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This chapter introduces a discriminative method for detecting and spotting keywords in spo-
ken utterances. Given a word represented as a sequence of phonemes and a spoken utterance,
the keyword spotter predicts the best time span of the phoneme sequence in the spoken utter-
ance along with a confidence. If the prediction confidence is above certain level the keyword
is declared to be spoken in the utterance within the predicted time span, otherwise the key-
word is declared as not spoken. The problem of keyword spotting training is formulated as
a discriminative task where the model parameters are chosenso the utterance in which the
keyword is spoken would have higher confidence than any otherspoken utterance in which
the keyword is not spoken. It is shown theoretically and empirically that the proposed train-
ing method resulted with a high area under the receiver operating characteristic (ROC) curve,
the most common measure to evaluate keyword spotters. We present an iterative algorithm
to train the keyword spotter efficiently. The proposed approach contrasts with standard spot-
ting strategies based on HMMs, for which the training procedure does not maximize a loss
directly related to the spotting performance. Several experiments performed on TIMIT and
WSJ corpora show the advantage of our approach over HMM-based alternatives.
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11.1 Introduction

Keyword spotting aims at detecting any given keyword in spoken utterances. This task is
important in numerous applications, such as voice mail retrieval, voice command detection
and spoken term detection and retrieval. Previous work has focused mainly on several vari-
ants of Hidden Markov Models (HMMs) to address this intrinsically sequential problem.
While the HMM-based approaches constitute the state-of-the-art, they suffer from several
known limitations. Most of these limitations are not specific to the keyword spotting prob-
lem, and are common to other tasks such as speech recognition, as pointed out in Chapter 1.
For instance, the predominance of the emission probabilities in the likelihood, which tends
to neglect duration and transition models, or the Expectation-Maximization (EM) training
procedure, which is prone to convergence to local optima. Other drawbacks are specific to
the application of HMMs to the keyword spotting task. In particular, the scarce occurrence
of some keywords in the training corpora often requires ad-hoc modifications of the HMM
topology, the transition probabilities or the decoding algorithm. The most acute limitation
of HMM-based approaches lies in their training objective. Typically, HMM training aims at
maximizing the likelihood of transcribed utterances, and does not provide any guarantees in
terms of keyword spotting performance.

The performance of a keyword spotting system is often measured by the Receiver Oper-
ating Characteristics (ROC) curve, that is, a plot of the true positive (spotting a keyword
correctly) rate as a function of the false positive (mis-spotting a keyword) rate, see for
example (Benayed et al. 2004; Ketabdar et al. 2006; Silaghi and Bourlard 1999). Each point
on the ROC curve represents the system performance for a specific trade-off between achiev-
ing a high true positive rate and a low false positive rate. Since the preferred trade-off is not
always defined in advance, systems are commonly evaluated according to the averaged per-
formance over all operating points. This corresponds to preferring the systems that attain the
highest Area Under the ROC Curve (AUC).

In this study, we devise a discriminative large margin approach for learning to spot any
given keyword in any given speech utterance. The keyword spotting function gets as input a
phoneme sequence representing the keyword and a spoken utterance and outputs a prediction
of the time span of the keyword in the spoken utterance and a confidence. If the confidence is
above some predefined threshold, the keyword is declared to be spoken in the predicted time
span, otherwise the keyword is declared as not spoken. The goal of the training algorithm is
to maximize the AUC on the training data and on unseen test data. We call an utterance in the
training set in which the keyword is spoken apositive utterance, and respectively, an utterance
in which the keyword is not spoken anegative utterance. Using the Wilcoxon-Mann-Whitney
statistics (Cortes and Mohri 2004), we formulate the training as a problem of estimating the
model parameters such that the confidence of the correct timespan in a positive utterance
would be higher than the confidence of any time span in any negative utterance. Formally
this problem is stated as a convex optimization problem withconstraints. The solution to
this optimization problem is a function which shown analytically to attain high AUC on the
training set and is likely to have good generalization properties on unseen test data as well.
Moreover, comparing to HMMs, our approach is based on a convex optimization procedure,
which converges to the global optima, and it is based on non-probabilistic framework, which
offers greater flexibility in selecting the relative importance of duration modeling with respect
to acoustic modeling.
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The remainder of this chapter is organized as follows: Section 11.2 describes previ-
ous work on keyword spotting, Section 11.3 introduces our discriminative large margin
approach, Section 11.4 presents different experiments comparing the proposed model to an
HMM-based solution. Finally, Section 11.5 draws some conclusions and delineates possible
directions for future research.

11.2 Previous Work

The research on keyword spotting has paralleled the development of the Automatic Speech
Recognition (ASR) domain in the last thirty years. Like ASR,keyword spotting has first been
addressed with models based on Dynamic Time Warping (DTW) (Bridle 1973; Higgins and
Wohlford 1985). Then, approaches based on discrete HMMs have been introduced (Kawabata
et al. 1988). Finally, discrete HMMs have been replaced by continuous HMMs (Rabiner and
Juang 1993).

The core objective of a keyword spotting system is to discriminate between utterances
in which a given keyword is uttered to utterances in which thekeyword is not uttered. For
this purpose, the first approaches based on DTW proposed to compute the alignment distance
between a template utterance representing the target keyword and all possible segments of the
test signal (Bridle 1973). In this context, the keyword is considered as detected in a segment
of the test utterance whenever the alignment distance is below some predefined threshold.
Such approaches are however greatly affected by speaker mismatch and varying recording
conditions between the template sequence and the test signal. To gain some robustness, it
has then been proposed to compute alignment distances not only with respect to the target
keyword template, but also with respect to other keyword templates (Higgins and Wohlford
1985). Precisely, given a test utterance, the system identifies the concatenation of templates
with the lowest distance to the signal and the keyword is considered as detected if this con-
catenation contains the target keyword template. Therefore, the keyword alignment distance
is not considered as an absolute number, but relatively to the distances to other templates,
which increase robustness with respect to changes in the recording conditions.

Along with the development of the speech research, increasingly large amount of labeled
speech data were collected, and DTW-based techniques started showing their shortcomings
to leverage from large training sets. Consequently, discrete HMMs were introduced for ASR
(Bahl et al. 1986), and then for keyword spotting (Kawabata et al. 1988; Wilpon et al. 1990).
A discrete HMM assumes that the quantized acoustic feature vectors representing the input
utterance are independent conditioned on the hidden state variables. This type of model
introduces several advantages compared to DTW-based approaches, including an improved
robustness to speaker and channel changes, when several training utterances of the targeted
keyword are available. However, the most important evolution introduced with the HMM cer-
tainly lies in the development of phone or triphone-based modeling (Kawabata et al. 1988;
Lee and Hon 1988; Rose and Paul 1990), in which a word model is composed of several
sub-unit models shared across words. This means that the model of a given word not only
benefits from the training utterances containing this word,but also from all the utterances
containing its sub-units. A further advantage of phone-based modeling is the ability to spot
words unavailable at training time, as this paradigm allowsone to build a new word model
by composing already trained sub-unit models. This aspect is very important, since in most
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applications the set of test keywords is not known in advance.
Soon after the application of discrete HMMs to speech problems, continuous density

HMMs have been introduced in the ASR community (Rabiner and Juang 1993). Continu-
ous HMMs eliminate the need of acoustic vector quantization, as the distributions associated
with the HMM states are continuous densities, often modeledby Gaussian Mixtures Models
(GMMs). The learning of both GMM parameters and the state transition probabilities is per-
formed in a single integrated framework, maximizing the likelihood of the training data given
its transcription through the Expectation-Maximization (EM) algorithm (Bilmes 1998). This
approach has been shown to be more effective and allows greater flexibility for speaker or
channel adaptation (Rabiner and Juang 1993). It is now the most widely used approach for
both ASR and keyword spotting.

Keyword HMM

Garbage HMM

Figure 11.1 HMM topology for key-
word spotting with a Viterbi best
path strategy. This approach verifies
whether the Viterbi best path passes
through the keyword sub-model.

In the context of keyword spotting, different
strategies based on continuous HMMs have been
proposed. In most cases, a sub-unit based HMM is
trained over a large corpus of transcribed data and
a new model is then built from the sub-unit mod-
els. Such a model is composed of two parts, a key-
word HMM and afiller or garbageHMM, which
respectively model the keyword and non-keyword
parts of the signal. This topology is depicted in
Figure 11.1. Given such a model, keyword detection
is performed by searching for the sequence of states
that yields the highest likelihood for the provided test
sequence through Viterbi decoding. Keyword detec-
tion is determined by checking whether the Viterbi
best-path passes through the keyword model or not.
In such a model, the selection of the transition proba-
bilities in the keyword sets the trade-off between low
false alarm rate (detecting a keyword when it is not
presented), and low false rejection rate (not detect-
ing a keyword when it is indeed presented). Another
important aspect of this approach lies in the model-
ing of non-keyword parts of the signal, and several
choices are possible for the garbage HMM. The simplest choice models garbage with an
HMM that fully connects all sub-units models (Rose and Paul 1990), while the most com-
plex choice models garbage with a full-large vocabulary HMM, where the lexicon excludes
the keyword (Weintraub 1993). The latter approach obviously yields a better garbage model,
using additional linguistic knowledge. This advantage however induces a higher decoding
cost and requires larger amount of training data, in particular for language model train-
ing. Besides practical concerns, one can conceptually wonder whether an automatic spotting
approach should require such a large linguistic knowledge.Of course, several variations of
garbage models exist between the two extreme examples pointed above (see for instance
Boite et al. 1993).

Viterbi decoding relies on a sequence of local decisions to determine the best path, which
can be fragile with respect to local model mismatch. In the context of HMM-based keyword
spotting, a keyword can be missed, if only its first phoneme suffers such a mismatch, for
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(a) (b)

Keyword HMM Garbage HMMGarbage HMM Garbage HMM

Figure 11.2 HMM topology for keyword spotting with a likelihood ratio strategy. This
approach compares the likelihood of the sequence given the keyword is uttered (a), to the
likelihood of the sequence given the keyword is not uttered (b).

instance. To gain some robustness, likelihood ratio approaches have been proposed (Rose
and Paul 1990; Weintraub 1995). In this case, the confidence score outputted from the key-
word spotter corresponds to the ratio between the likelihood estimated by an HMM including
the occurrence of the target keyword, and the likelihood estimated by an HMM excluding it.
These HMM topologies are depicted in Figure 11.2. Detectionis then performed by compar-
ing the outputted scores to a predefined threshold. Different variations on this likelihood ratio
approach have then been devised, such as computing the ratioonly on the part of the signal
where the keyword is assumed to be detected (Junkawitsch et al. 1997). Overall, all the above
methods are variations over the same HMM paradigm, which consists in training a generative
model through likelihood maximization, before introducing different modifications prior to
decoding in order to address the keyword spotting task. In other words, these approaches do
not propose to train the model so as to maximize the spotting performance, and the keyword
spotting task is only introduced in the inference step aftertraining.

Only few studies have proposed discriminative parameter training approaches to circum-
vent this weakness (Benayed et al. 2003; Sandness and Hetherington 2000; Sukkar et al.
1996; Weintraub et al. 1997). Sukkar et al. (1996) proposed to maximize the likelihood ratio
between the keyword and garbage models for keyword utterances and to minimize it over a
set of false alarms generated by a first keyword spotter. Sandness and Hetherington (2000)
proposed to apply Minimum Classification Error (MCE) to the keyword spotting problem.
The training procedure updates the acoustic models to lowerthe score of non-keyword mod-
els in the part of the signal where the keyword is uttered. However, this procedure does not
focus on false alarms, and does not aim at lowering the score of the keyword-models in parts
of the signal where the keyword is not uttered. Other discriminative approaches have been
focused on combining different HMM-based keyword detectors. For instance, Weintraub
et al. (1997) trained a neural network to combine likelihoodratios from different models.
Benayed et al. (2003) relied on support vector machines to combine different averages of
phone-level likelihoods. Both of these approaches proposeto minimize the error rate, which
equally weights the two possible spotting errors, false positive (or false alarm) and false neg-
ative (missed keyword occurrence, often called keyword deletion). This measure is however
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barely used to evaluate keyword spotters, due to theunbalancednature of the problem. Pre-
cisely, the targeted keywords generally occurs rarely and hence the number of potential false
alarms highly exceeds the number of potential missed detections. In this case, the useless
model which never predicts the keyword avoids all false alarms and yields a very low error
rate, with which it is difficult to compete. For that reason the AUC is more informative and
is commonly used to evaluate models. Attaining high AUC would hence be an appropriate
learning objective for the discriminative training of a keyword spotter. To the best of our
knowledge, only Chang (1995) proposed an approach targeting this goal. This work intro-
duces a methodology to maximize the Figure-Of-Merit (FOM),which corresponds to the
AUC over a specific range of false alarm rates. However, the proposed approach relies on
various heuristics, such as gradient smoothing and sortingapproximations, which does not
ensure any theoretical guarantee on obtaining high FOM. Also, these heuristics involve the
selection of several hyperparameters, that challenges a practical use.

In the following, we introduce a model that aims at achievinghigh AUC over a set
of training examples, and constitutes a truly discriminative approach to the keyword spot-
ting problem. The proposed model relies on large margin learning techniques for sequence
prediction and provides theoretical guarantees regardingthe generalization performance.
Furthermore, its efficient learning procedure ensures scalability toward large problems and
simple practical use.

11.3 Discriminative Keyword Spotting

This section formalizes the keyword spotting problem, and introduces the proposed approach.
First, we describe the problem of keyword spotting formally. This allows us to introduce a
loss derived from the definition of the AUC. Then, we present our model parameterization
and the training procedure to minimize efficiently a regularized version of this loss. Finally,
we give an analysis of the iterative algorithm, and show it achieves a high cumulative AUC
in the training process and high expected AUC on unseen test data.

11.3.1 Problem Setting

In the keyword spotting task, we are provided with a speech signal composed of a sequence
of acoustic feature vectors̄x = (x1, . . . ,xT ), wherext ∈ X ⊂ R

d, for all 1 ≤ t ≤ T , is a
feature vector of lengthd extracted from thet-th frame. Naturally, the length of the acoustic
signal varies from one signal to another and thusT is not fixed. We denote a keyword byk ∈
K, whereK is a lexicon of words. Each keywordk is composed of a sequence of phonemes
p̄k = (p1, . . . , pL), wherepl ∈ P for all 1 ≤ l ≤ L andP is the domain of the phoneme
symbols. The number of phonemes in each keyword may vary fromone keyword to another
and henceL is not not fixed. We denote byP∗ (and similarlyX ∗) the set of all finite length
sequences overP . Let us further define the time span of the phoneme sequencep̄k in the
speech signal̄x. We denote bysl ∈ {1, . . . , T} the start time (in frame units) of phoneme
pl in x̄, and byel ∈ {1, . . . , T} the end time of phonemepl in x̄. We assume that the start
time of any phonemepl+1 is equal to the end time of the previous phonemepl, that is,
el = sl+1 for all 1 ≤ l ≤ L− 1. We define the time span (or segmentation) sequence as
s̄k = (s1, . . . , sL, eL). An example of our notation is given in Figure 11.3. Our goal is to
learn akeyword spotter, denotedf : X ∗ × P∗ → R, which takes as input the pair(x̄, p̄k) and
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Figure 11.3 Example of our notation. The waveform of the spoken utterance “a lone star
shone...” taken from the TIMIT corpus. The keywordk is the wordstar. The phonetic tran-
scriptionp̄k along with the time-span sequences̄+ are depicted in the figure.

returns a real valued score expressing the confidence that the targeted keywordk is uttered in
x̄. By comparing this score to a thresholdb ∈ R, we can determine whetherp̄k is uttered in
x̄.

In discriminative supervised learning we are provided witha training set of examples
and a test set (or evaluation set). Specifically, in the task of discriminative keyword spotting
we are provided with a two sets of keywords. The first setKtrain is used for training and the
second setKtest is used for evaluation. Note that the lexicon of keywords is aunion of both the
training set and the test set,K = Ktrain∪ Ktest. Algorithmically, we do not restrict a keyword
to be only in one set and a keyword that appears in the trainingset can appear also in the test
set. Nevertheless, in our experiments we picked different keywords for training and test and
henceKtrain∩ Ktest = ∅.

A keyword spotterf is often evaluated using the ROC curve. This curve plots the true
positive rate (TPR) as a function of the false positive rate (FPR). The TPR measures the
fraction of keyword occurrences correctly spotted, while the FPR measures the fraction of
negative utterances yielding a false alarm. The points on the curve are obtained by sweeping
the thresholdb from the largest value outputted by the system to the smallest one. These
values hence correspond to different trade-offs between the two types of errors a keyword
spotter can make, i.e., missing a keyword utterance or rising a false alarm. In order to evaluate
a keyword spotter over various trade-offs, it is common to report the AUC as a single value.
The AUC hence corresponds to an averaged performance, assuming a flat prior over the
different operational settings. Given a keywordk, a set of positive utterancesX+

k in which
k is uttered, and a set of negative utterancesX−

k in which k is not uttered, the AUC can be
written as,

Ak =
1

|X+
k ||X−

k |
∑

x̄+∈X+
k

∑

x̄−∈X−
k

1{f(p̄k,x̄+)>f(p̄k,x̄−)} ,
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where| · | refers to set cardinality and1{π} refers to the indicator function and its value is1
if the predicateπ holds and0 otherwise. The AUC of the keywordk,Ak, hence estimates the
probability that the score assigned to a positive utteranceis greater than the score assigned to
a negative utterance. This quantity is also referred to as theWilcoxon-Mann-Whitney statistics
(Cortes and Mohri 2004; Mann and Whitney 1947; Wilcoxon 1945).

As one is often interested in the expected performance over any keyword, it is com-
mon to plot the ROC averaged over a set of evaluation keywordsKtest, and to compute the
corresponding averaged AUC,

Atest =
1

|Ktest|
∑

k∈Ktest

Ak.

In this study, we introduce a large-margin approach to learna keyword spotterf from a
training set, which achieves a high averaged AUC.

11.3.2 Loss Function and Model Parameterization

In order to build our keyword spotterf , we are given training data consisting of a set of
training keywordsKtrain and a set of training utterances. For each keywordk ∈ Ktrain, we
denote withX+

k the set of utterances in which the keyword is spoken and withX−
k the set

of all other utterances, in which the keyword is not spoken. Furthermore, for each positive
utterancex̄+ ∈ X+

k , we are also given the timing sequences̄+ of the keyword phoneme
sequencēpk in x̄+. Such a timing sequence provides the start and end points of each of
the keyword phonemes, and can either be provided by manual annotators or localized with
a forced alignment algorithm, as discussed in Chapter 4. Letus define the training set as
Ttrain ≡ {(pki , x̄+

i , s̄
+
i , x̄

−
i )}mi=1. For each keyword in the training set there is only one posi-

tive utterance and one negative utterance, hence|X+
k | = 1, |X−

k | = 1 and|Ktrain| = m, and
the AUC over the training set becomes

Atrain =
1

m

m∑

i=1

1{f(p̄ki ,x̄+
i )>f(p̄ki ,x̄−

i )} .

The selection of a model maximizing this AUC is equivalent tominimizing the loss

L0/1(f) = 1−Atrain =
1

m

m∑

i=1

1{f(p̄ki ,x̄+
i )>f(p̄ki ,x̄−

i )} .

The lossL0/1 is unfortunately not suitable for model training since it isa combinatorial
quantity that is difficult to minimize directly. We instead adopt a strategy commonly used in
large margin classifiers and employ the convex hinge-loss function,

L(f) =
1

m

m∑

i=1

[1− f(p̄ki , x̄+
i ) + f(p̄ki , x̄−

i )]+, (11.1)

where [a]+ denotesmax{0, a}. The hinge lossL(f) upper boundsL0/1(f): since for
any real numbersa and b, [1− a+ b]+ ≥ 1{a≤b}, and moreover, whenL(f) = 0, then
Atrain = 1, and for anya andb, [1− a+ b]+ = 0⇒ a > b+ 1⇒ a > b. The hinge-loss is
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related to the ranking loss used in both Support Vector Machine (SVM) for ordinal regression
(Herbrich et al. 2000) and Ranking SVM (Joachims 2002). These approaches have shown to
be successful over highly unbalanced problems, such as information retrieval (Grangier and
Bengio 2008; Joachims 2002), using the hinge loss is hence appealing to the keyword spot-
ting problem. We show in the sequel that minimizing the hingeloss resulted with a keyword
spotter attains high AUC.

Our keyword spotterf is parameterized as

fw(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) , (11.2)

wherew ∈ R
n is a vector of importance weights,φ(x̄, p̄k, s̄) is a feature function vector,

measuring different characteristics related to the confidence that the phoneme sequencep̄k

representing the keywordk is uttered inx̄ with the time span̄s. Formally,φ is a func-
tion defined asφ : X ∗ × (P × N)∗ → R

n. In this study we used 7 feature function (n = 7),
which are similar to those employed in Chapter 4. These functions are described only briefly
for the sake of completeness.
There are fourphoneme transition functions, which aim at detecting transition between
phonemes. For this purpose, they compute the frame distancebetween the frames before and
after a hypothesized transition point. Formally,

∀i = 1, 2, 3, 4, φi(x̄, p̄
k, s̄) =

1

L

L−1∑

j=2

d(xsj−i,xsj+i) , (11.3)

whered refers to the Euclidean distance andL refers to the number of phonemes in keyword
k.
The frame-based phoneme classifier functionrelies on a frame-based phoneme classifier
to measure the match between each frame and the hypothesizedphoneme class,

φ5(x̄, p̄
k, s̄) =

1

L

L∑

i=1

si+1−1∑

t=si

1

si+1 − si
g(xt, pi) (11.4)

whereg : X × P → R refers to the phoneme classifier, which returns a confidence that the
acoustic feature vector at thet-th frame,xt, represents a specific phonemepi. Different
phoneme classifiers might be applied for this feature. In ourcase, we conduct experiments
relying on two alternative solutions. The first assessed classifier is the hierarchical large-
margin classifier presented in Dekel et al. (2004), while thesecond classifier is a Bayes
classifier with one Gaussian Mixture per phoneme class. In the first case,g is defined as
the phoneme confidence outputted by the classifier, while, inthe second case,g is defined as
the log posterior of the classg(x, p) = log(P (p|x)). The presentation of the training setup,
as well as, the empirical comparison of both solutions, are deferred to Section 11.4.
Thephoneme duration function measures the adequacy of the hypothesized segmentation
s̄, with respect to a duration model,

φ6(x̄, p̄
k, s̄) =

1

L

L∑

i=1

logN (si+1 − si;µpi , σ
2
pi

) , (11.5)
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whereN denotes the likelihood of a Gaussian duration model, whose meanµp and variance
σ2

p parameters for each phonemep are estimated over the training data.
Thespeaking rate functionmeasures the stability of the speaking rate,

φ7(x̄, p̄
k, s̄) =

1

L

L∑

i=2

(ri − ri−1)
2, (11.6)

whereri denotes the estimate of the speaking rate for thei-th phoneme,

ri =
si+1 − si

µpi

.

This set of seven functions has been used in our experiments.Of course, this set can easily
be extended to incorporate further features, such as confidences from a triphone frame-based
classifier or the output of a more refined duration model.

In other words, our keyword spotter outputs a confidence score by maximizing a weighted
sum of feature functions over all possible time-spans. Thismaximization corresponds to
a search over an exponentially large number of time spans. Nevertheless, it can be per-
formed efficiently by selecting decomposable feature functions, which allows the application
of dynamic programming techniques, like these used in HMMs (Rabiner and Juang 1993).
Chapter 4 gives a detailed discussion about the efficient computation of Equation 11.2.

11.3.3 An Iterative Training Algorithm

In this section we describe an iterative algorithm for finding the weight vectorw. We show
in the sequel that the weight vectorw found in this processes minimizes the lossL(fw),
hence minimizes the lossL0/1 and in turn resulted with a keyword spotting which attains
a high AUC over the training set. We also show that the learnedweight vector have good
generalization properties on the test set.

The procedure starts by initializing the weight vector to bethe zero vector,w0 = 0. Then,
at iterationi ≥ 1, the algorithm examines thei-th training example(p̄ki , x̄+

i , s̄
+
i , x̄

−
i ). The

algorithm first predicts the best time span of the keyword phoneme sequencēpki in the neg-
ative utterancēx−

i ,

s̄−i = arg max
s̄

wi−1 · φ(x̄−
i , p̄

k
i , s̄). (11.7)

Then, the algorithm considers the loss on thei-th training example and checks that the dif-
ference between the score assigned to the positive utterance and the score assigned to the
negative example is greater than1. Formally, define

∆φi = φ(x̄+
i , p̄

k
i , s̄

+
i )− φ(x̄−

i , p̄
k
i , s̄

−
i ).

If wi−1 ·∆φi ≥ 1 the algorithm keeps the weight vector for the next iteration, namely,
wi = wi−1. Otherwise, the algorithm updates the weight vector to minimizes the following
optimization problem

wi = argmin
w

1

2
‖w−wi−1‖2 + c [1−w ·∆φi]+, (11.8)



DISCRIMINATIVE KEYWORD SPOTTING 187

Input : Training setTtrain, validation setTvalid; parameterc.
Initialize : w0 = 0.

Loop: for each(pki , x̄+
i , s̄

+
i , x̄

−
i ) ∈ Ttrain

1. let s̄−i = arg maxs̄ wi−1 · φ(p̄k
i , x̄

−
i , s̄)

2. let∆φi = φ(x̄+
i , p̄

ki , s̄+i )− φ(x̄−
i , p̄

ki , s̄−i )

3. if wi−1 ·∆φi < 1 then

let αi = min

{
c,

1−wi−1 ·∆φi

‖∆φi‖2
}

updatewi = wi−1 + αi ·∆φi

Output: w achieving the highest AUC overTvalid:

w = arg min
w∈{w1,...,wm}

1

mvalid

mvalid∑

j=1

1{maxs̄+ w·φ(x̄+
j ,p̄kj ,s̄+)>maxs̄− w·φ(x̄−

j ,p̄kj ,s̄−)}

Figure 11.4 Passive Aggressive Training

where the hyperparameterc ≥ 1 controls the trade-off between keeping the new weight vec-
tor close to the previous one and satisfying the constraint for the current example. Equation
(11.8) can analytically be solved in closed form (Crammer etal. 2006), yielding

wi = wi−1 + αi∆φi,

where

αi = min

{
c,

[1−wi−1 ·∆φi]+
‖∆φi‖2

}
. (11.9)

This update is referred to aspassive-aggressive, since the algorithmpassivelykeeps the
previous weight (wi = wi−1) if the loss of the current training example is already zero
([1−wi−1 ·∆φi]+ = 0), while it aggressivelyupdates the weight vector to compensate this
loss otherwise. At the end of the training procedure, when all training examples have been
visited, the best weightw among{w0, . . .wm} is selected over a set of validation examples
Tvalid. The hyperparameterc is also selected to optimize performance on the validation data.
The pseudo-code of the algorithm is given in Algorithm 11.4.

11.3.4 Analysis

In this section, we derive theoretical bounds on the performance of our keyword spotter. Let
us first define thecumulative AUCon the training setTtrain as follows

Âtrain =
1

m

m∑

i=1

1{wi−1·φ(x̄+
i ,p̄ki ,s̄+

i )>wi−1·(x̄−
i ,p̄ki ,s̄−

i )} , (11.10)
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wheres̄−i is generated every iteration step according to Equation (11.7). The examination
of the cumulative AUC is of great interest as it provides an estimator for the general-
ization performance. Note that at each iteration step the algorithm receives new example
(pki , x̄+

i , s̄
+
i , x̄

−
i ) and predicts the time span of the keyword in the negative instancex̄−

i

using the previous weight vectorwi−1. Only after the prediction is made the algorithm suf-
fers loss by comparing its prediction to the true time spans̄+i of the keyword on the positive
utterancēx+

i . The cumulative AUC is a weighted sum of the performance of the algorithm
on the next unseen training example and hence it is a good estimation to the performance of
the algorithm on unseen data during training.

Our first theorem states a competitive bound. It compares thecumulative AUC of the
weight vectors series,{w1, . . . ,wm}, resulted from the iterative algorithm to the best fixed
weight vector,w⋆, chosen in hindsight, and essentially proves that, for any sequence of
examples, our algorithms cannot do much worse than the best fixed weight vector. Formally,
it shows that the cumulative areaabovethe curve,1− Âtrain, is smaller than the weighted
average lossL(fw⋆) of the best fixed weight vectorw⋆ and its weighted complexity,‖w⋆‖.
That is, the cumulative AUC of the iterative training algorithm is going to be high, given that
the loss of the best solution is small, the complexity of the best solution is small and that the
number of training examples,m, is sufficiently large.

Theorem 11.3.1Let Ttrain = {(p̄ki , x̄+
i , s̄

+
i , x̄

−
i )}mi=1 be a set of training examples and

assume that for allk, x̄ ands̄ we have that‖φ(x̄, p̄k, s̄)‖ ≤ 1/
√

2. Letw⋆ be the best weight
vector selected under some optimization criterion by observing all instances in hindsight. Let
w1, . . . ,wm be the sequence of weight vectors obtained by the algorithm in Algorithm 11.4
given the training setTtrain. Then,

1− Âtrain ≤
1

m
‖w⋆‖2 +

2c

m
L(fw⋆) (11.11)

wherec ≥ 1 andÂtrain is the cumulative AUC defined in Equation 11.10.

Proof. Denote byℓi(w) the instantaneous loss the weight vectorw suffers on thei-th
example, that is,

ℓi(w) = [1−w · φ(x̄+
i , p̄

ki , s̄+i ) + max
s̄

w · φ(x̄−
i , p̄

ki , s̄)]+

The proof of the theorem relies on Lemma 1 and Theorem 4 in Crammer et al. (2006). Lemma
1 in Crammer et al. (2006) implies that,

m∑

i=1

αi

(
2ℓi(wi−1)− αi‖∆φi‖2 − 2ℓi(w

⋆)
)
≤ ‖w⋆‖2. (11.12)

Now if the algorithm makes a prediction mistake and the predicted confidence of the best
time span of the keyword in a negative utterance is higher than the confidence of the true
time span of the keyword in the positive example thenℓi(wi−1) ≥ 1. Using the assumption
that‖φ(x̄, p̄k, s̄)‖ ≤ 1/

√
2, which means that‖∆φ(x̄, p̄k, s̄)‖2 ≤ 1, and the definition ofαi

given in Equation 11.9, when substituting[1−wi−1 ·∆φi]+ for ℓi(wi−1) in its numerator,
we conclude that if a prediction mistake occurs then it holdsthat

αiℓi(wi−1) ≥ min

{
ℓi(wi−1)

‖∆φi‖2
, c

}
≥ min {1, c} = 1. (11.13)
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Summing over all the prediction mistakes made on the entire training setTtrain and taking into
account thatαiℓi(wi−1) is always non-negative, we have

m∑

i=1

αiℓi(wi−1) ≥
m∑

i=1

1{wi−1·φ(x̄+
i ,p̄ki ,s̄ki )≤wi−1·φ(x̄−,p̄ki ,s̄′

i)}. (11.14)

Again using the definition ofαi, we know thatαiℓi(w
⋆) ≤ cℓi(w⋆) and thatαi‖∆φi‖2 ≤

ℓi(wi−1). Plugging these two inequalities and Equation (11.14) intoEquation (11.12) we get

m∑

i=1

1{wi−1·φ(x̄+
i ,p̄ki ,s̄ki )≤wi−1·φ(x̄−,p̄ki ,s̄′

i)} ≤ ‖w
⋆‖2 + 2c

m∑

i=1

ℓi(w
⋆). (11.15)

The theorem follows by replacing the sum over prediction mistakes to a sum over prediction
hits and plugging the definition of the cumulative AUC given in Equation (11.10).

The next theorem states that the output of our algorithm is likely to have good general-
ization, namely, the expected value of the AUC resulted fromdecoding on unseen test set is
likely to be large.

Theorem 11.3.2Under the same conditions of Theorem 11.3.1. Assume that thetraining set
Ttrain and the validation setTvalid are both sampled i.i.d. from a distributionD. Denote by
mvalid the size of the validation set. With probability of at least1− δ we have

1−A = ED
[1{f(x̄+

i ,p̄ki )≤f(x̄−,p̄ki )}

]
= PrD

[
f(x̄+

i , p̄
ki) ≤ f(x̄−, p̄ki)

]
≤

1

m

m∑

i=1

ℓi(w
⋆) +

‖w⋆‖2
m

+

√
2 ln(2/δ)√

m
+

√
2 ln(2m/δ)√
mvalid

, (11.16)

whereA is the mean AUC defined asA = ED
[1{f(x̄+

i ,p̄ki )>f(x̄−,p̄ki )}

]
and

ℓi(w) = [1−w · φ(x̄+
i , p̄

ki , s̄+i ) + max
s̄

w · φ(x̄−
i , p̄

ki , s̄)]+ .

The proof of the theorem goes along the lines of the proof of Theorem 4.5.2 in Chapter 4. The
theorem states that the resultedw of the iterative algorithm generalizes, with high probability,
and is going to have high expected AUC on unseen test data.

11.4 Experiments and Results

We started by training the iterative algorithm on the TIMIT training set. We then conducted
two types of experiments to evaluate the effectiveness of the proposed discriminative method.
First, we compared the performance of the discriminative method to a standard monophone
HMM keyword spotter on the TIMIT test set. Second, we compared the robustness of both
the discriminative method and the monophone HMM with respect to changing recording
conditions by using the models trained on the TIMIT, evaluated on the Wall Street Journal
(WSJ) corpus.
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Table 11.1 AUC of different
models trained on the TIMIT
training set and evaluated on the
TIMIT test set (the higher the
better)

Model AUC

HMM/Viterbi 0.942
HMM/Ratio 0.952
Discriminative/GMM 0.971
Discriminative/Hier 0.996

11.4.1 The TIMIT Experiments

The TIMIT corpus (Garofolo 1993) consists of read speech from 630 American speakers,
with 10 utterances per speaker. The corpus provides manually aligned phoneme and word
transcriptions for each utterance. It also provides a standard split into training and test data.
From the training part of the corpus, we extracted three disjoint sets consisting of1500, 300
and200 utterances. The first set was used as the training set of the phoneme classifier and
was used by our fifth feature functionφ5. The second set was used as the training set for our
discriminative keyword spotter, while the third set was used as the validation set to select the
hyperparameterc and the best weight vectorw seen during training. The test set was solely
used for evaluation purposes. From each of the last two splits of the training set,200 words
of length greater than or equal to 4 phonemes were chosen in random. From the test set80
words were chosen in random as described below.

Mel Frequency Cepstral Coefficients (MFCC), along with their first (∆) and second
derivatives (∆∆), were extracted every10 ms. These features were used by the first five
feature functionsφ1, . . . , φ5. Two types of phoneme classifiers were used for the fifth fea-
ture functionφ5, namely, a large margin phoneme classifier (Dekel et al. 2004) and a GMM
model. Both classifiers were trained to predict39 phoneme classes (Lee and Hon 1989) over
the first part of the training set. The large margin classifiercorresponds to a hierarchical clas-
sifier with Gaussian kernel, as presented in Dekel et al. (2004), where the score assigned to
each frame for a given phoneme was used as the functiong in Equation (11.4). The GMM
model corresponded to a Bayes classifier combining one GMM per class and the phoneme
prior probabilities, both learned from the training data. In that case, the log posterior of a
phoneme given the frame vector was used as the functiong in Equation (11.4). The hyper-
parameters of both phoneme classifiers were selected to maximize the frame accuracy over
part of the training data held out during parameter fitting. In the following, the discriminative
keyword spotter relying on the features from the hierarchical phoneme classifier is referred
to asDiscriminative/Hier, while the model relying on the GMM log posteriors is referred to
asDiscriminative/GMM.

We compared the results of bothDiscriminative/Hierand Discriminative/GMM to a
monophone HMM baseline, in which each phoneme were modeled with a left-right HMM of
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5 emitting states. The density of each state was modeled witha 40-Gaussian GMM. Train-
ing was performed over the whole TIMIT training set.Embedded trainingwas applied, i.e.,
after an initial training phase relying on the provided phoneme alignment, a second training
phase which dynamically determines the most likely alignment was applied. The hyperpa-
rameters of this model (the number of states per phoneme, thenumber of Gaussians per state,
as well as the number of Expectation-Maximization iterations) were selected to maximize the
likelihood of an held-out validation set.

The phoneme models of the trained HMM were then used to build akeyword spotting
HMM, composed of two sub-models: the keyword model and the garbage model, as illus-
trated on Figure 11.1. The keyword model was an HMM, which estimated the likelihood of
an acoustic sequence given that the sequence represented the keyword phoneme sequence.
The garbage model was an HMM composed of all phoneme HMMs fully connected to each
other, which estimated the likelihood of any phoneme sequence. The overall HMM fully
connected the keyword model and the garbage model. The detection of a keyword in a given
utterance was performed by checking whether the Viterbi best path passes through the key-
word model, as explained in Section 11.2. In this model, the keyword transition probability
set the trade-off between the true positive rate and the ROC curve was plotted by varying this
probability. This model is referred to asHMM/Viterbi .

We also experimented an alternative decoding strategy, in which the system output the
ratio of the likelihood of the acoustic sequence knowing thekeyword was uttered ver-
sus the likelihood of the sequence knowing the keyword wasnot uttered, as discussed
in Section 11.2. In this case, the first likelihood was determined by an HMM forcing an
occurence of the keyword, and the second likelihood was determined by the garbage model,
as illustrated on Figure 11.2. This likelihood-ratio strategy is referred to asHMM/Ratio in
the following.

The evaluation of discriminative and HMM-based models was performed over80 key-
words, randomly selected among the words occurring in the TIMIT test set. This random
sampling of the keyword set aimed at evaluating the expectedperformance over any key-
word. For each keywordk, we considered a spotting problem, which consisted of a set of
positive utterancesX+

k and a set of negative utteranceX−
k . Each positive setX+

k contained
between1 and20 sequences, depending on the number of occurrences ofk in the TIMIT test
set. Each negative set contained20 sequences, randomly sampled among the utterances of
TIMIT which does not containk. This setup represented an unbalanced problem, with only
10% of the sequences being labeled as positive.

Table 11.1 reports the average AUC results of the 80 test keywords, for different models
trained on the TIMIT training set and evaluated on the TIMIT test set. These results show the
advantage of our discriminative approach. The two discriminative models outperforms the
two HMM-based models. The improvement introduced by our discriminative model algo-
rithm can be observed when comparing the performance ofDiscriminative/GMM to the
performance of the HMM spotters. In that case, both spottersrely on GMMs to estimate
the frame likelihood given a phoneme class. In our case we usethat probability to compute
the featureφ5, while the HMM uses it as the state emission probability.

Moreover, our keyword spotter can benefit from non-probabilistic frame-based classi-
fiers, as illustrated withDiscriminative/Hier. This model relies on the output of a large
margin classifier, which outperforms all other models, and reaches a mean AUC of0.996.
In order to verify whether the differences observed on averaged AUC could be due only to
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Table 11.2 The distribution of the 80 keywords among the models which better spotted
them. Each row in the table represents the keywords for whichthe model written at the
beginning of the row received the highest AUC. The models were trained on the TIMIT
training set and evaluated on the TIMIT test set.

Best Model Keywords

Discriminative/Hier absolute admitted apartments apparently argued controlled depicts
dominant drunk efficient followed freedom introduced millionaires
needed obvious radiation rejected spilled street superb sympathetically
weekday(23 keywords)

HMM/Ratio materials(1 keyword)

No differences aligning anxiety bedrooms brand camera characters cleaning cli-
mates creeping crossings crushed decaying demands dressy episode
everything excellent experience family firing forgivenessfulfillment
functional grazing henceforth ignored illnesses imitate increasing
inevitable January mutineer package paramagnetic patiently pleasant
possessed pressure recriminations redecorating secularist shampooed
solid spreader story strained streamlined stripped stupidsurface swim-
ming unenthusiastic unlined urethane usual walking(56 keywords)

a few keywords, we applied the Wilcoxon test (Rice 1995) to compare the results of both
HMM approaches (HMM/Viterbi andHMM/Ratio) with the results of both discriminative
approaches (Discriminative/GMMandDiscriminative/Hier). At the 90% confidence level,
the test rejected this hypothesis, showing that the performance gained of the discriminative
approach is consistent over over the keyword set.

Table 11.2 further presents the performance per keyword andcompares the results of the
best HMM configuration,HMM/Ratio to the performance of the best discriminative con-
figuration,Discriminative/Hier. Out of total 80 keywords, 23 keywords were better spotted
with the discriminative model, 1 keyword was better spottedwith the HMM, and both mod-
els yielded the same spotting accuracy for 56 keywords. The discriminative model seems to
be better for shorter keywords, as it outperforms the HMM formost of the keywords of 5
phonemes or less (e.g.,drunk, spilled, street).

11.4.2 The WSJ Experiments

WSJ (Paul and Baker 1992) is a large corpus of American English. It consists in read and
spontaneous speech corresponding to the reading and the dictation of articles from the Wall
Street Journal. In the following, all models were trained onthe TIMIT training set and
evaluated on thesi tr s subset of WSJ. This subset corresponds to the recordings of
200 speakers. Compared to TIMIT, this subset introduce severalvariations, both regarding
the type of sentences recorded and the recording conditions(Paul and Baker 1992). These
experiments hence evaluate the robustness of the differentapproaches when they encounter
differing conditions for training and testing. Like for TIMIT, the evaluation is performed
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Table 11.3 AUC of different
models trained on the TIMIT
training set and evaluated on the
si tr s subset of WSJ (the
higher the better)

Model AUC

HMM/Viterbi 0.868
HMM/Ratio 0.884
Discriminative/GMM 0.922
Discriminative/Hier 0.914

over80 keywords randomly selected from the corpus transcription.For each keywordk, the
evaluation was performed over a setX+

k , containing between1 and20 positive sequences,
and aX−

k , containing20 randomly selected negative sequences. This setup also represents
an unbalanced problem, with27% of the sequences being labeled as positive.

Table 11.3 reports the average AUC results of the 80 test keywords, for different models
trained on the TIMIT training set and evaluated on thesi tr s subset of WSJ. Overall,
the results show that the differences between the TIMIT training conditions and the WSJ
test conditions affect the performance of all models. However, the measured performance
still yield acceptable performance in all cases (AUC of0.868 in the worse case). Comparing
the individual model performance, the WSJ results confirm the conclusions of TIMIT experi-
ments and the discriminative spotters outperform the HMM-based alternatives. For the HMM
models,HMM/Ratio outperformsHMM/Viterbi like in the TIMIT experiments. For the dis-
criminative spotters,Discriminative/GMMoutperformsDiscriminative/Hier, which was not
the case over TIMIT. Since these two models only differ in theframe-based classifier used
as the the feature functionφ5, this result certainly indicates that the hierarchical frame-based
classifier on whichDiscriminative/Hierrelies is less robust to the acoustic condition changes
than the GMM alternative. Like for TIMIT, we checked whetherthe differences observed on
the whole set could be due to a few keywords. The Wilcoxon testrejected this hypothesis at
the90% confidence level, for the4 tests comparingDiscriminative/GMMandDiscrimina-
tive/Hier to HMM/Viterbi andHMM/Hier.

We further compared the best discriminative spotter,Discriminative/GMM, and the best
HMM spotterHMM/Ratio over each keyword. These results are summarized in Table 11.4.
Out of the80 keywords, the discriminative model outperforms the HMM for50 keywords,
the HMM outperforms the discriminative model for20 keywords and both models yield the
same results for10 keywords. Like for the TIMIT experiments, the discriminative model
is shown to be especially advantageous for short keywords, with 5 phonemes or less (e.g.,
Adams, kings, serving).

Overall, the experiments over both WSJ and TIMIT highlight the advantage of our dis-
criminative learning method.
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Table 11.4 The distribution of the 80 keywords among the models which better spotted
them. Each row in the table represents the keywords for whichthe model written at the
beggining of the row received the highest AUC. The models were trained on the TIMIT
training set but evaluated on thesi tr s subset of WSJ

Best Model Keywords

Discriminative/Hier Adams additions Allen Amerongen apiece buses Bushby Colombians
consistently cracked dictate drop fantasy fills gross Higa historic
implied interact kings list lobby lucrative measures Melbourne millions
Munich nightly observance owning plus proudly queasy regency retool-
ing Rubin scramble Seidler serving significance sluggish strengthening
Sutton’s tariffs Timberland today truths understands withhold Witter’s
(50 keywords)

HMM/Ratio artificially Colorado elements Fulton itinerary longer lunchroom mer-
chant mission multilateral narrowed outlets Owens piper replaced
reward sabotaged shards spurt therefore(20 keywords)

No differences aftershocks Americas farms Flamson hammer homosexual philosophi-
cally purchasers sinking steel-makers(10 keywords)

11.5 Conclusions

This chapter introduces a discriminative method to the keyword spotting problem. In this task,
the model receives a keyword and a spoken utterance as input and should decide whether
the keyword is uttered in the utterance. Keyword spotting corresponds to an unbalanced
detection problem, since, in standard setups, most of tested utterances do not contain the
targeted keyword. In that unbalanced context, the AUC is generally used for evaluation. This
work proposed a learning algorithm, which aims at maximizing the AUC over a set of train-
ing spotting problems. Our strategy is based on a large margin formulation of the task, and
relies on an efficient iterative training procedure. The resulting model contrasts with standard
approaches based on HMMs, for which the training procedure does not rely on a loss directly
related to the spotting task. Compared to such alternatives, our model is shown to yield sig-
nificant improvements over various spotting problems on theTIMIT and the WSJ corpus.
For instance, the best HMM configuration over TIMIT reaches AUC of 0.953, compared to
AUC of 0.996 for the best discriminative spotter.

Several potential directions of research can be identified from this work. In its current
configuration, our keyword spotter relies on the output of a pre-trained frame-based phoneme
classifier. It would be of a great interest to learn the frame-based classifier and the keyword
spotter jointly, so that all model parameters are selected to maximize the performance on the
final spotting task.

Also, our work currently represents keywords as sequence ofphonemes, without consid-
ering the neighboring context. Possible improvement mightresults from the use of phonemes
in context, such as triphones. We hence plan to investigate the use of triphones in a dis-
criminative framework, and to compare the resulting model to triphone-based HMMs. More
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generally, our model parameterization offers greater flexibility to incorporate new features,
compared to probabilistic approaches such as HMMs. Therefore, in addition to triphones, fea-
tures extracted from the speaker identity, the channel characteristics or the linguistic context
could possibly be included to improve performance.
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