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This chapter introduces a discriminative method for détgand spotting keywords in spo-
ken utterances. Given a word represented as a sequencenaimis and a spoken utterance,
the keyword spotter predicts the best time span of the pherseuence in the spoken utter-
ance along with a confidence. If the prediction confidencédwvea certain level the keyword
is declared to be spoken in the utterance within the prediithee span, otherwise the key-
word is declared as not spoken. The problem of keyword sppttaining is formulated as
a discriminative task where the model parameters are crsxséime utterance in which the
keyword is spoken would have higher confidence than any eiieken utterance in which
the keyword is not spoken. It is shown theoretically and eitqliy that the proposed train-
ing method resulted with a high area under the receiver tipgreharacteristic (ROC) curve,
the most common measure to evaluate keyword spotters. VEengran iterative algorithm
to train the keyword spotter efficiently. The proposed apphocontrasts with standard spot-
ting strategies based on HMMs, for which the training praredioes not maximize a loss
directly related to the spotting performance. Several arpmts performed on TIMIT and
WSJ corpora show the advantage of our approach over HMMdkaternatives.
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11.1 Introduction

Keyword spotting aims at detecting any given keyword in spoltterances. This task is
important in numerous applications, such as voice mailenat, voice command detection
and spoken term detection and retrieval. Previous work d@ssed mainly on several vari-
ants of Hidden Markov Models (HMMs) to address this intriadly sequential problem.
While the HMM-based approaches constitute the state-wfatl, they suffer from several
known limitations. Most of these limitations are not specth the keyword spotting prob-
lem, and are common to other tasks such as speech recogagipointed out in Chapter 1.
For instance, the predominance of the emission probasiliti the likelihood, which tends
to neglect duration and transition models, or the Expemalilaximization (EM) training
procedure, which is prone to convergence to local optimhefdrawbacks are specific to
the application of HMMs to the keyword spotting task. In pardar, the scarce occurrence
of some keywords in the training corpora often requires ad+hodifications of the HMM
topology, the transition probabilities or the decodingoaithm. The most acute limitation
of HMM-based approaches lies in their training objectiwgpically, HMM training aims at
maximizing the likelihood of transcribed utterances, andsinot provide any guarantees in
terms of keyword spotting performance.

The performance of a keyword spotting system is often mealdoy the Receiver Oper-
ating Characteristics (ROC) curve, that is, a plot of the tpositive (spotting a keyword
correctly) rate as a function of the false positive (mistpg a keyword) rate, see for
example (Benayed et al. 2004; Ketabdar et al. 2006; SilaghBourlard 1999). Each point
on the ROC curve represents the system performance for dispeaie-off between achiev-
ing a high true positive rate and a low false positive ratac8ithe preferred trade-off is not
always defined in advance, systems are commonly evaluateddaceg to the averaged per-
formance over all operating points. This corresponds téepriag the systems that attain the
highest Area Under the ROC Curve (AUC).

In this study, we devise a discriminative large margin apphofor learning to spot any
given keyword in any given speech utterance. The keyworttisgdunction gets as input a
phoneme sequence representing the keyword and a spokeanagend outputs a prediction
of the time span of the keyword in the spoken utterance andfdemce. If the confidence is
above some predefined threshold, the keyword is declaregl $pdiken in the predicted time
span, otherwise the keyword is declared as not spoken. Tale§the training algorithm is
to maximize the AUC on the training data and on unseen teat @é call an utterance in the
training set in which the keyword is spokepa@sitive utteranceand respectively, an utterance
in which the keyword is not spokem&gative utteranceJsing the Wilcoxon-Mann-Whitney
statistics (Cortes and Mohri 2004), we formulate the tragras a problem of estimating the
model parameters such that the confidence of the correctdjrar in a positive utterance
would be higher than the confidence of any time span in anytivegatterance. Formally
this problem is stated as a convex optimization problem wihstraints. The solution to
this optimization problem is a function which shown analgtiy to attain high AUC on the
training set and is likely to have good generalization prige on unseen test data as well.
Moreover, comparing to HMMs, our approach is based on a cooptmization procedure,
which converges to the global optima, and it is based on mobgbilistic framework, which
offers greater flexibility in selecting the relative impamte of duration modeling with respect
to acoustic modeling.
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The remainder of this chapter is organized as follows: $adil.2 describes previ-
ous work on keyword spotting, Section 11.3 introduces oscrithinative large margin
approach, Section 11.4 presents different experimentpadny the proposed model to an
HMM-based solution. Finally, Section 11.5 draws some casiohs and delineates possible
directions for future research.

11.2 Previous Work

The research on keyword spotting has paralleled the dewedopof the Automatic Speech
Recognition (ASR) domain in the last thirty years. Like A&Byword spotting has first been
addressed with models based on Dynamic Time Warping (DTWIg1973; Higgins and
Wohlford 1985). Then, approaches based on discrete HMMs he®n introduced (Kawabata
et al. 1988). Finally, discrete HMMs have been replaced Imtinaous HMMs (Rabiner and
Juang 1993).

The core objective of a keyword spotting system is to distrate between utterances
in which a given keyword is uttered to utterances in whichkbgword is not uttered. For
this purpose, the first approaches based on DTW proposedipute the alignment distance
between a template utterance representing the target kdyamd all possible segments of the
test signal (Bridle 1973). In this context, the keyword issidered as detected in a segment
of the test utterance whenever the alignment distance @awsbme predefined threshold.
Such approaches are however greatly affected by speakarateis and varying recording
conditions between the template sequence and the testi.slgngain some robustness, it
has then been proposed to compute alignment distances Iyoibh respect to the target
keyword template, but also with respect to other keywordaiates (Higgins and Wohlford
1985). Precisely, given a test utterance, the system fiEenthe concatenation of templates
with the lowest distance to the signal and the keyword is icened as detected if this con-
catenation contains the target keyword template. Thezetbe keyword alignment distance
is not considered as an absolute number, but relativelydaliftances to other templates,
which increase robustness with respect to changes in toediag conditions.

Along with the development of the speech research, inangbsiarge amount of labeled
speech data were collected, and DTW-based techniquesdstrbwing their shortcomings
to leverage from large training sets. Consequently, disd#Ms were introduced for ASR
(Bahl et al. 1986), and then for keyword spotting (Kawabatd.1988; Wilpon et al. 1990).
A discrete HMM assumes that the quantized acoustic feakrtrs representing the input
utterance are independent conditioned on the hidden staiables. This type of model
introduces several advantages compared to DTW-basedag@s, including an improved
robustness to speaker and channel changes, when sevimiabtratterances of the targeted
keyword are available. However, the most important evohuitatroduced with the HMM cer-
tainly lies in the development of phone or triphone-basedeling (Kawabata et al. 1988;
Lee and Hon 1988; Rose and Paul 1990), in which a word modedrigposed of several
sub-unit models shared across words. This means that thelrabd given word not only
benefits from the training utterances containing this word,also from all the utterances
containing its sub-units. A further advantage of phonesanodeling is the ability to spot
words unavailable at training time, as this paradigm allows to build a new word model
by composing already trained sub-unit models. This asgegtry important, since in most
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applications the set of test keywords is not known in advance

Soon after the application of discrete HMMs to speech pioblecontinuous density
HMMs have been introduced in the ASR community (Rabiner armhd 1993). Continu-
ous HMMs eliminate the need of acoustic vector quantizagsrihe distributions associated
with the HMM states are continuous densities, often modeje@aussian Mixtures Models
(GMMs). The learning of both GMM parameters and the statesiten probabilities is per-
formed in a single integrated framework, maximizing thelikood of the training data given
its transcription through the Expectation-Maximizati&@M) algorithm (Bilmes 1998). This
approach has been shown to be more effective and allowsegrstibility for speaker or
channel adaptation (Rabiner and Juang 1993). It is now thet widely used approach for
both ASR and keyword spotting.

In the context of keyword spotting, different
strategies based on continuous HMMs have been
proposed. In most cases, a sub-unit based HMM is
trained over a large corpus of transcribed data and
a new model is then built from the sub-unit mod-
els. Such a model is composed of two parts, a key-
word HMM and afiller or garbageHMM, which
respectively model the keyword and non-keyword
parts of the signal. This topology is depicted in
Figure 11.1. Given such a model, keyword detection
is performed by searching for the sequence of states
that yields the highest likelihood for the provided test
sequence through Viterbi decoding. Keyword detec-
tion is determined by checking whether the Viterbi
best-path passes through the keyword model or not.
In such a model, the selection of the transition probBigure 11.1 HMM topology for key-
bilities in the keyword sets the trade-off between loword spotting with a Viterbi best
false alarm rate (detecting a keyword when it is npfath strategy. This approach verifies
presented), and low false rejection rate (not deteeihether the Viterbi best path passes
ing a keyword when it is indeed presented). Anothétrough the keyword sub-model.
important aspect of this approach lies in the model-
ing of non-keyword parts of the signal, and several
choices are possible for the garbage HMM. The simplest ehwiodels garbage with an
HMM that fully connects all sub-units models (Rose and P&4Q), while the most com-
plex choice models garbage with a full-large vocabulary HMithere the lexicon excludes
the keyword (Weintraub 1993). The latter approach obvipyigids a better garbage model,
using additional linguistic knowledge. This advantage &o#r induces a higher decoding
cost and requires larger amount of training data, in pdeicfor language model train-
ing. Besides practical concerns, one can conceptually eontether an automatic spotting
approach should require such a large linguistic knowle@jeourse, several variations of
garbage models exist between the two extreme examplesepoaftove (see for instance
Boite et al. 1993).

Viterbi decoding relies on a sequence of local decisiongterthine the best path, which
can be fragile with respect to local model mismatch. In thetext of HMM-based keyword
spotting, a keyword can be missed, if only its first phonenféesisuch a mismatch, for




DISCRIMINATIVE KEYWORD SPOTTING 181
(a) (b)

Keyword HMM Garbage HMM

Figure 11.2 HMM topology for keyword spotting with a liketibd ratio strategy. This
approach compares the likelihood of the sequence givendahpeded is uttered (a), to the
likelihood of the sequence given the keyword is not uttetgd (

instance. To gain some robustness, likelihood ratio amrem have been proposed (Rose
and Paul 1990; Weintraub 1995). In this case, the confidecare ®utputted from the key-
word spotter corresponds to the ratio between the liketirestimated by an HMM including
the occurrence of the target keyword, and the likelihoonreged by an HMM excluding it.
These HMM topologies are depicted in Figure 11.2. Detedtdhen performed by compar-
ing the outputted scores to a predefined threshold. Differanmations on this likelihood ratio
approach have then been devised, such as computing thenftion the part of the signal
where the keyword is assumed to be detected (JunkawitstHl867). Overall, all the above
methods are variations over the same HMM paradigm, whickistsin training a generative
model through likelihood maximization, before introdugidifferent modifications prior to
decoding in order to address the keyword spotting task.Harotords, these approaches do
not propose to train the model so as to maximize the spot@énfppnance, and the keyword
spotting task is only introduced in the inference step dfténing.

Only few studies have proposed discriminative parameadtitrg approaches to circum-
vent this weakness (Benayed et al. 2003; Sandness and Hegtiber2000; Sukkar et al.
1996; Weintraub et al. 1997). Sukkar et al. (1996) proposenaximize the likelihood ratio
between the keyword and garbage models for keyword uttesaaed to minimize it over a
set of false alarms generated by a first keyword spotter. iggmsdand Hetherington (2000)
proposed to apply Minimum Classification Error (MCE) to theyword spotting problem.
The training procedure updates the acoustic models to Itveescore of non-keyword mod-
els in the part of the signal where the keyword is uttered. él@s, this procedure does not
focus on false alarms, and does not aim at lowering the sddhe &eyword-models in parts
of the signal where the keyword is not uttered. Other disicréttive approaches have been
focused on combining different HMM-based keyword detetdior instance, Weintraub
et al. (1997) trained a neural network to combine likelihoatos from different models.
Benayed et al. (2003) relied on support vector machines mabate different averages of
phone-level likelihoods. Both of these approaches propmeg@nimize the error rate, which
equally weights the two possible spotting errors, falseatjyeqor false alarm) and false neg-
ative (missed keyword occurrence, often called keywordti). This measure is however
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barely used to evaluate keyword spotters, due taitiimlancedhature of the problem. Pre-
cisely, the targeted keywords generally occurs rarely amté the number of potential false
alarms highly exceeds the number of potential missed detextin this case, the useless
model which never predicts the keyword avoids all falserataand yields a very low error
rate, with which it is difficult to compete. For that reasor tHJC is more informative and
is commonly used to evaluate models. Attaining high AUC widuénce be an appropriate
learning objective for the discriminative training of a keyd spotter. To the best of our
knowledge, only Chang (1995) proposed an approach taggttia goal. This work intro-
duces a methodology to maximize the Figure-Of-Merit (FOMich corresponds to the
AUC over a specific range of false alarm rates. However, topgsed approach relies on
various heuristics, such as gradient smoothing and soafipgoximations, which does not
ensure any theoretical guarantee on obtaining high FOM,Algese heuristics involve the
selection of several hyperparameters, that challengesctiqal use.

In the following, we introduce a model that aims at achievingh AUC over a set
of training examples, and constitutes a truly discrimvatpproach to the keyword spot-
ting problem. The proposed model relies on large margimlagrtechniques for sequence
prediction and provides theoretical guarantees regartfinggeneralization performance.
Furthermore, its efficient learning procedure ensuresabday toward large problems and
simple practical use.

11.3 Discriminative Keyword Spotting

This section formalizes the keyword spotting problem, asiduces the proposed approach.
First, we describe the problem of keyword spotting formallis allows us to introduce a
loss derived from the definition of the AUC. Then, we presantmodel parameterization
and the training procedure to minimize efficiently a regiakd version of this loss. Finally,
we give an analysis of the iterative algorithm, and show fti@ges a high cumulative AUC
in the training process and high expected AUC on unseenaéast d

11.3.1 Problem Setting

In the keyword spotting task, we are provided with a speeghasicomposed of a sequence
of acoustic feature vectoss = (xi,...,xr), wherex; € X C R, forall 1 <t <T,is a
feature vector of length extracted from the-th frame. Naturally, the length of the acoustic
signal varies from one signal to another and ttius not fixed. We denote a keyword yc

K, wherelC is a lexicon of words. Each keywofdis composed of a sequence of phonemes
p* = (p1,...,pr), Wherep, € P for all 1 <1 < L andP is the domain of the phoneme
symbols. The number of phonemes in each keyword may vary émerkeyword to another
and hencd. is not not fixed. We denote by* (and similarlyX*) the set of all finite length
sequences oveP. Let us further define the time span of the phoneme sequghae the
speech signak. We denote by; € {1,...,T} the start time (in frame units) of phoneme
pr in x, and bye; € {1,...,T} the end time of phonemg in x. We assume that the start
time of any phoneme,; is equal to the end time of the previous phoneppethat is,

e; =s141 forall 1 <l <L —1. We define the time span (or segmentation) sequence as
5% = (s1,...,50,er). An example of our notation is given in Figure 11.3. Our geatd
learn akeyword spotterdenotedf : X* x P* — R, which takes as input the pdig, p*) and
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time-span sequence §1 S1 S2 83 S4 €5
keyword phoneme sequence T)k” s t aa r
keyword k star

Figure 11.3 Example of our notation. The waveform of the gpoltterance “a lone star
shone... taken from the TIMIT corpus. The keywdrds the wordstar. The phonetic tran-
scriptionp® along with the time-span sequenceare depicted in the figure.

returns a real valued score expressing the confidence thiriieted keyword is uttered in
x. By comparing this score to a threshdld R, we can determine whethgf is uttered in
X.

In discriminative supervised learning we are provided vathraining set of examples
and a test set (or evaluation set). Specifically, in the téslksariminative keyword spotting
we are provided with a two sets of keywords. The first/Sgti is used for training and the
second sekistis used for evaluation. Note that the lexicon of keywordsisian of both the
training set and the test séf,= Cyain U Kiest Algorithmically, we do not restrict a keyword
to be only in one set and a keyword that appears in the tragghgan appear also in the test
set. Nevertheless, in our experiments we picked differeyords for training and test and
hencelctrain N Ictest =0.

A keyword spotterf is often evaluated using the ROC curve. This curve plotsie t
positive rate (TPR) as a function of the false positive r&R). The TPR measures the
fraction of keyword occurrences correctly spotted, while EPR measures the fraction of
negative utterances yielding a false alarm. The points ermctinve are obtained by sweeping
the threshold from the largest value outputted by the system to the sntalles. These
values hence correspond to different trade-offs betweervt types of errors a keyword
spotter can make, i.e., missing a keyword utterance oyfialse alarm. In order to evaluate
a keyword spotter over various trade-offs, it is common prethe AUC as a single value.
The AUC hence corresponds to an averaged performance, iagsanflat prior over the
different operational settings. Given a keywdrda set of positive utterancéfé;r in which
k is uttered, and a set of negative utteran&gs in which k is not uttered, the AUC can be

written as,
Ay = X+|| E > Lh x>k %)) 5
*+ex+=ex*
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where| - | refers to set cardinality antl; ., refers to the indicator function and its valuelis
if the predicater holds and) otherwise. The AUC of the keyword Ay, hence estimates the
probability that the score assigned to a positive utterangeeater than the score assigned to
a negative utterance. This quantity is also referred toed/fltoxon-Mann-Whitney statistics
(Cortes and Mohri 2004; Mann and Whitney 1947; Wilcoxon 1945

As one is often interested in the expected performance aweikayword, it is com-
mon to plot the ROC averaged over a set of evaluation keywiSids and to compute the
corresponding averaged AUC,

1
Apest = —— Ag.
et = T > Ay

k€K est

In this study, we introduce a large-margin approach to leakeyword spotterf from a
training set, which achieves a high averaged AUC.

11.3.2 Loss Function and Model Parameterization

In order to build our keyword spottef, we are given training data consisting of a set of
training keywordsKCiain and a set of training utterances. For each keyword KCirqin, We
denote withX,! the set of utterances in which the keyword is spoken and jththe set

of all other utterances, in which the keyword is not spokarmtiermore, for each positive
utterancex™ € X;", we are also given the timing sequence of the keyword phoneme
sequence” in xT. Such a timing sequence provides the start and end pointaabf ef
the keyword phonemes, and can either be provided by mannatators or localized with

a forced alignment algorithm, as discussed in Chapter 4ukeadefine the training set as
Train = {(p*, %, 51, %;7 )} ,. For each keyword in the training set there is only one posi-
tive utterance and one negative utterance, hége = 1, | X, | = 1 and|Kyan| = m, and
the AUC over the training set becomes

1 m
Awain = — D Lm0 )5 (44 57))
1=1

The selection of a model maximizing this AUC is equivalenttimimizing the loss
1 m
0/1 1 oot
L) =1 = Awain = — 3 Vi pmi sty (500} -
=1

The loss£%/! is unfortunately not suitable for model training since itaiscombinatorial
guantity that is difficult to minimize directly. We instead@pt a strategy commonly used in
large margin classifiers and employ the convex hinge-lasstion,

L(f) == 1= fG" x5 + F" %)+, (11.1)
=1

where [a]; denotesmax{0, a}. The hinge lossC(f) upper boundsc®/*(f): since for
any real numbers and b, [1 —a + b]; > 1{,<p}, and moreover, wheif(f) = 0, then
Arain = 1, and foranya andb, [1 —a+ b+ =0=a > b+ 1= a > b. The hinge-loss is
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related to the ranking loss used in both Support Vector Mee{ VM) for ordinal regression
(Herbrich et al. 2000) and Ranking SVM (Joachims 2002). €lasproaches have shown to
be successful over highly unbalanced problems, such asnat@n retrieval (Grangier and
Bengio 2008; Joachims 2002), using the hinge loss is herpeatipg to the keyword spot-
ting problem. We show in the sequel that minimizing the hitops resulted with a keyword
spotter attains high AUC.

Our keyword spottef is parameterized as
fw(iaﬁk) = max w - ¢(iaﬁk7 §) ) (112)

wherew € R" is a vector of importance weightg(x, p*, 5) is a feature function vector,
measuring different characteristics related to the confidehat the phoneme sequenite
representing the keywor# is uttered inx with the time spars. Formally, ¢ is a func-
tion defined ag : X* x (P x N)* — R™. In this study we used 7 feature function£ 7),
which are similar to those employed in Chapter 4. These fonstare described only briefly
for the sake of completeness.

There are fouphoneme transition functions which aim at detecting transition between
phonemes. For this purpose, they compute the frame diskateeen the frames before and
after a hypothesized transition point. Formally,

L-1

) o 1
Vi = 11 27 31 47 ¢i(xapka S) = E Z d(xsj—i7x8j+i) ) (113)
Jj=2

whered refers to the Euclidean distance ahdefers to the number of phonemes in keyword
k.

The frame-based phoneme classifier functiomelies on a frame-based phoneme classifier
to measure the match between each frame and the hypothpsi@aadme class,

L sit1—1

A 1 1

b5(%,5",5) = 7 ; t:Z pppe G ) (11.4)
whereg : X x P — R refers to the phoneme classifier, which returns a confiddratethie
acoustic feature vector at theth frame,x;, represents a specific phonemge Different
phoneme classifiers might be applied for this feature. Inaaise, we conduct experiments
relying on two alternative solutions. The first assessedsdiar is the hierarchical large-
margin classifier presented in Dekel et al. (2004), while dheond classifier is a Bayes
classifier with one Gaussian Mixture per phoneme class. érfitt caseg is defined as

the phoneme confidence outputted by the classifier, whillyarsecond case,is defined as

the log posterior of the clasgx, p) = log(P(p|x)). The presentation of the training setup,

as well as, the empirical comparison of both solutions, aferded to Section 11.4.

The phoneme duration function measures the adequacy of the hypothesized segmentation
3, with respect to a duration model,

L
A 1
do(x,0",5) =+ Elogfv(siﬂ — i3 lipi> 07, (11.5)
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where denotes the likelihood of a Gaussian duration model, whasgnm, and variance
012) parameters for each phonemare estimated over the training data.
Thespeaking rate functionmeasures the stability of the speaking rate,

L
o 1
or(%,0",5) = ¢ ;m —ri-1)?, (11.6)
wherer; denotes the estimate of the speaking rate foithephoneme,
Si+1 — Si
Ty = —/—/.
lupi

This set of seven functions has been used in our experim@htourse, this set can easily
be extended to incorporate further features, such as corfddrom a triphone frame-based
classifier or the output of a more refined duration model.

In other words, our keyword spotter outputs a confidenceedmpmaximizing a weighted
sum of feature functions over all possible time-spans. Téimization corresponds to
a search over an exponentially large number of time spangerieless, it can be per-
formed efficiently by selecting decomposable feature fionst which allows the application
of dynamic programming techniques, like these used in HMREb{ner and Juang 1993).
Chapter 4 gives a detailed discussion about the efficienpadation of Equation 11.2.

11.3.3 An Iterative Training Algorithm

In this section we describe an iterative algorithm for firgiihe weight vectow. We show
in the sequel that the weight vecter found in this processes minimizes the la3&fy ),
hence minimizes the los8%/! and in turn resulted with a keyword spotting which attains
a high AUC over the training set. We also show that the leameight vector have good
generalization properties on the test set.

The procedure starts by initializing the weight vector tatieezero vectoww, = 0. Then,
at iterationi > 1, the algorithm examines theth training examplép*, x;", 57, %;). The
algorithm first predicts the best time span of the keywordngmoe sequenge in the neg-
ative utterance; ,

5; = argmax w;_; -qb(i;,]ﬁf,g). (11.7)

Then, the algorithm considers the loss on tHh training example and checks that the dif-
ference between the score assigned to the positive ute@mt the score assigned to the
negative example is greater tharFormally, define

If w;_1-A¢p, > 1 the algorithm keeps the weight vector for the next itergtioamely,

w; = w;_1. Otherwise, the algorithm updates the weight vector to mires the following
optimization problem

1
w; = argmin §||w —wi P+ c[1l—w-Ady, (11.8)
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Input: Training setZyqin, Validation setZy,jiq; parametet.
Initialize : wo = 0.

Loop: for each(p*:, x;"

7 7

5/,%;) € Tyain

1.lets; = argmaxs w;_1 - ¢(pF, % ,5)
2.letAg; = ¢(x;.p",5) — (%, 0™,5;)
3.ifw;_1 - A¢p; < 1then

1—wi_1-Ag, }

A,
updatewl- =W,;_1+q;- A(ﬁz

let ; = min {c,

Output: w achieving the highest AUC ovéljig:
1 Myalid

W = arg min E 1 et R o ek
we{W1,...,.Wm} Myalid j=1 {maxey wep(x7,p7,5%)>max, - wed(x;,p7,57)}

Figure 11.4 Passive Aggressive Training

where the hyperparameter> 1 controls the trade-off between keeping the new weight vec-
tor close to the previous one and satisfying the constramthfe current example. Equation
(11.8) can analytically be solved in closed form (Crammexl.€2006), yielding

Wi = Wi—1 + A,

where

; = min {c, - THA;leﬁqbZh } . (11.9)

This update is referred to gmssive-aggressivesince the algorithnpassivelykeeps the
previous weight ¥; = w;_1) if the loss of the current training example is already zero
([1 —w;—1 - Ag,;]+ = 0), while it aggressivelyipdates the weight vector to compensate this
loss otherwise. At the end of the training procedure, whétrahing examples have been
visited, the best weighty among{wy, . .. w,, } is selected over a set of validation examples
Tvaid- The hyperparameteris also selected to optimize performance on the validataia.d
The pseudo-code of the algorithm is given in Algorithm 11.4.

11.3.4 Analysis

In this section, we derive theoretical bounds on the peréorre of our keyword spotter. Let
us first define theumulative AUGnN the training sefy4in as follows

. 1 &
Atrain = m Z ]l{wyzfl-cﬁ(xj,;ski,gj)>wi,1-(x;,;3ki,g;)} ) (11.10)
i=1
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wheres; is generated every iteration step according to Equatior7f1The examination
of the cumulative AUC is of great interest as it provides atinestor for the general-
ization performance. Note that at each iteration step therdhm receives new example
(p*, %, 55 ,%;) and predicts the time span of the keyword in the negativetex;
using the previous weight vecter; ;. Only after the prediction is made the algorithm suf-
fers loss by comparing its prediction to the true time sgarf the keyword on the positive
utterancex; . The cumulative AUC is a weighted sum of the performance efalgorithm
on the next unseen training example and hence it is a goadasin to the performance of
the algorithm on unseen data during training.

Our first theorem states a competitive bound. It comparesuheulative AUC of the
weight vectors seriewy, ..., w,, }, resulted from the iterative algorithm to the best fixed
weight vector,w*, chosen in hindsight, and essentially proves that, for aguence of
examples, our algorithms cannot do much worse than the Resdtvieight vector. Formally,
it shows that the cumulative ar@dovethe curve,l — A, ain, is Smaller than the weighted
average los«( fi+) of the best fixed weight vectar* and its weighted complexityiw*||.
That is, the cumulative AUC of the iterative training aldbm is going to be high, given that
the loss of the best solution is small, the complexity of thstlsolution is small and that the
number of training examples,, is sufficiently large.

Theorem 11.3.1Let Tyain = {(p**,%;",5,%; )}, be a set of training examples and
assume that for alt, x and5 we have thal¢(x, p*, 5)|| < 1/v/2. Letw* be the best weight

vector selected under some optimization criterion by oliegrall instances in hindsight. Let

wi, ..., Wy, be the sequence of weight vectors obtained by the algorithihgorithm 11.4

given the training s€fy.in. Then,

A 1 2
1= Apain < — W] + Ecﬁ(fw*) (11.11)

-m
wherec > 1 and A;,.;, is the cumulative AUC defined in Equation 11.10.

Proof. Denote by/;(w) the instantaneous loss the weight vectosuffers on the-th
example, that is,

i(w) = [1—w- p(x,p", 57) + max w- (7, 5™, 5)]+

The proof of the theorem relies on Lemma 1 and Theorem 4 in @ret al. (2006). Lemma
1in Crammer et al. (2006) implies that,

=1

Now if the algorithm makes a prediction mistake and the mtedi confidence of the best
time span of the keyword in a negative utterance is highar tha confidence of the true
time span of the keyword in the positive example tiigw,_;) > 1. Using the assumption
that||¢(x, 5", 5)|| < 1/+/2, which means thadtA¢(x,5",35)||? < 1, and the definition ofy;
given in Equation 11.9, when substitutifig— w,_1 - A¢;]; for £;(w;_1) in its numerator,
we conclude that if a prediction mistake occurs then it hthes

li(wi1)

aiéi(wi_l) Z min{ !

W,C} > min{l,c} =1. (1113)
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Summing over all the prediction mistakes made on the eméimeihg set/y,i, and taking into
account thatv;¢;(w;_1) is always non-negative, we have

ZO‘Z i(Wi-1) > Zl{wl LB L) Swi (% 5} (11.14)
=1
Again using the definition ofy;, we know that;/;(w*) < c¢f;(w*) and thato; | Ae,||? <
¢;(w;_1). Plugging these two inequalities and Equation (11.14)#ygoation (11.12) we get

D L i s <we o pisy < IWIRH26Y G(wt). (11.15)
= =1
The theorem follows by replacing the sum over predictiortafiss to a sum over prediction
hits and plugging the definition of the cumulative AUC giverBquation (11.10).

The next theorem states that the output of our algorithnkedlito have good general-
ization, namely, the expected value of the AUC resulted fd@moding on unseen test set is
likely to be large.

Theorem 11.3.2Under the same conditions of Theorem 11.3.1. Assume thabihang set
Twain @nd the validation sef,iq are both sampled i.i.d. from a distributicR. Denote by
myalid the size of the validation set. With probability of at least § we have

1-A=Ep [l{f@ci-ﬁkmgar,ﬁ m} =Prp [f(x,0") < f(x7,5")] <

1 & [w*)?  +/2In(2/0) +/2In(2m/4)

— Li(w™) + + + , (11.16

m ; ( ) m v m v/ Myvalid ( )
whereA is the mean AUC defined as= Ep []l{ P& RS F(& P )}} and

fi(W):[l—W-qb( 'apl S )+maxw ¢( '7]51%75)]-5-

The proof of the theorem goes along the lines of the proof @ofém 4.5.2 in Chapter 4. The
theorem states that the resultedf the iterative algorithm generalizes, with high probail
and is going to have high expected AUC on unseen test data.

11.4 Experiments and Results

We started by training the iterative algorithm on the TIMt&ihing set. We then conducted
two types of experiments to evaluate the effectivenesssoftbposed discriminative method.
First, we compared the performance of the discriminativéhoeto a standard monophone
HMM keyword spotter on the TIMIT test set. Second, we comg@dhe robustness of both
the discriminative method and the monophone HMM with respeahanging recording
conditions by using the models trained on the TIMIT, evaddadn the Wall Street Journal
(WSJ) corpus.
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Table 11.1 AUC of different
models trained on the TIMIT
training set and evaluated on the
TIMIT test set (the higher the

better)
Model AUC
HMM/Viterbi 0.942
HMM/Ratio 0.952

Discriminative/GMM 0.971
Discriminative/Hier  0.996

11.4.1 The TIMIT Experiments

The TIMIT corpus (Garofolo 1993) consists of read speecmf630 American speakers,
with 10 utterances per speaker. The corpus provides manuallyealighoneme and word
transcriptions for each utterance. It also provides a stahgplit into training and test data.
From the training part of the corpus, we extracted threeulisgets consisting af500, 300
and 200 utterances. The first set was used as the training set of tveepte classifier and
was used by our fifth feature functigi. The second set was used as the training set for our
discriminative keyword spotter, while the third set wasdias the validation set to select the
hyperparametear and the best weight vecter seen during training. The test set was solely
used for evaluation purposes. From each of the last twosgpfithe training se200 words

of length greater than or equal to 4 phonemes were chosemdloma. From the test s&b
words were chosen in random as described below.

Mel Frequency Cepstral Coefficients (MFCC), along with ttHest (A) and second
derivatives AA), were extracted every0 ms. These features were used by the first five
feature functionsby, ..., ¢5. Two types of phoneme classifiers were used for the fifth fea-
ture functiongs, namely, a large margin phoneme classifier (Dekel et al. pa@fd a GMM
model. Both classifiers were trained to predigtphoneme classes (Lee and Hon 1989) over
the first part of the training set. The large margin classd@responds to a hierarchical clas-
sifier with Gaussian kernel, as presented in Dekel et al.4pQ@here the score assigned to
each frame for a given phoneme was used as the fungtiorEquation (11.4). The GMM
model corresponded to a Bayes classifier combining one GMilpss and the phoneme
prior probabilities, both learned from the training data.that case, the log posterior of a
phoneme given the frame vector was used as the fungtiorEquation (11.4). The hyper-
parameters of both phoneme classifiers were selected tamizaxihe frame accuracy over
part of the training data held out during parameter fittimghle following, the discriminative
keyword spotter relying on the features from the hieramptioneme classifier is referred
to asDiscriminative/Hierwhile the model relying on the GMM log posteriors is refefte
asDiscriminative/GMM

We compared the results of bofiscriminative/Hierand Discriminative/GMMto a
monophone HMM baseline, in which each phoneme were modétadeft-right HMM of
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5 emitting states. The density of each state was modeledami-Gaussian GMM. Train-
ing was performed over the whole TIMIT training sEmbedded trainingvas applied, i.e.,
after an initial training phase relying on the provided plime alignment, a second training
phase which dynamically determines the most likely aligntiveas applied. The hyperpa-
rameters of this model (the number of states per phonemauthéer of Gaussians per state,
as well as the number of Expectation-Maximization iteratjonvere selected to maximize the
likelihood of an held-out validation set.

The phoneme models of the trained HMM were then used to buieyavord spotting
HMM, composed of two sub-models: the keyword model and thlbage model, as illus-
trated on Figure 11.1. The keyword model was an HMM, whichregted the likelihood of
an acoustic sequence given that the sequence represeatkeythiord phoneme sequence.
The garbage model was an HMM composed of all phoneme HMMg &wihnected to each
other, which estimated the likelihood of any phoneme seggiehe overall HMM fully
connected the keyword model and the garbage model. Thetidetef a keyword in a given
utterance was performed by checking whether the Viterht path passes through the key-
word model, as explained in Section 11.2. In this model, #aanord transition probability
set the trade-off between the true positive rate and the R avas plotted by varying this
probability. This model is referred to &8VIM/Viterbi.

We also experimented an alternative decoding strategyhiohwthe system output the
ratio of the likelihood of the acoustic sequence knowing kiegword was uttered ver-
sus the likelihood of the sequence knowing the keyword weaisuttered, as discussed
in Section 11.2. In this case, the first likelihood was deteed by an HMM forcing an
occurence of the keyword, and the second likelihood wagmhéted by the garbage model,
as illustrated on Figure 11.2. This likelihood-ratio st is referred to asiIMM/Ratio in
the following.

The evaluation of discriminative and HMM-based models waisqumed oveR0 key-
words, randomly selected among the words occurring in thITltest set. This random
sampling of the keyword set aimed at evaluating the expeotefbrmance over any key-
word. For each keyword, we considered a spotting problem, which consisted of afset o
positive utterance&’;” and a set of negative utteran&g . Each positive seX ;" contained
betweenl and20 sequences, depending on the number of occurrendemdhe TIMIT test
set. Each negative set contairéilsequences, randomly sampled among the utterances of
TIMIT which does not contairk. This setup represented an unbalanced problem, with only
10% of the sequences being labeled as positive.

Table 11.1 reports the average AUC results of the 80 test &esyfor different models
trained on the TIMIT training set and evaluated on the TIMdSttset. These results show the
advantage of our discriminative approach. The two diserative models outperforms the
two HMM-based models. The improvement introduced by oucrdisinative model algo-
rithm can be observed when comparing the performancBistriminative/GMMto the
performance of the HMM spotters. In that case, both spotelyson GMMs to estimate
the frame likelihood given a phoneme class. In our case wehaggrobability to compute
the featureps, while the HMM uses it as the state emission probability.

Moreover, our keyword spotter can benefit from non-prolistizil frame-based classi-
fiers, as illustrated wittDiscriminative/Hier This model relies on the output of a large
margin classifier, which outperforms all other models, agathes a mean AUC 6£996.

In order to verify whether the differences observed on ayelaAUC could be due only to
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Table 11.2 The distribution of the 80 keywords among the risoghich better spotted
them. Each row in the table represents the keywords for wihietmodel written at the
beginning of the row received the highest AUC. The model®viiained on the TIMIT
training set and evaluated on the TIMIT test set.

Best Model Keywords

Discriminative/Hier absolute admitted apartments apparently argued cordralkpicts
dominant drunk efficient followed freedom introduced noitlaires
needed obvious radiation rejected spilled street supartpathetically
weekday(23 keywords)

HMM/Ratio materialg(1 keyword)

No differences aligning anxiety bedrooms brand camera characters clganiia
mates creeping crossings crushed decaying demands dngissgle
everything excellent experience family firing forgivendsffillment
functional grazing henceforth ignored illnesses imitateréasing
inevitable January mutineer package paramagnetic plgtiplgasant
possessed pressure recriminations redecorating setwuhampooed
solid spreader story strained streamlined stripped stsynifhce swim-
ming unenthusiastic unlined urethane usual walkB@keywords)

a few keywords, we applied the Wilcoxon test (Rice 1995) tmpare the results of both
HMM approaches iIMM/Viterbi and HMM/Ratio) with the results of both discriminative
approaches@iscriminative/GMMand Discriminative/Hie}. At the 90% confidence level,
the test rejected this hypothesis, showing that the pedoo®a gained of the discriminative
approach is consistent over over the keyword set.

Table 11.2 further presents the performance per keyworatanmgares the results of the
best HMM configurationHMM/Ratio to the performance of the best discriminative con-
figuration, Discriminative/Hier Out of total 80 keywords, 23 keywords were better spotted
with the discriminative model, 1 keyword was better spottetth the HMM, and both mod-
els yielded the same spotting accuracy for 56 keywords. T¢wichinative model seems to
be better for shorter keywords, as it outperforms the HMMrfarst of the keywords of 5
phonemes or less (e.glrunk spilled, stree).

11.4.2 The WSJ Experiments

WSJ (Paul and Baker 1992) is a large corpus of American Emngdliconsists in read and
spontaneous speech corresponding to the reading and th#daficof articles from the Wall
Street Journal. In the following, all models were trainedtba TIMIT training set and
evaluated on thei _tr _s subset of WSJ. This subset corresponds to the recordings of
200 speakers. Compared to TIMIT, this subset introduce sevarations, both regarding
the type of sentences recorded and the recording condifitad and Baker 1992). These
experiments hence evaluate the robustness of the diffepgmbaches when they encounter
differing conditions for training and testing. Like for TIW, the evaluation is performed
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Table 11.3 AUC of different
models trained on the TIMIT
training set and evaluated on the
si tr s subset of WSJ (the

higher the better)
Model AUC
HMM/Viterbi 0.868
HMM/Ratio 0.884

Discriminative/GMM 0.922
Discriminative/Hier  0.914

over80 keywords randomly selected from the corpus transcripft@n.each keyword, the
evaluation was performed over a S€f, containing betweem and20 positive sequences,
and aX,, containing20 randomly selected negative sequences. This setup alseseeyis
an unbalanced problem, wiiY% of the sequences being labeled as positive.

Table 11.3 reports the average AUC results of the 80 test &esyfor different models
trained on the TIMIT training set and evaluated on #iietr _s subset of WSJ. Overall,
the results show that the differences between the TIMIThingi conditions and the WSJ
test conditions affect the performance of all models. Havethe measured performance
still yield acceptable performance in all cases (AUQ @68 in the worse case). Comparing
the individual model performance, the WSJ results confimrctinclusions of TIMIT experi-
ments and the discriminative spotters outperform the HViddal alternatives. For the HMM
models,HMM/Ratio outperformsHMM/Viterbi like in the TIMIT experiments. For the dis-
criminative spottersDiscriminative/GMMoutperformsDiscriminative/Hier which was not
the case over TIMIT. Since these two models only differ in fitaene-based classifier used
as the the feature functiasy, this result certainly indicates that the hierarchicatfeabased
classifier on whictDiscriminative/Hierelies is less robust to the acoustic condition changes
than the GMM alternative. Like for TIMIT, we checked whetlilee differences observed on
the whole set could be due to a few keywords. The Wilcoxonregstted this hypothesis at
the 90% confidence level, for the tests comparindiscriminative/GMMand Discrimina-
tive/Hierto HMMy/Viterbi and HMM/Hier.

We further compared the best discriminative spoti@scriminative/GMM and the best
HMM spotter HMM/Ratio over each keyword. These results are summarized in Table 11.
Out of the80 keywords, the discriminative model outperforms the HMM $6rkeywords,
the HMM outperforms the discriminative model f20 keywords and both models yield the
same results fot0 keywords. Like for the TIMIT experiments, the discriminatimodel
is shown to be especially advantageous for short keyworitls, swyphonemes or less (e.g.,
Adamskings serving.

Overall, the experiments over both WSJ and TIMIT highlidieg aidvantage of our dis-
criminative learning method.
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Table 11.4 The distribution of the 80 keywords among the risoahich better spotted
them. Each row in the table represents the keywords for wihietmodel written at the
beggining of the row received the highest AUC. The modeleviiained on the TIMIT
training set but evaluated on tee _tr _s subset of WSJ

Best Model Keywords

Discriminative/Hier Adams additions Allen Amerongen apiece buses Bushby Cadkomb
consistently cracked dictate drop fantasy fills gross Higstohic
implied interact kings list lobby lucrative measures Melbwe millions
Munich nightly observance owning plus proudly queasy regeatool-
ing Rubin scramble Seidler serving significance sluggistnstthening
Sutton’s tariffs Timberland today truths understands hold Witter's
(50 keywords)

HMM/Ratio artificially Colorado elements Fulton itinerary longer dtmoom mer-
chant mission multilateral narrowed outlets Owens piparlased
reward sabotaged shards spurt theref@fekeywords)

No differences aftershocks Americas farms Flamson hammer homosexualsaiphi-
cally purchasers sinking steel-makét9 keywords)

11.5 Conclusions

This chapter introduces a discriminative method to the leggpotting problem. In this task,
the model receives a keyword and a spoken utterance as ingdutheould decide whether
the keyword is uttered in the utterance. Keyword spottingegponds to an unbalanced
detection problem, since, in standard setups, most ofdadterances do not contain the
targeted keyword. In that unbalanced context, the AUC iegdly used for evaluation. This
work proposed a learning algorithm, which aims at maxingzime AUC over a set of train-
ing spotting problems. Our strategy is based on a large méoginulation of the task, and
relies on an efficient iterative training procedure. Thailtasy model contrasts with standard
approaches based on HMMs, for which the training procedoes dot rely on a loss directly
related to the spotting task. Compared to such alternativgsmodel is shown to yield sig-
nificant improvements over various spotting problems onTtIT and the WSJ corpus.
For instance, the best HMM configuration over TIMIT reach&iCAof 0.953, compared to
AUC of 0.996 for the best discriminative spotter.

Several potential directions of research can be identifiech fthis work. In its current
configuration, our keyword spotter relies on the output afeatpained frame-based phoneme
classifier. It would be of a great interest to learn the framased classifier and the keyword
spotter jointly, so that all model parameters are selec@daximize the performance on the
final spotting task.

Also, our work currently represents keywords as sequenpbaiemes, without consid-
ering the neighboring context. Possible improvement migéilts from the use of phonemes
in context, such as triphones. We hence plan to investigegteise of triphones in a dis-
criminative framework, and to compare the resulting modétiphone-based HMMs. More
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generally, our model parameterization offers greaterbiéi to incorporate new features,
compared to probabilistic approaches such as HMMs. Thergfoaddition to triphones, fea-
tures extracted from the speaker identity, the channebderistics or the linguistic context
could possibly be included to improve performance.
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