination
of the label distributions at its neighbors, that is,

∑= u uvv Lu0L)(; therefore, if we pick an in-neighbor u
of v .at random according to v0 and sample a label
according to the distribution uL , then for each label Ll∈ ,

)(lLv is precisely equal to [])(Exp lLuu , where the
expectation arises from the process of picking a neighbor u
according to v0 . Extending this to neighbors at distance 2,
it is easy to see that for each label

[])(ExpExp)(, uw lLlLLl wv =∈ where an in-neighbor u
of v is chosen according to v0 and an in-neighbor w of
u is chosen according to u0 . Expanding this out, we see
that ∑ ∑=

w u
wuvv lLw0u0lL)()()()(.

Notice that)(u0v is the probability of reaching u from

v in one step of a random walk starting from v and
picking a neighbor according to v0 , and similarly,)(w0u
is the probability of picking a neighbor w of u
according to u0 . Notice also the crucial use of the
Markov property (memorylessness) here: conditioned on
the random walk having reached u , the only information
used in picking w is u0 , which depends only on u , and
not on where we initiated the random walk from. Finally,
note that if the random walk ever reaches one of the shadow
vertices z~ where LVz∈ , then there is no in-edge into z , so
the random walks stops. Thus vertices in V

~
are “absorbing

states” of the Markov chain defined by the random walk. A
simple induction now establishes that the Adsorption
algorithm is equivalent to the following variation, described
in terms of random walks on the reverse of the graph G

together with the edges from V
~
to V . See Figure 3. Here,

pick-neighbor),,(wEv returns a node u such that
Evu ∈),((so that there is an edge from v to u in the

reversed graph) with probability)),(/(),(∑u
vuwvuw .

In our exposition below, the algorithm takes a starting
vertex v for the random walk, and outputs a label
distribution vL for it when it reaches an absorbing state.
Thus, the label distribution for each node is a random
variable, whose expectation yields the final label
distribution for that vertex. To obtain label distributions for
all vertices, this procedure needs to be repeated many times
for every vertex, and the average distributions calculated.
This yields a very inefficient algorithm; therefore, in
practice, we exploit the equivalence of this algorithm to the
averaging Adsorption algorithm in Section 2.2, which has
very efficient implementations.

It is instructive to compare algorithm Adsorption-RW
with typical uses of stationary distributions of random
walks on graphs, such as the PageRank algorithm [12]. In
the case of PageRank, a fixed Markov random walk is
considered; therefore, the stationary probability distribution
gives, for each node of the graph, the probability that the
walk visits that node. In the absence of any absorbing node
(and assuming the walk is ergodic), the initial choice of the
node from which the random walk starts is irrelevant in
determining the probability of reaching any particular node
in the long run. Consequently, these methods do not allow
us to measure the influence of nodes on each other. In our
situation, labeled nodes are absorbing states of the random
walk; therefore, the starting point of the walk determines
the probability with which we will stop the walk at any of
the absorbing states. This implies that we may use these
probabilities as a measure of the influence of nodes on each
other.

Figure 3: Adsorption in terms of random walks.

Algorithm Adsorption-RW

Input: LVLwEVG ,),,,(= , distinguished vertex v

Let }},|)~,{(,
~

(
~

wVvvvEVVG L∈= UU

Define 1)~,(=vvw for all LVv∈

done := false

vertex := v

while (not done) do:

vertex := pick-neighbor),,(wEv

if (neighbor V
~

∈)

done := true

end-while

u := vertex

Output label according to uL .

3.3 Injection and Abandonment

Probabilities in Adsorption

The three equivalent renditions of the algorithm
(averaging, random walk, system of linear equations) lead
to a number of interesting variations that one may employ.
For example, in the viewpoint of a linear system of
equations, it is easy to see how we can restrict which labels
are allowed for a given node. In another variation, we can
model the “amount of membership” of a node to a class.
Recall the notion of a “shadow” node v~ that act as a
“labelbearer” for v . A judicious choice of edge weight
along the edge to the label-bearer, or equivalently the label
injection probability, helps us control how the random walk
behaves (this is equivalent to choosing the transition
probability from v to v~ in the reversed graph). For
example, lower transition probabilities to the shadow nodes
may indicate lower membership in the label class (e.g. a
news story is ½ in politics as it is only tangentially related,
etc). Note that indicating ½ politics label does not imply
that the other ½ must be assigned to another class. This
will be used in experiments described in Section 5.

Another important insight is realized when examining
Adsorption in terms of random walks. Instead of
considering the standard random walk on an edge-weighted
graph, one may consider a “hobbled walk,” where at each
step, with some probability, which we call the abandonment
probability; the algorithm abandons the random walk
without producing any output label. Our experiments (here
and in other applications) have confirmed that abandoning
the random walk with a small probability at each iteration is
a very useful feature. It slows down the random walk in a
quantifiable way: the influence of a label l on a node
u falls off exponentially in the number of nodes along the
paths from nodes that carry l to u . This strengthens the
effect of nearby nodes; this has proven crucial to obtaining
good results in large graphs.

4. I�ITIAL EXPERIME�TS WITH

ADSORPTIO�

In the experiments presented in this section, we use the
same data that was presented in Section 2, and apply the
Adsorption algorithm. Given the similarity measurements
that were computed via the MIN-HASH & LSH
combination described earlier, the graph and weights are
constructed by simply setting each story as a node in the
graph, and the weights of the edges between stories as the
distance as specified by the distance computation
mentioned above. The stories that are in the labeled set
have shadow nodes attached to them with the correct label;
stories outside of the labeled set do not have shadow nodes.
Adsorption computes a label distribution at each node; the
label with the maximum value at the end of the Adsorption
run is considered the node’s (and therefore story’s)
classification. In constructing the graph to use with
Adsorption, a number of options are available. Encoding
domain-specific information into the graph topology may
be a powerful way to express any a priori or expert
knowledge of the task. For example, knowing that the
most accurate classifications are likely to happen in stories
temporally close to the labeled stories, connections to nodes
representing earlier news stories may receive a higher
weighting; or connections to the labeled set may be
prioritized over other connections, etc. Nonetheless, to
avoid confusing the causes of the performance numbers and
introducing ad-hoc, domain specific, heuristics, we
experimented with only domain-independent parameters.
One of the most salient is when we construct the graph, we
can limit the number of the closest neighbors that we
connect with each node. In Table 3, we experiment with
connecting each neighbor only with, at most2, its S=10, 100,
500, 1000 most similar stories3. Perhaps the most

2 Because there may be fewer than S collisions for a news story in

the LSH hash-tables that are used to rapidly estimate

similarity, every node may not have the maximum S

connections.
3 Recall that since the connections are undirected, a node may

have more than S connections. The total number of undirected

connections will not exceed VS * .

Table 3: Adsorption, with Varying Number of Connections Per Node, 200 Labeled Nodes

 Maximum
Number of
Connections
per Node

Overall
Performance
(Samples
500-3900)

Initial
Performance
(Samples
500-600)

Later
Performance
(Samples
3800-3900)

Adsorption 10 80.1 90 72

100 88.1 92 83

500 86.6 91 84

1000 85.8 91 82

unlimited 82.4 94 80

interesting observation is that increasing the number of
connections does not necessarily increase the performance.
As the number of maximum connections is increased,
eventually the connections encode such weak similarities
between the news stories that it better not to use them.
Currently, we set the maximum number of connections
empirically (to 500); in the future, other methods will be
explored.

Having set the connection count, we examine the effects
of the number of labeled training samples. The Adsorption
algorithm reveals performance with 100 labeled examples
that is comparable or exceeds in overall and long-term
performance to the best k-NN and SVM performance with
500 labeled examples. Results are shown in Table 4.

In the next section, we continue the empirical evaluation
by looking at larger numbers of news stories, and the effects
of even fewer labels.

5. FULL-SCALE EXPERIME�TS

The first full-scale experiment parallels the experiments
presented to this point. We assume that we have 100
labeled examples and that we would like to categorize
examples that appear up to 80 days later after the labeled

examples were classified. The performance is shown in
Figure 4, each day in which a news story was gathered is
shown in the graph. In Figure 4 (right), the comparative
results for k-NN are given. The average performance for
Adsorption is 87.8%, k-NN: 82.5%. Other techniques
such as Naïve-Bayes and SVMs were also tried; of these
other techniques, k-NNs performed the best. Specifically,
Naïve-Bayes performed worse than both SVMs and k-NNs,
and SVMs performed worse than k-NNs.

In our second experiment, we explore the ramifications
of having two orders of magnitude less training data. Only
a single example is labeled on day 1. The goal is to
examine the articles in the last three days (days 78-81), and
to rank them according to the probability of being in the
same class as the single labeled example from the first day.
This scenario is a proxy for a very common scenario
encountered in practice in sites like news.google.com and
other news aggregation sites. A user may read only a small
number of articles one day, and then come back to the site
many days later. Although there is not much evidence of
the user’s preferences, we know simply that of all the
articles the user could have chosen to read on day 1, (s)he
read a single one. In this case, the labels from the first
day’s article are simply 0: article was not read or 1: the
article was read. For Adsorption, we weighted the
examples with label 0 with an injection probability of 0.1 to

Table 4: Adsorption Performance, with Varying Labeled Samples, 500 connections per node

 Labeled
Examples

Overall
Performance
(Samples
500-3900)

Initial
Performance
(Samples
500-600)

Later
Performance
(Samples
3800-3900)

Adsorption 0-100 86.4 91 84

0-200 86.6 91 84

0-300 86.4 91 82

0-400 86.8 92 84

0-500 86.5 93 83

Adsorption (avg=.878)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41 51 61 71

Days

A
c
c
u
ra
c
y

k -nn (avg=0.825)

0.7

0.75

0.8

0.85

0.9

0.95

1

1 11 21 31 41 51 61 71

Days

A
c
c
u
ra
c
y

Figure 4: Performance of Adsorption and k-NN over 81 days

reflect uncertainty of why the user did not read the article,
was it because of interest, time, or simply not noticing it?
The articles labeled 1 (“read”), continued to have an
injection probability of 1.0.

The performance was measured as follows. 500
articles from the last few days of the experiment were
ranked according to their probability of being from the
same class as the ‘read’ article. The full Adsorption
connectivity graph was used, as described in the previous
experiments, to propagate the label through time. In Figure
5, we examine the top-N (N = 5, 10, 25, 50) of the ranked
articles, and give the percentage of the N that are from the
same class. As can be seen, Figure 5 (Left), even with a
single example, the average precision rate is approximately
84% with Adsorption for the top-5 examples, and over 80%
for the top-10. In Figure 5(Right), the same experiment is
performed, but measures the effect of having added a
second labeled example (from the same class as the first).
All algorithms improve dramatically over all ranges of N.
Interestingly, a single additional labeled example provides
information that all the algorithms effectively exploit.
Adsorption continues to outperform K-NN and SVMs4 in
both tests, for all values of N.

6. CO�CLUSIO�S & FUTURE WORK

In this paper, we have presented an efficient and simple
procedure in which to incorporate an often ignored signal
into the task of news classification: time. Although the
writing, vocabulary and topics of the news stories rapidly

4 The use of unlabeled samples through transductive learning for

the SVM was again used here. It slightly improved

performance in a few trials; the best of both is given here.

change over time, we are able to perform the classification
of news stories with very little training data that is received
only in the beginning of the testing period.

There are many avenues for future research, both in
this task and in the development of Adsorption. First, a
comparison with different unlabeled data learning systems
is warranted. Although, in this study, we used transductive
SVMs as means to incorporate unlabeled data, it did not
improve performance significantly. Other methods, such as
spectral clustering may do better. Although most other
techniques do not incorporate a notion of time, perhaps
combinations of the other methods with the ones presented
here can be devised; this is potentially large area of interest.
Second, we used a simple graph structure that did not
incorporate all of the available domain information (e.g. all
the labeled examples are at the beginning). Using the graph
structure to encode domain knowledge will be very relevant
in new domains as well. Further, graph pruning algorithms
are of interest, especially in the cases in which domain
knowledge may not be readily available; as was seen in the
experiments, more connections do not imply improved
performance. Finally, this test was conducted over a period
of approximately 3 months with real examples of rapidly
shifting news stories that exemplify current news-
aggregation-site challenges; longer tests are forthcoming.

7. REFERE�CES

[1] Topic Detection and Tracking Evaluation,

http://www.nist.gov/speech/tests/tdt/

[2] Allen, J. (2002) Topic Detection and Tracking: Event-
Based Information Org., Springer.

Experiments with a Single

Labeled Example: Precision

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

5 10 25 50

Examples Examined

P
re
c
is
io
n

Adsorption K-NN SVM

Experiments with Two Labeled

Examples: Precision

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

5 10 25 50

Examples Examined

P
re
c
is
io
n

Adsorption K-NN SVM

Figure 5: Experiments with 1 & 2 labeled examples. Precision at 5,10,25, and 50 results in retrieving
examples from the same class as the single labeled example (left) or two labeled examples (right).

[3] Mori, M. Miura, T. Shioya, I. (2006) Topic
Detection and Tracking for News Web Pages,
IEEE/WIC/ACM International Conference on Web
Intelligence, 2006.

[4] Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik,
J., Kumar, S., Ravichandran, D., Aly M., (2008) Video
Suggestion and Discovery for YouTube: Taking
Random Walks Through the View Graph (WWW-
2008).

[5] Pomikalek, J., Rehurek, R. (2007) The Influence of
preprocessing parameters on text categorization,
Proceedings of World Academy of Sci, Eng. Tech, V21

[6] McCallum A. and Nigam, K. (1998) A comparison of
event models for Naïve Bayes text classification,
AAAI-98 Workshop on Learning for Text
Categorization.

[7] Cortes, C. & Vapnik, V. (1995). Support-Vector
Networks. Machine Learn. J., 273-297.

[8] Joachims T. (2002), Learning to Classify Text Using
Support Vector Machines. Dissertation, Kluwer, 2002.
(code from svm-lite: http://svmlight.joachims.org/)

[9] Joachims T. (1999), “Transductive Inference for Text
Classification using Support Vector Machines”.
International Conference on Machine Learning
(ICML), 1999.

[10] Cohen, E.; Datar, M.; Fujiwara, S.; Gionis, A.; Indyk,
P.; Motwani, R.; Ullman, J.D.; Yang, C. (2001)
Finding interesting associations without support
pruning. Knowledge and Data Engineering, V13:1

[11] Gionis, A., Indyk, P., Motwani, R. (1999), Similarity
search in high dimensions via hashing. Proc.
International Conference on Very Large Data Bases,
1999.

[12] Brin, S. and Page, L. (1998). The anatomy of a large-
scale hypertextual web search engine. Comp. 0ets 30

[13] Zhu, X. (2005) Semi-Supervised Learning with
Graphs. Carnegie Mellon U., PhD Thesis.

[14] Zhu, X., Ghahramani G., and Lafferty, J. (2003). Semi-
supervised learning using Gaussian fields and
Harmonic Functions , in International Conference on
Machine Learning-20.

[15] Szummer, M. & Jaakkola, T. (2001) Partially labeled
classification with Markov random walks. 0IPS-2001.

[16] Azran, A. (2007) The Rendezvous Algorithm:
Multiclass semi-supervised learning with markov
random walks. In International Conference on
Machine Learning -24, 2007.

[17] Baluja, S. & Covell M. (2008) Audio Fingerprinting:
Combining Computer Vision & Data Stream
Processing, Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP-2008).

[18] Ifrim, G. & Weikum, G.,(2006) Transductive Learning
for Text Classification using Explicit Knowledge
Models, PKDD-2006

[19] Project for Excellence in Journalism (2008). “A Year
in the News”, The State of 0ews Media 2008: An
Annual Report on American Journalism.
http://www.stateofthenewsmedia.org/2008/index.php

