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Abstract
We describe efforts to adapt the Tesseract open source OCR
engine for multiple scripts and languages. Effort has been
concentrated on enabling generic multi-lingual operation such
that negligible customization is required for a new language
beyond providing a corpus of text. Although change was required
to various modules, including physical layout analysis, and
linguistic post-processing, no change was required to the
character classifier beyond changing a few limits. The Tesseract
classifier has adapted easily to Simplified Chinese. Test results on
English, a mixture of European languages, and Russian, taken
from a random sample of books, show a reasonably consistent
word error rate between 3.72% and 5.78%, and Simplified
Chinese has a character error rate of only 3.77%.
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1. Introduction
Research interest in Latin-based OCR faded away more than a
decade ago, in favor of Chinese, Japanese, and Korean (CJK)
[1,2], followed more recently by Arabic [3,4], and then Hindi
[5,6]. These languages provide greater challenges specifically to
classifiers, and also to the other components of OCR systems.
Chinese and Japanese share the Han script, which contains
thousands of different character shapes. Korean uses the Hangul
script, which has several thousand more of its own, as well as
using Han characters. The number of characters is one or two
orders of magnitude greater than Latin. Arabic is mostly written
with connected characters, and its characters change shape
according to the position in a word. Hindi combines a small
number of alphabetic letters into thousands of shapes that
represent syllables. As the letters combine, they form ligatures
whose shape only vaguely resembles the original letters. Hindi
then combines the problems of CJK and Arabic, by joining all the
symbols in a word with a line called the shiro-reka.

Research approaches have used language-specific work-arounds
to avoid the problems in some way, since that is simpler than
trying to find a solution that works for all languages. For instance,
the large character sets of Han, Hangul, and Hindi are mostly
made up of a much smaller number of components, known as
radicals in Han, Jamo in Hangul, and letters in Hindi. Since it is
much easier to develop a classifier for a small number of classes,
one approach has been to recognize the radicals [1, 2, 5] and infer
the actual characters from the combination of radicals. This
approach is easier for Hangul than for Han or Hindi, since the

radicals don't change shape much in Hangul characters, whereas
in Han, the radicals often are squashed to fit in the character and
mostly touch other radicals. Hindi takes this a step further by
changing the shape of the consonants when they form a conjunct
consonant ligature. Another example of a more language-specific
work-around for Arabic, where it is difficult to determine the
character boundaries to segment connected components into
characters. A commonly used method is to classify individual
vertical pixel strips, each of which is a partial character, and
combine the classifications with a Hidden Markov Model that
models the character boundaries [3].

Google is committed to making its services available in as many
languages as possible [7], so we are also interested in adapting the
Tesseract Open Source OCR Engine [8, 9] to many languages.
This paper discusses our efforts so far in fully internationalizing
Tesseract, and the surprising ease with which some of it has been
possible. Our approach is use language generic methods, to
minimize the manual effort to cover many languages.

2. Review Of Tesseract For Latin

Fig. 1 is a block diagram of the basic components of Tesseract.
The new page layout analysis for Tesseract [10] was designed
from the beginning to be language-independent, but the rest of the
engine was developed for English, without a great deal of thought
as to how it might work for other languages. After noting that the
commercial engines at the time were strictly for black-on-white
text, one of the original design goals of Tesseract was that it
should recognize white-on-black (inverse video) text as easily as
black-on-white. This led the design (fortuitously as it turned out)
in the direction of connected component (CC) analysis and
operating on outlines of the components. The first step after CC
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Figure 1. Top-level block diagram of Tesseract.
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analysis is to find the blobs in a text region. A blob is a putative
classifiable unit, which may be one or more horizontally
overlapping CCs, and their inner nested outlines or holes. A
problem is detecting inverse text inside a box vs. the holes inside
a character. For English, there are very few characters (maybe ©
and ®) that have more than 2 levels of outline, and it is very rare
to have more than 2 holes, so any blob that breaks these rules is
"clearly" a box containing inverse characters, or even the inside or
outside of a frame around black-on-white characters.

After deciding which outlines make up blobs, the text line finder
[11] detects (horizontal only) text lines by virtue of the vertical
overlap of adjacent characters on a text line. For English the
overlap and baseline are so well behaved that they can be used to
detect skew very precisely to a very large angle. After finding the
text lines, a fixed-pitch detector checks for fixed pitch character
layout, and runs one of two different word segmentation
algorithms according to the fixed pitch decision. The bulk of the
recognition process operates on each word independently,
followed by a final fuzzy-space resolution phase, in which
uncertain spaces are decided.

Fig.2 is a block diagram of the word recognizer. In most cases, a
blob corresponds to a character, so the word recognizer first
classifies each blob, and presents the results to a dictionary search
to find a word in the combinations of classifier choices for each
blob in the word. If the word result is not good enough, the next
step is to chop poorly recognized characters, where this improves
the classifier confidence. After the chopping possibilities are
exhausted, a best-first search of the resulting segmentation graph
puts back together chopped character fragments, or parts of
characters that were broken into multiple CCs in the original
image. At each step in the best-first search, any new blob
combinations are classified, and the classifier results are given to
the dictionary again. The output for a word is the character string
that had the best overall distance-based rating, after weighting
according to whether the word was in a dictionary and/or had a
sensible arrangement of punctuation around it. For the English
version, most of these punctuation rules were hard-coded.

The words in an image are processed twice. On the first pass,
successful words, being those that are in a dictionary and are not
dangerously ambiguous, are passed to an adaptive classifier for
training. As soon as the adaptive classifier has sufficient samples,
it can provide classification results, even on the first pass. On the
second pass, words that were not good enough on pass 1 are

processed for a second time, in case the adaptive classifier has
gained more information since the first pass over the word.

From the foregoing description, there are clearly problems with
this design for non-Latin languages, and some of the more
complex issues will be dealt with in sections 3, 4 and 5, but some
of the problems were simply complex engineering. For instance,
the one byte code for the character class was inadequate, but
should it be replaced by a UTF-8 string, or by a wider integer
code? At first we adapted Tesseract for the Latin languages, and
changed the character code to a UTF-8 string, as that was the most
flexible, but that turned out to yield problems with the dictionary
representation (see section 5), so we ended up using an index into
a table of UTF-8 strings as the internal class code.

3. Layout Preprocessing
Several aspects of the “textord” (text-ordering) module of
Tesseract required changes to make it more language-
independent. This section discusses these changes.

3.1 Vertical Text Layout
Chinese, Japanese, and Korean, to a varying degree, all read text
lines either horizontally or vertically, and often mix directions on
a single page. This problem is not unique to CJK, as English
language magazine pages often use vertical text at the side of a
photograph or article to credit the photographer or author.
Vertical text is detected by the page layout analysis. If a majority
of the CCs on a tab-stop have both their left side on a left tab and
their right side on a right tab, then everything between the tab-
stops could be a line of vertical text. To prevent false-positives in
tables, a further restriction requires vertical text to have a median
vertical gap between CCs to be less than the mean width of the
CCs. If the majority of CCs on a page are vertically aligned, the
page is rotated by 90 degrees and page layout analysis is run again
to reduce the chance of finding false columns in the vertical text.
The minority originally horizontal text will then become vertical
text in the rotated page, and the body of the text will be
horizontal.

Figure 3. (a) A page containing a verical text region.
(b) The detected regions with image in red, horizontal text in

blue, and vertical text in yellow.
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Figure 2. Block diagram of Tesseract word recognition.
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Figure 4. The vertical
text is differentially

rotated so it is oriented
horizontally.

As originally designed, Tesseract had
no capability to handle vertical text,
and there are a lot of places in the code
where some assumption is made over
characters being arranged on a
horizontal text line. Fortunately,
Tesseract operates on outlines of CCs
in a signed integer coordinate space,
which makes rotations by multiples of
90 degrees trivial, and it doesn't care
whether the coordinates are positive or
negative. The solution is therefore
simply to differentially rotate the
vertical and horizontal text blocks on a
page, and rotate the characters as
needed for classification. Fig. 3 shows
an example of this for English text.
The page in Fig. 3(a) contains vertical
text at the lower-right, which is
detected in Fig. 3(b), along with the
rest of the text. In Fig. 4, the vertical
text region is rotated 90 degrees
clockwise, (centered at the bottom-left
of the image), so it appears well below
the original image, but in horizontal orientation.

Fig. 5 shows an example for Chinese text. The mainly-vertical
body text is rotated out of the image, to make it horizontal, and
the header, which was originally horizontal, stays where it started.
The vertical and horizontal text blocks are separated in coordinate
space, but all Tesseract cares about is that the text lines are
horizontal. The data structure for a text block records the rotations
that have been performed on a block, so that the inverse rotation
can be applied to the characters as they are passed to the classifier,
to make them upright. Automatic orientation detection [12] can be
used to ensure that the text is upright when passed to the
classifier, as vertical text could have characters that are in at least
3 different orientations relative to the reading direction. After
Tesseract processes the rotated text blocks, the coordinate space is
re-rotated back to the original image orientation so that reported
character bounding boxes are still accurate.

Figure 5. Horizontal text detection for Traditional Chinese.
Since the majority of the text is vertical, inside Tesseract it is
rotated anticlockwise 90 degrees so it lies outside the image,

but the lines are horizontal. The page header, which was
already horizontal, remains behind.

3.2 Text-line and Word Finding
The original Tesseract text-line finder [11] assumed that CCs that
make up characters mostly vertically overlap the bulk of the text
line. The one real exception is i dots. For general languages this is
not true, since many languages have diacritics that sit well above
and/or below the bulk of the text-line. For Thai for example, the
distance from the body of the text line to the diacritics can be
quite extreme. The page layout analysis for Tesseract is designed
to simplify text-line finding by sub-dividing text regions into
blocks of uniform text size and line spacing. This makes it
possible to force-fit a line-spacing model, so the text-line finding
has been modified to take advantage of this. The page layout
analysis also estimates the residual skew of the text regions, which
means the text-line finder no longer has to be insensitive to skew.

The modified text-line finding algorithm works independently for
each text region from layout analysis, and begins by searching the
neighborhood of small CCs (relative to the estimated text size) to
find the nearest body-text-sized CC. If there is no nearby body-
text-sized CC, then a small CC is regarded as likely noise, and
discarded. (An exception has to be made for dotted/dashed
leaders, as typically found in a table of contents.) Otherwise, a
bounding box that contains both the small CC and its larger
neighbor is constructed and used in place of the bounding box of
the small CC in the following projection.

A "horizontal" projection profile is constructed, parallel to the
estimated skewed horizontal, from the bounding boxes of the CCs
using the modified boxes for small CCs. A dynamic programming
algorithm then chooses the best set of segmentation points in the
projection profile. The cost function is the sum of profile entries
at the cut points plus a measure of the variance of the spacing
between them. For most text, the sum of profile entries is zero,
and the variance helps to choose the most regular line-spacing.
For more complex situations, the variance and the modified
bounding boxes for small CCs combine to help direct the line cuts
to maximize the number of diacriticals that stay with their
appropriate body characters.

Once the cut lines have been determined, whole connected
components are placed in the text-line that they vertically overlap
the most, (still using the modified boxes) except where a
component strongly overlaps multiple lines. Such CCs are
presumed to be either characters from multiple lines that touch,
and so need cutting at the cut line, or drop-caps, in which case
they are placed in the top overlapped line. This algorithm works
well, even for Arabic.

After text lines are extracted, the blobs on a line are organized
into recognition units. For Latin languages, the logical recognition
units correspond to space-delimited words, which is naturally
suited for a dictionary-based language model. For languages that
are not space-delimited, such as Chinese, it is less clear what the
corresponding recognition unit should be. One possibility is to
treat each Chinese symbol as a recognition unit. However, given
that Chinese symbols are composed of multiple glyphs (radicals),
it would be difficult to get the correct character segmentation
without the help of recognition. Considering the limited amount
of information that is available at this early stage of processing,
the solution is to break up the blob sequence at punctuations,
which can be detected quite reliably based on their size and
spacing to the next blob. Although this does not completely
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resolve the issue of a very long blob sequence, which is a crucial
factor in determining the efficiency and quality when searching
the segmentation graph, this would at least reduce the lengths of
recognition units into more manageable sizes.

As described in Section 2, detection of white-on-black text is
based on the nesting complexity of outlines. This same process
also rejects non-text, including halftone noise, black regions on
the side, or large container boxes as in sidebar or reversed-video
region. Part of the filtering is based on a measure of the
topological complexity of the blobs, estimated based on the
number of interior components, layers of nested holes, perimeter
to area ratio, and so on. However, the complexity of Traditional
Chinese characters, by any measure, often exceeds that of an
English word enclosed in a box. The solution is to apply a
different complexity threshold for different languages, and rely on
subsequent analysis to recover any incorrectly rejected blobs.

3.3 Estimating x-height in Cyrillic Text
After completing the text line finding step and organizing blocks
of blobs into rows, Tesseract estimates x-height for each text line.
The x-height estimation algorithm first determines the bounds on
the maximum and minimum acceptable x-height based on the
initial line size computed for the block. Then, for each line
separately, the heights of the bounding boxes of the blobs
occurring on the line are quantized and aggregated into a
histogram. From this histogram the x-height finding algorithm
looks for the two most commonly occurring height modes that are
far enough apart to be the potential x-height and ascender height.
In order to achieve robustness against the presence of some noise,
the algorithm ensures that the height modes picked to be the x-
height and ascender height have sufficient number or occurrences
relative to the total number of blobs on the line.

This algorithm works quite well for most Latin fonts. However,
when applied as-is to Cyrillic, Tesseract fails to find the correct x-
height for most of the lines. As a result, on a data set of Russian
books the word error-rate of Tesseract turns out to be 97%. The
reason for such high error rate is two-fold. First of all the ascender
statistics in Cyrillic fonts differ significantly from Latin ones.
Simply lowering the threshold for the expected number of
ascenders per line is not an effective solution, since it is not
infrequent that a line of text would contain one or no ascender
letters. The second reason for such poor performance is a high
degree of case ambiguity in Cyrillic fonts. For example, out of 33
upper-case modern Russian letters only 6 have a lower-case shape
that is significantly different from the upper-case in most fonts.
Thus, when working with Cyrillic, Tesseract can be easily misled
by the incorrect x-height information and would readily recognize
lower-case letters as upper-case.

Our approach to fixing the x-height problem for Cyrillic was to
adjust the minimum expected number of ascenders on the line,
take into account the descender statistics and use x-height
information from the neighboring lines in the same block of text
more effectively (a block is a text region identified by the page
layout analysis that has a consistent size of text blobs and line-
spacing, and therefore is likely to contain letters of the same or
similar font sizes).

For a given block of text, the improved x-height finding algorithm
first tries to find the x-height of each line individually. Based on

the result of this computation each line falls into one of the
following four categories: (1) the lines where the x-height and
ascender modes were found, (2) where descenders were found, (3)
where a common blob height that could be used as an estimate of
either cap-height or x-height was found, (4) the lines where none
of the above were identified (i.e. most likely lines containing
noise with blobs that are too small, too large or just inconsistent
in size). If any lines from the first category with reliable x-height
and ascender height estimates were found in the block, their
height estimates are used for the lines in the second category
(lines with descenders present) that have a similar x-height
estimate. The same x-height estimate is utilized for those lines in
the third category (no ascenders or descenders found), whose
most common height is within a small margin of the x-height
estimate. If the line-by-line approach does not result in finding
any reliable x-height and ascender height modes, the statistics for
all the blobs in the text block are aggregated and the same search
for x-height and ascender height modes is repeated using this
cumulative information.

As the result of the improvements described above the word error

rate on a test set of Russian books was reduced to 6%. After the
improvements the test set still contained some errors due to the
failure to estimate the correct x-height of the text line. However,
in many of such cases even a human reader would have to use the
information from the neighboring blocks of text or knowledge
about the common organization of the books to determine whether
the given line is upper- or lower-case.

4. Character / Word Recognition
One of the main challenges to overcome in adapting Tesseract for
multilingual OCR is extending what is primarily designed for
alphabetical languages to handle ideographical languages like
Chinese and Japanese. These languages are characterized by
having a large set of symbols and lacking clear word boundaries,
which pose serious tests for a search strategy and classification
engine designed for well delimited words from small alphabets.
We will discuss classification of large set of ideographs in the
next section, and describe the modifications required to address
the search issue first.

4.1 Segmentation and Search
As mentioned in section 3.2, for non-space delimited languages
like Chinese, recognition units that form the equivalence of words
in western languages now correspond to punctuation delimited
phrases. Two problems need to be considered to deal with these
phrases: they involve deeper search than typical words in Latin
and they do not correspond to entries in the dictionary. Tesseract
uses a best-first-search strategy over the segmentation graph,
which grows exponentially with the length of the blob sequence.
While this approach worked on shorter Latin words with fewer

Figure 6. Estimating x-height of Cyrillic text.
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segmentation points and a termination condition when the result is
found in the dictionary, it often exhausts available resources when
classifying a Chinese phrase. To resolve this issue, we need to
dramatically reduce the number of segmentation points evaluated
in the permutation and devise a termination condition that is
easier to meet.

In order to reduce the number of segmentation points, we
incorporate the constraint of roughly constant character widths in
a mono-spaced language like Chinese and Japanese. In these
languages, characters mostly have similar aspect ratios, and are
either full-pitch or half-pitch in their positioning. Although the
normalized width distribution would vary across fonts, and the
spacing would shift due to line justification and inclusion of digits
or Latin words, which is not uncommon, by and large these
constraints provide a strong guideline for whether a particular
segmentation point is compatible with another. Therefore, using
the deviation from the segmentation model as a cost, we can
eliminate a lot of implausible segmentation states and effectively
reduce the search space. We also use this estimate to prune the
search space based on the best partial solution, making it
effectively a beam search. This also provides a termination
condition when no further expansion is likely to produce a better
solution.

Another powerful constraint is the consistency of character script
within a phrase. As we include shape classes from multiple
scripts, confusion errors between characters across different
scripts become inevitable. Although we can establish the
dominant script or language for the page, we must allow for Latin
characters as well, since the occurrence of English words inside
foreign language books is so common. Under the assumption that
characters within a recognition unit would have the same script,
we would promote a character interpretation if it improves the
overall script consistency of the whole unit. However, blindly
promoting script characters based on prior could actually hurt the
performance if the word or phrase is truly mixed script. So we
apply the constraint only if over half the characters in the top
interpretation belong to the same script, and the adjustment is
weighted against the shape recognition score, like any other
permutation.

4.2 Shape Classification
Classifiers for large numbers of classes are still a research
problem; even today, especially when they are required to operate
at the speeds needed for OCR [13, 14]. The curse of
dimensionality is largely to blame. The Tesseract shape classifier
works surprisingly well on 5000 Chinese characters without
requiring any major modifications, so it seems to be well suited to
large class-size problems. This result deserves some explanation,
so in this section we describe the Tesseract shape classifier.

The features are components of a polygonal approximation of the
outline of a shape. In training, a 4-dimensional feature vector of
(x, y-position, direction, length) is derived from each element of
the polygonal approximation, and clustered to form prototypical
feature vectors. (Hence the name: Tesseract.) In recognition, the
elements of the polygon are broken into shorter pieces of equal
length, so that the length dimension is eliminated from the feature
vector. Multiple short features are matched against each

prototypical feature from training, which makes the classification
process more robust against broken characters.

Figure 7. (a) Prototype of h for Times Roman, (b) Match of a
broken h against prototytype.

Fig.7(a) shows an example prototype of the letter ‘h’ for the font
Times Roman. The green line-segments represent cluster means of
significant clusters that contain samples from almost every sample
of ‘h’ in Times Roman. Blue segments are cluster means that were
merged with another cluster to form a significant cluster. Magenta
segments were not used, as they matched an existing significant
cluster. Red segments did not contain enough samples to be
significant, and could not be merged with any neighboring cluster
to form a significant cluster.

Fig.7(b) shows how the shorter features of the unknown match
against the prototype to achieve insensitivity to broken characters.
The short, thick lines are the features of the unknown, being a
broken ‘h’ and the longer lines are the prototype features. Colors
represent match quality: black -> good, magenta -> reasonable,
cyan -> poor, and yellow -> no match. The vertical prototypes are
all well matched, despite the fact that the h is broken.

The shape classifier operates in two stages. The first stage, called
the class pruner, reduces the character set to a short-list of 1-10
characters, using a method closely related to Locality Sensitive
Hashing (LSH) [13]. The final stage computes the distance of the
unknown from the prototypes of the characters in the short-list.

Originally designed as a simple and vital time-saving
optimization, the class pruner partitions the high-dimensional
feature space, by considering each 3-D feature individually. In
place of the hash table of LSH, there is a simple look-up table,
which returns a vector of integers in the range [0, 3], one for each
class in the character set, with the value representing the
approximate goodness of match of that feature to a prototype of
the character class. The vector results are summed across all
features of the unknown, and the classes that have a total score
within a fraction of the highest are returned as the shortlist to be
classified by the second stage. The class pruner is relatively fast,
but its time scales linearly with the number of classes and also
with the number of features.

The second stage classifier calculates the distance df of each
feature from its nearest prototype, as the squared Euclidean
distance d of the (x,y) feature coordinates from the prototype line

in 2-D space, plus a weighted (w) difference of the angle  from

the prototype:

22 wdd f 
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This is essentially a generative classifier, in the sense that it
calculates the distance from an ideal. The feature distance is
converted to feature evidence Ef using the following equation:
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The constant k is used to control the rate at which the evidence
decays with distance. As features are matched to prototypes, the
feature evidence Ef, is copied to the prototypes Ep. Since the
prototypes expect multiple features to be matched to them, and the
collection of “best match” is done independently for speed, the
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are normalized by the number of features and sum of prototype
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Note that the actual implementation uses fixed-point integer
arithmetic and a lot of the scaling constants that would otherwise
obscure the calculations are omitted from the equations above.

Part of the strength of the second-stage classifier is in allowing
multiple ideals (known as configs in Tesseract) within each class
label, thus allowing multi-modal distributions that may be caused
by arbitrary differences in font or typography. The matching
process described above selects the best config when calculating
the final distance. In this sense, the classifier is thus effectively a
nearest neighbor classifier.

We hypothesize that the class pruner and the secondary classifier
work well for large numbers of classes because of their use of
voting among multiple “weak classifiers” of small dimension,
rather than relying on a single classifier of high dimension. This is
the very concept behind boosting [15], except that currently the
weal classifiers are not weighted. The dimensions of feature space
are quantized to 256 levels, which provide enough precision to
store the complex shapes of CJK characters and Indic syllables,
and the dfinal calculation avoids the curse of dimensionality in a
similar fashion to the class pruner.

5. Contextual Post-Processing
Tesseract's training process supports partially extending the
language model by providing a way to generate dictionaries for
new languages from an arbitrary word list. For compactness and
fast search, these dictionaries are represented by directed acyclic
word graphs (DAWGs). In the original implementation the
DAWG data structure was used to sequentially search several
dictionaries including the pre-generated system dictionary, the
document dictionary (dynamically constructed from the words in
the OCRed document) and a user-provided word list.

Originally each edge in the DAWG stored an 8-bit char to
represent the letter used for the corresponding transition in the
DAWG. This representation, however, was limiting, since
manipulating multi-character graphemes and multi-byte Unicode
characters in this manner was awkward. The DAWG data
structure was modified to store the unicharset IDs used by the
character classifier instead. This significantly simplified the

process of constructing and searching the DAWGs. Another
improvement was parallelizing the search over all the DAWGs.
To find out whether a given string is a valid dictionary word, the
search now starts out with an initial set of "active" DAWGs. As
each letter in the word is considered, this set is reduced to only
contain those that still "accepted" the partial string. At the end of
the process the set of "active" DAWGs consist of only those
DAWGs that contain the word. This restructuring allows us to
dynamically load an arbitrary number of DAWGs without having
to add any custom support for searching each of the newly added
DAWGs. It was also one of the necessary modifications to allow
Tesseract to support an arbitrary combination of languages - a
feature needed for Tesseract to work on multi-language text.

5.1 Constraint Patterns
The punctuation and number state machines in Tesseract were
hard-coded and did not generalize beyond the Latin scripts. Even
for the Latin scripts, a significant portion of valid punctuation and
number patterns were not accepted by the state machines. To help
Tesseract handle punctuation and numbers in non-Latin scripts
Tesseract's training process was extended with code to collect and
encode a set of frequently occurring punctuation and number
patterns. The step for collecting these patterns was implemented
to be done in parallel with the processing of a large text corpus to
construct the dictionaries for a given language. To represent and
match the generated patterns, the already existing code for
generating and searching word DAWGs was employed. A few
modifications to the algorithm that determines whether a given
classifier choice is a valid word in the language enabled Tesseract
to do a simultaneous search over all the DAWGs containing
words, punctuation and number patterns. With this modification it
was possible to remove all the language- and script-specific hard-
coded rules for numbers and punctuation. The process of
generating and searching the punctuation and number patterns
was designed to be completely data-driven and so far requires no
special casing for any language in particular.

5.2 Resolving Shape Ambiguities
Alongside the pre-trained shape templates, Tesseract's shape
classifier includes an adaptive component that learns the patterns
of the characters seen in the OCRed document. In order to ensure
that the adaptive component is trained on reliable data, the
classifier only adapts to the unambiguous dictionary words. The
OCRed word is dubbed "unambiguous" if it satisfies two
constraints. The first one is that the shape classifier must identify
a clear winner among all the alternative choices for the word (i.e.
the classifier rating for the top best choice must be significantly
higher than the rating of the next best choice). The second
constraint is that no dictionary word can exist that is ambiguous in
shape to the best choice for the word. This requirement is also
important for recognition speed, since (depending on the classifier
score) once Tesseract finds such a word choice, it could accept the
recognition result and stop further processing of the word.

For Latin scripts Tesseract contained a hand-crafted data file
(referred to as "dangerous ambiguities" file) specifying which
letter combinations are inherently ambiguous in the majority of
the Latin fonts. A scalable solution to enable this functionality for
languages using other scripts was to develop an automated way of
generating a list of ambiguous n-gram pairs for any given



©ACM, 2009. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the International Workshop on Multilingual OCR 2009, Barcelona,
Spain July 25, 2009. http://doi.acm.org/10/1145/1577802.1577804.

language. A set of n-grams (in this case uni-, bi-grams) whose
combined weight accounts for 95% of all n-grams in the language
was collected from a large text corpus. The n-grams were rendered
with a set of commonly used fonts in a few degradation modes
and exposures. Then Tesseract's shape classifier was run on the
rendered images to obtain a set of top scoring classifications for
each of the n-grams. The resulting classification scores statistics
was aggregated for each of the n-grams and the outliers with low
classifier scores were discarded (in some fonts and degradation
modes the characters were rendered beyond recognizable, and
such cases would only pollute the data). Then for each of the
incorrectly OCRed n-grams and the corresponding correct n-gram
pair an ambiguity score was computed. The ambiguity score was
defined as a function of the shape classifier-perceived similarity
between the wrong and correct n-grams (aggregated across all
fonts and degradation modes) and the frequency of the correct n-
gram in the language. In order to achieve the desired balance
between Tesseract's speed and accuracy, it was necessary to pick a
threshold of the expected number of errors allowed to occur due
to the n-gram shape ambiguities (computed from the n-gram
frequency and classifier error statistics). To generate the
"dangerous ambiguities" file the ambiguous n-gram pairs were
sorted in the non-increasing order of their ambiguity scores and
the appropriate number of top-scoring ambiguities that ensured
the desired expected error rate were included in the file.

With the data files generated by this automated approach it was
possible to achieve similar improvements on Latin scripts (EFIGS
data set) as compared to using the hand-crafted "dangerous
ambiguities" files (although in some languages the results were
slightly weaker). Using the automatically generated file on the
Russian data set resulted in a 10% reduction in word error rate.
Examining the files generated for other languages also showed
that the automatically generated files contained a fair number of
commonly confused shapes, but further tests on the corresponding
data sets will be needed to quantify the improvement.

5.3 Handling Highly Inflected Languages
Tesseract's speed and accuracy are tied to the quality of the
dictionary, and it is always a challenge to maximize these, while
minimizing the space consumed to store the dictionary.
Generating the dictionary from a corpus in a highly inflected
language is a particularly difficult task. The frequency of words in
highly inflected languages is more evenly distributed, and thus to
achieve the same language coverage, a larger dictionary is needed.
Moreover, many of the word forms of even the more frequent
words might not occur enough times in the training corpus to be
included in the dictionary, and thus the dictionary might not
generalize well beyond the training corpus. Fig.8 illustrates this
problem on a collection of languages by graphing the coverage of
the corpus against the number of most frequent words chosen to
form the dictionary.

Because of the head and tail compaction of the DAWG data
structure, adding an inflected form of a word that already exists in
the DAWGs might result in a very small increase in the overall
size of the dictionary. This is because the beginning and the
ending of the word might already be stored in the DAWG (for
example it would be relatively cheap to add the word "talking" to
the dictionary if "talk" and "making" have already been inserted).

To combat the problem of capturing more of the inflected word
forms, the dictionary generation process was amended with a step
to generate word variants (that were not present in the word list)
and add them to the dictionary. First, as previously done, the
DAWG is constructed from a word list. Then for each word root
in the DAWG a set of suffixes is collected. The sets are clustered
using a group-average hierarchical agglomerative clustering
algorithm. The suffix sets in the resulting clusters are merged to
form expanded suffix sets. Then for each word root and the
corresponding suffix set (pre-computed during the first traversal
of the DAWG) the closest expanded suffix set is identified. The
new words formed by the suffixes from the expanded set are
inserted into the DAWG.

6. Status / Experimental Results
Our data set consists of pages from randomly selected books
collected by the Google Book Search project. For each language,
100 random books were selected, and 10 pages were randomly
selected from each book for manual ground-truthing. Therefore,
these pages cover a large variety in every aspect from layout,
typeface, image quality, to subject and term usage.

The dataset is then broken into training, validation and test sets,
where the training and validation sets are used for learning and
benchmarking the algorithms during development, and the test set
is reserved for final evaluation during release. Table 1 summarizes
the size of the data set and current accuracy for a few languages.
For alphabetical languages, we report the error rates at both the
character and word level. For Chinese where the meaning of word
is ambiguous, we report only the character substitution rate.
EFIGSD is a combination of English, French, Italian, German,
Spanish and Dutch.

For Simplified Chinese, we noticed there is a large deviation of
error rates across different books. The difference can be mainly
attributed to variation in fonts and quality. Where the page quality
and accuracy are reasonable, the errors are mainly due to
confusions between similar or near-identical shape classes. We
have plans to increase the capacity of the feature space in the
shape matcher, which should help distinguish between similar

Figure 8. Corpus coverage of varying-size dictionaries in a
collection of languages.
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shapes. On the near-identical cases, the within-class variation
across fonts is probably larger than the between-class variation.
Fortunately, their usage and priors are so different that they could
easily be corrected when we introduce a language model for CJK.

Table 1. Error rates over various languages

Language No. of
chars

(millions)

No. of
words

(millions)

Char
error
rate
(%)

Word
error
rate
(%)

English 39 4 0.5 3.72

EFIGSD 213 26 0.75 5.78

Russian 38 5 1.35 5.48

Simplified
Chinese

0.25 NA 3.77 NA

Hindi 1.4 0.33 15.41 69.44

7. Conclusions & Future Work
We have described our experiments with adapting Tesseract to
operate on a diverse set of languages, and found that it was
surprisingly mostly a matter of engineering. Without any
significant changes to the classifier, we were able to obtain good
results for a variety of Latin-based languages, Russian, and even
Simplified Chinese. The results for Hindi have so far been
disappointing, but we have discovered that our test set contains a
mix of new and old typography, and a significant proportion of
errors are due to the fact that the training set does not contain
characters from the old typography. This work does not yet cover
languages that are written from right to left, which is mainly
another engineering issue, but Arabic has its own set of problems
that Tesseract may not be able to address – namely character
segmentation. Another language that we have not discussed is
Thai, which poses problems of highly ambiguous characters, and
like Chinese, does not have spaces between words.

An important future project is to improve the training process to
be able to use real data for training instead of just synthetic data
with character bounding boxes. This will greatly help accuracy on
Hindi. We also need to test Arabic and Thai, where we anticipate
more problems. For Chinese, Japanese, and Thai, we need to
allow the language model to search the space of arbitrarily
concatenated words, since there is no whitespace between the
words of these languages. The same capability would also be
useful for German, although German compounding has the
additional complexity of case changes and inserted letters.
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