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Skip Graphs 

James Aspnes* Gauri Shah t 

A b s t r a c t  

Skip graphs are a novel distributed data structure, 
based on skip lists, that provide the full functional- 
ity of a balanced tree in a distributed system where 
elements are stored in separate nodes that may fall 
at any time. They are designed for use in searching 
peer-to-peer networks, and by providing the ability to 
perform queries based on key ordering, they improve 
on existing search tools that provide only hash ta- 
ble functionality. Unlike skip lists or other tree data 
structures, skip graphs are highly resilient, tolerating 
a large fraction of failed nodes without losing con- 
nectivity. In addition, constructing, inserting new el- 
ements into, searching a skip graph and detecting and 
repairing errors in the data structure introduced by 
node failures can be done using simple and straight- 
forward algorithms. 

1 I n t r o d u c t i o n  

Peer-to-peer networks are distributed systems with- 
out any central authority that are used for efficient 
location of shared resources. Such systems have be- 
come very popular for Internet applications in a short 
period of time. A survey of recent peer-to-peer re- 
search yields a slew of desirable features for a peer- 
to-peer network such as decentralization, scalabil- 
ity, fault-tolerance, self-stabilization, data availabil- 
ity, load balancing, dynamic addition and deletion of 
peer nodes, efficient and complex query searching, in- 
corporating geography in searches and exploiting spa- 
tial as well as temporal locality in searches. The ini- 
tial systems, such as Napster [NAP], Gnutella [GNU] 
and Freenet [FRE], did not support most of these 
features and were clearly unscalable either due to the 
use of a central server (Napster) or due to high mes- 
sage complexity from performing searches by flooding 
the network (Gnutella). The performance of Freenet 
is difficult to evaluate, but it provides no provable 
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guarantee on the search latency and permits accessi- 
ble data to be missed. 

Recent systems like CAN [RFH+01], 
Chord [SMK+01], Pastry [RD01], Tapestry [JKZ01] 
and Viceroy [MNR02] use a d i s t r ibu ted  hash  
table  (DHT) approach to overcome scalability 
problems. To ensure scalability, they hash the key 
of a resource to determine which node it will be 
stored at and balance out the load on the nodes in 
the network. The main operation in these systems 
is to retrieve the identity of the node which stores 
the resource, from any other node in the system. 
To this end, there is an overlay graph in which the 
location of the nodes and resources is determined 
by the hashed values of their identities and keys 
respectively. Resource location using the overlay 
graph is done in these various systems by using 
different routing algorithms. Pastry and Tapestry 
uses Plaxton's algorithm [PRR97], which is based 
on hypercube routing: the message is forwarded 
deterministically to a neighbor whose identifier is one 
digit closer to the target identifier. CAN partitions 
a d-dimensional coordinate space into zones that 
are owned by nodes which store keys mapped to 
their zone. Routing is done by greedily forwarding 
messages to the neighbor closest to the target zone. 
Chord maps nodes and resources to identities of 
m bits placed around a modulo 2 TM identifier circle 
and does greedy routing to the farthest possible 
node stored in the routing table. Most of these 
systems use O(log n) space and time for routing and 
O(log 2 n) time for node insertion. Because hashing 
destroys the ordering on keys, DHT systems do not 
support queries that seek near matches to a key or 
keys within a given range. 

Some of these systems try to optimize perfor- 
mance by taking locality into account. Pastry [RD01, 
CDHR02] and Tapestry [JKZ01, ZJK02] exploit geo- 
graphical proximity by choosing the physically closest 
node out of all the possible nodes with an appropriate 
identifier prefix. In CAN [RFH+01], each node mea- 
sures its round-trip delay to a set of landmark nodes 
and accordingly places itself in the co-ordinate space 
to facilitate routing with respect to network prox- 
imity. This last method is not fully self-organizing 
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and may cause imbalance in the distribution of nodes 
leading to hotspots. Some methods to solve the near- 
est neighbor problem for overlay networks can be seen 
in [HKRZ02] and [KR02]. 

Some of these systems are partly resilient to 
random node failures, but their performance may be 
badly impaired by adversarial deletion of nodes. Fiat 
and Saia [FS02] present a system which is resilient 
to adversarial deletion of a constant fraction of the 
nodes; some extensions of this result can be seen 
in [Dat02]. However, they do not give efficient 
methods to dynamically maintain such a system. 

TerraDir [SBK02] is a recent system that  pro- 
vides locality and maintains a hierarchical data  struc- 
ture using caching and replication. There are as yet 
no provable guarantees on load balancing and fault 
tolerance for this system. 

1.1 O u r  a p p r o a c h  The underlying structure of 
Chord, CAN, and similar DHTs resembles a balanced 
tree in which balancing depends on the near-uniform 
distribution of the output  of the hash function. So 
the costs of constructing, maintaining, and searching 
these data  structures is closer to the O(logn) costs 
of tree operations than the O(1) costs of traditional 
hash tables. But because keys are hashed, DHTs can 
provide only hash table functionality. Our approach 
is to exploit the underlying tree structure to give 
tree functionality, while applying a simple distributed 
balancing scheme to preserve balance and distribute 
load. 

We describe a new model for a peer-to-peer net- 
work based on a distributed data structure that  we 
call a skip  g raph .  This distributed data  structure 
has several benefits. Resource location and dynamic 
node addition and deletion can be done in logarith- 
mic time, and each node in a skip graph requires 
only logarithmic space to store information about 
its neighbors. More importantly, there is no hashing 
of the resource keys so related resources are present 
near each other in a skip graph. This may be use- 
ful for certain applications such as prefetching of 
web pages, enhanced browsing and efficient search- 
ing. Skip graphs also support c o m p l e x  que r i e s  such 
as range queries, i.e. locating resources whose keys 
lie within a certain specified range. There has been 
some interest in supporting complex queries in peer- 
to-peer-systems [HHH+02], and designing a system 
that  supports range queries has been posed as an 
open question. Skip graphs are resilient to node fail- 
ures: a skip graph tolerates removal of a large fraction 
of its nodes chosen at random without becoming dis- 
connected, and even the loss of an O(1/ log  n) fraction 

of the nodes chosen by an adversary still leaves most 
of the nodes in the largest surviving component. Skip 
graphs can also be constructed without knowledge of 
the total number of nodes in advance. In contrast, 
DHT systems such as Pastry and Chord require a 
priori knowledge about the size of the system or its 
keyspace. 

The rest of the paper is organized as follows: 
we describe skip graphs and algorithms for them 
in detail in Section 2. Sections 3 and 4 describe 
the repair mechanism and fault-tolerance properties 
for a skip graph. Contention analysis and load 
balancing results are described in Section 5. Finally, 
we conclude in Section 6. 

1.2 M o d e l  We briefly describe the model for our 
algorithms. We assume a m e s s a g e  pas s ing  envi- 
ronment in which all processes communicate with 
each other by sending messages over a communication 
channel. The system is p a r t i a l l y  s y n c h r o n o u s ,  i.e., 
there is a fixed upper bound (time-out) on the trans- 
mission delay of a message. Processes can c rash ,  i.e., 
halt prematurely, and crashes are permanent. We use 
the term node to represent a process that  is running 
on a particular machine. We assume that  each mes- 
sage takes at most unit time to be delivered and any 
internal processing at a machine takes no time. 

2 Skip  graphs 
A skip list [Pug90] is a randomized balanced tree 
data structure organized as a tower of increasingly 
sparse linked lists. Level 0 of a skip list is a linked 
list of all nodes in increasing order by key. For each 
i greater than 0, each node in level i - 1 appears 
in level i independently with some fixed probability 
p. In a doubly-linked skip list, each node stores 
a predecessor pointer and a successor pointer for 
each list in which it appears, for an average of l i p  
pointers per node. The lists at the higher level 
act as "express lanes" that  allow the sequence of 
nodes to be traversed quickly. Searching for a node 
with a particular key involves searching first in the 
highest level, and repeatedly dropping down a level 
whenever it becomes clear that  the node is not in the 
current level. Considering the search path in reverse 
shows that  no more than 1-~ nodes are searched on 
average per level, giving an average search time of 

( ) Skip lists have been extensively O logn(l_p~log ~ . 

studied [Pug90, PMP90, Dev92, KP94, KMP95] and 
because they require no global balancing operations 
are particularly useful in parallel systems [GMM93, 
GMM96, GM97]. 
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Figure 1: A skip list. 

We would like to use a data  structure similar to 
a skip list to support  typical binary tree operations 
on a sequence whose elements are stored at separate 
locations in a highly distributed system subject to 
unpredictable failures. A skip list alone is not enough 
for our purposes, because it lacks redundancy and 
is thus vulnerable to both failures and contention. 
Since only a few nodes appear in the highest-level 
list, each such node acts as a single point of failure 
whose removal partitions the list, and forms a hot 
spot that  must process a constant fraction of all 
search operations. Skip lists also offer few guarantees 
that  individual nodes are not separated from their 
fellows even with occasional random failures. Since 
each node is connected on average to only O(1) other 
nodes, even a constant probability of node failures 
will isolate a large fraction of the surviving nodes. 

Our solution is to define a generalization of a skip 
list that  we call a skip  g r aph .  As in a skip list, 
each node in a skip graph is a member of multiple 
linked lists. The level 0 list consists of all nodes in 
sequence. Where a skip graph is distinguished from 
a skip list is tha t  there may be many lists at level 
i, and every node participates in one of these lists, 
until the nodes are splintered into singletons after 
O(logn) levels on average. A skip graph supports 
sea rch ,  i n s e r t ,  and d e l e t e  operations analogous 
to the corresponding operations for skip lists; indeed, 
we show in Lemma 2.1 that  algorithms for skip lists 
can be applied directly to skip graphs, as a skip graph 
is equivalent to a collection of up to n skip lists that  
happen to share some of their lower levels. 

Because there are many lists at each level, the 
chances that  any individual node participates in 
some search is small, eliminating both single points 
of failure and hot spots. Furthermore, each node 
has O(logn) neighbors on average, and with high 
probability no node is isolated. In Section 4 we 
observe that  skip graphs are resilient to node failures 
and have an expansion ratio of ~ ( 1 / l o g n )  with n 
nodes in the graph. 

In addition to providing fanlt-tolerance, having 
an f~(logn) degree to support O(logn) search time 

appears to be necessary for distributed data  struc- 
tures based on nodes in a one-dimensional space 
linked by random connections whose distribution sat- 
isfies certain symmetry properties lADS02]. While 
this lower bound requires some independence as- 
sumptions that  are not satisfied by skip graphs, there 
is enough similarity between skip graphs and the class 
of models considered in lADS02] that  an f~(log n) av- 
erage degree is not surprising. 

We now give a formal definition of a skip graph. 
Precisely which lists an element x belongs to is 
controlled by a m e m b e r s h i p  v e c t o r  re(x). We 
think of rn(x) as an infinite random word over some 
fixed alphabet, although in practice, only an O(log n) 
length prefix of m(x)  needs to be generated on 
average. The idea of the membership vector is tha t  
every doubly-linked list in the skip graph is labeled 
by some finite word w, and an element x is in the list 
labeled by w if and only if w is a prefix of re(x). 
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Figure 2: A skip graph with [log N] = 3 levels. 

To reason about  this structure formally, we will 
need some notation. Let Z be a finite alphabet,  let Z* 
be the set of all finite words consisting of characters 
in E, and let Z oo consist of all infinite words. We 
use subscripts to refer to individual characters of a 
word, starting with subscript 0; a word w is equal to 
wowlw~ .. . .  Let Iwl be the length of w, with Iwl = oo 
if w E E ~. If Iw I _> i, write w [ i for the prefix of w 
of length i. Write e for the empty word. 

Returning to skip graphs, the bot tom level is 
always a doubly-linked list S~ consisting of all the 
elements in order. In general, for each w in ~*, 
the doublyqinked list Sw contains all x for which 
w is a prefix of re(x),  in increasing order. We 
say that  a particular list Svo is part  of level i if 
Iwl = i. This gives an infinite family of doubly- 
linked lists; in an actual implementation, only those 
Sw with at least two elements are represented. A 
skip graph is precisely a family {Sw} of doubly-linked 
lists generated in this fashion. Note that  because the 
membership vectors are random variables, each Sw is 
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also a random variable. 
We can also think of a skip graph as a random 

graph, where there is an edge between x and y 
whenever x and y are adjacent in some Sw. Define 
x's left and right neighbors at level i as its immediate 
predecessor and successor, respectively, in Sin(t)ri, or 
_l_ if no such nodes exist. We will write xLi  for x's 
left neighbor at level i and xRi  for its right neighbor, 
and in general will think of Li and Ri as composable 
operators, to allow writing expressions like xRiR~_ 1 
etc. 

An alternative view of a skip graph is a 
trie [dlB59, Fre60, Knu73] of skip lists that  share 
their lower levels. If we think of a skip list formally as 
a sequence of random variables So, $1 ,82 , . . . ,  where 
the value of Si is the level i list, then we have: 

LEMMA 2.1. Let {S~} be a skip graph with alphabet 
~. For any z ~ ~ ,  the sequence So, $1, $2 , . . . ,  where 
each Si = Szri, is a skip list with p = IZ1-1 . 

Proof: By induction on i. The list So equals S~, 
which is just the base list of all elements. An element 
x appears in Si if re(x) ~ i = z I i; conditioned on this 
event occurring, the probability that  x also appears 
in Si+l is just the probability that  m(x)i+i = zi+l. 
This event occurs with probability p = [E[ -1, and it is 
easy to see that  it is independent of the corresponding 
event for any other x t in Si. Thus each element in Si 
appears in Si+l with independent probability p, and 
So, S1, . . .  form a skip list. I 

For a peer-to-peer system, each resource will be 
a node in a skip graph and the nodes are sorted 
according to the resource key. Each node stores the 
addresses and the keys of two neighbors at each of 
the O(log n) levels. In addition, each node also needs 
O(log n) bits of space for its membership vector. 

2.1 A l g o r i t h m s  for  a skip graph We describe 
the s e a r c h  and i n s e r t  operations for a skip graph 
but omit the description of d e l e t e ,  which is fairly 
straightforward, to save space. 

2.1.1 T h e  s e a r c h  o p e r a t i o n  The s e a r c h  opera- 
tion (Algorithm 1) is exactly the same as in the case 
of a skip list with only minor adaptations to run in a 
distributed system. The search is started at the top- 
most level of the node seeking a key and it proceeds 
along the same level without overshooting the key, 
continuing at a lower level if required, until it reaches 
level 0. Either the address of the node storing the 
search key, if it exists, or the address of the node 
storing the key closest to the search key is returned. 

A l g o r i t h m  1: s e a r c h  for node n 

upon receiving (searchOp, startNode, 
level): 
i f  n.key = searchKey then 

send (search0p,  n) to startNode 
i f  n.key < searchKey then 

whi le  level > 0 do 
i f  (nRt~vel ).key < searehKey then 

s en d  (search0p,  startNode, 
level) to nRtevet 
break 

else leveN--level-1 
else 

whi le  level > 0 do  
i f  (nLtewt).key > searchKey then 

s e n d  (search0p,  startNode, 
level) to nLlevei 
b r e a k  

else level+-level- 1 

i f  level < 0 then 
s en d  (search0p,  n) to startNode 

searchKey, 

searchKey, 

searchKey, 

LEMMA 2.2. The search operation in a skip graph 
S with n nodes takes expected O(logn) time and 
O(log n) messages. 

Skip graphs can support range queries in which 
one is asked to find a key _> x, a key < x, the 
largest key < x, the least key > x, some key in the 
interval Ix, y], all keys in I x . . . ,  y], and so forth. For 
most of these queries, the procedure is an obvious 
modification of Algorithm I and runs in O(log n) time 
with O(log n) messages. For finding all nodes in an 
interval, we can use a modified Algorithm 1 to find a 
single element of the interval (which takes O(log n) 
time and O(logn) messages), and then broadcast 
the query through the m nodes in the interval by 
flooding (which takes O(log m) time and O(m log n) 
messages). If the originator of the query is capable 
of processing m simultaneous responses, the entire 
operation still takes O(log n) time. 

2.1.2 T h e  i n s e r t  o p e r a t i o n  A new node n'  in- 
serts itself in some list at each level till it finds itself 
alone in a list at any level (Algorithms 2 and 3). At 
level 0, n '  will link to a node with a key closest to its 
own key. At each level i, i > 1, n'  will t ry  to find the 
closest node x in level i - 1 with re(x) r i = m(n')  r i 
and link to x at level i. Each existing node can delay 
determining m(x)i  until a new node shows up ask- 
ing for its value; thus at any given time only a finite 
prefix of any membership vector has to be generated. 
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Inserts can be trickier when we have to deal with 
concurrent node joins. Before n' links to any neigh- 
bors, it verifies that  its join will not violate the skip 
graph properties. So if any new nodes have joined the 
skip graph between n' and its predetermined neigh- 
bor, n' will advance over the new nodes if required 
before linking in the correct place. 

A l g o r i t h m  2: i n s e r t  for new node n' 
i f  introducer = n' t h e n  

n l L o  = ± 

n'Ro = ± 
else 

i f  introducer.key < n'.key t h e n  side = R 
else side = L 
send (searchOp, n', n'.key, 0 7 to introducer 
upon receiving (searchOp, neighbor): 
send (linkOp, n', side, O) to neighbor 
level+- 1 
whi le  true do  

if  n'Llevel_ 1 # ± t h e n  
send  (buddy0p, n', level, m(n')level ) to 
n'Llevel_l 
upon receiving (buddy0p, newBuddy, level): 
i f  newBuddy ¢ ± t h e n  

send ( l ink0p,  n', R, level) to newBuddy 
else i f  (n'Rlevel_ 1 # ±)  A (newBuddy = L )  
t h e n  

send  (buddy0p, n', level, m(n')level ) to 
n'Rlevel_l 
upon receiving (buddy0p, newBuddy, level): 
i f  newBuddy # I t h e n  

send (linkOp, n', L, level) to newBuddy 
else b r e a k  

else b r e a k  
level6-1evel+ 1 
nJLlevet  = ± 

nIRleve l  = ± 

LEMMA 2.3. The i n s e r t  operation in a skip graph 
S with n nodes takes expected O(logn) time and 
O(log n) messages. 

3 R e p a i r  M e c h a n i s m  

In this section, we describe a self-stabilization mecha- 
nism that  repairs the skip graph in the event of node 
and link failures. We first characterize the constraints 
for an ideal skip graph. Let x be any node in the skip 
graph; then for any level i: 

1. If xRi  # ±, xRi  > x. 

2. If xLi  # ±, xLi < x. 

A l g o r i t h m  3: I n s e r t  for existing node n 
upon receiving ( l ink0p,  n', side, level): 
i f  side = R t h e n  crop = < 
else cmp = > 
if  (n sidelevel).key crop n'.key t h e n  

send  ( l ink0p,  n', side, level) to n sideleve 1 
else 

adjust links to add n' as side neighbor 
send ( l ink0p,  n', otherS±de, level) to n sidetevel 

upon receiving (buddy0p, n', level, val) from side L(R): 
if  m(n)level = ± t h e n  

m(n)level = getCoin 0 
n n l e v e  t = ± 

nR leve l  ---- ± 

i f  m(n)level = val t h e n  
send  (buddy0p, n, level) to n' 

else 
i f  nRlevel(Llevel) # ± t h e n  

send (buddy0p, n', val, level) to nRleve 1 
(nLlevel) 

else 
send (buddyflp, l ,  level) to n '  

3. If xLi  # ±, xLiR~ = x. 

4. If xRi  # L, xRiLi  = x. 

5. If i > O, re(x) [ i = m(xR~_l)  [ i and ~tk, k < 
i ,m(x )  [ i = m ( x R i k  l )  I i, then xRi  = xR~_ 1. 

6. If i > O, re(x) [ i = m(xL~_l)  r i and ~k ,k  < 
1,re(x) [ i = m(xLi~_l) [ i, then x i i  = x i~_ 1. 

THEOREM 3.1. Every connected component of the 
data structure is a skip graph if and only if conditions 
1 - 6 are satisfied. 

3.1 M a i n t a i n i n g  t h e  inva r i an t  Define _l_Li = 
±Ri  = ±. We define conditions 1 - 4  as an inva r i an t  
for a skip graph as they hold in all states with no 
undelivered messages, even in the presence of failures. 
Conditions 5 - 6 may fail to hold with failures, but 
they can be restored by the repair mechanism. We 
shall call conditions 5 and 6 as the L and R successor  
conditions respectively. 

THEOREM 3.2. With no undelivered messages, the 
invariant is maintained for a skip graph with node 
insertions, deletions and node failures. 

3.2 Res tor ing  skip graph constra ints  The 
successor conditions get violated during insert and 
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delete operat ions  as well as when a node or a link fails. 

Al though the skip graph  constraints  may  get 
violated during an insert or a delete operat ion,  
once no messages are pending and provided no 
addit ional  inserts, deletes or failures occur,  the 
successor conditions are satisfied. Thus  we see tha t  
the repair  mechanism is required to restore the 
successor conditions only in case of node or link 
failures. We consider the possible cases in which the 
successor conditions can be violated and provide a 
repair  mechanism for the each of  those cases. We 
will concentra te  on the repair  mechanism for the R 
links arid fixing the L links is symmetric .  I t  may  be 
possible to combine the two mechanisms to improve 
the performance but  we will t reat  them separately 
for simplicity. 

There  are two cases when the R successor condi- 
t ion is violated: 

k' k' 1. xRi  = xR~_x but  Sa = x R i _ l ,  < k, re(x) I 
i = re(a) I i. This case occurs when two nodes 
are connected to each other  at  levels i - 1 and 
i, and a new node in inserted between them at 
level i - 1 but  is pending to be inserted between 
them at level i. If  the left neighbor of the new 
node checks its R successor condit ion at  level i 
before the insert of the new node at level i is 
completed,  it will detect  a discrepancy. 

2. xP~ ~ xR~_l,  for any k. This case occurs  with 
the failure of  any node or link in an ideal skip 
graph.  

We consider each case in detail and propose a 
repair mechanism for each violation. 

C a s e  1: xRi  = xR~_l,  but  3a = x ,~ i_ l , ,  ~ r , k '  t., < 
k, m(x )  r i = re(a) r i. 

. . . . . . . .  I ' :=;" . . . .  L E V E L  i 

_A_) : 
zipperOpB - -  i !- z ipperOpF 

- - - / ~ - -  ( ) L_~--  L E V E L  i - 1 kt 
X a = X R i _  1 x R  i 

Node a should be inserted into level i and this is 
done by sending the following messages1: 

TD-etails of the zipperOp a lgor i thm are  given in Algo- 
rithms 4 and  5. 

• Send ( z ippe r0pF ,  xRi ,  i) to  a. 

• Send (z±pper0pB, x, i) to  a. 

C a s e  2: xR i  ~ xRik_l, for any k. There  are 
three ways to  repair  this violation depending on wha t  
other  nodes are present at  level i - 1. 

Case 2a: 3a = xR~_ 1 > xP~ and ~b = xRi+_x < a 
such tha t  re(b) r i = re(x) r i. 

x xRi  L E V E L  i 

7 

" } z ipperOpF 
: a L i -  I _ 

z~.pperOpB / . _ ~ _ _ ~ # _ _ _ ( ~ _ _  L E V E L  i - 1 

L R 

The nodes connected to a and xRi  at  level i - 1 
have to be merged together  into one ring by sending 
the following messages: 

k' s P robe  level i - 1  to  find largest x R i R i _  1 = R < a. 

• Send ( z ippe r0pF ,  a, i - 1) to R. 
ktl 

• Probe  level i - 1 to find smallest x R i L i _  1 = L > 
aLi-1.  

• Send (z ipper0pB,  aLi-1,  i - 1) to L. 

Case 2b: ~a = xR~_ 1 < xP~ ,m(a)  ~ i = m(x)  I i 
and xRi+_l ~ xP~. 

-"" ' ""- L E V E L  i 
• ~ . - 4 " "  ! ") ..... xR~ 

---CZ::- / ! L " 'C ~- -  
: / )  : 

zippe~OpB d a R / - 1  i z ipperOpF 

~ , , , . f T - - - -  L E V E L i - 1  

M 

The nodes connected to a and xP~ have to be 
merged at  levels i and i - 1 respectively by sending 
the following messages: 

k' • P robe  level i - 1 to find smallest x R i L i _  1 = M > 
a .  

• Send (z±pper0pB, a, i - 1) to  M. 

• Send ( z ippe r0pF ,  aRi-1 ,  i - 1) to  M. 

• Send (z ipper0pB,  x, i) to  a. 

• Send ( z ippe r0pF ,  xRi ,  i) to  a. 
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Case 2c: 3a < xRi, aRi = 3_. 

---~ "~ ~ ) -  - L E V E L  i 

6 

- / ' ~  - - - - - ~ - - - q ,  L E V E L  i -- 1 

z:i.pperOpB C~--- (~_')--~2~-----~ ;----~.~--)-- 
R 

The nodes connected to a and xRi at level i - 1 
have to be merged by sending the following messages: 

• Probe level i - 1 to find smallest xRiLik_l = R > 
a .  

• Send (zipper0pB, a, i - 1) to R. 

A l g o r i t h m  4: z ipper0pB for node n 

upon receiving <zipper0pB, x, g): 
i f  nLt > x.key t h e n  

s e n d  (zipper0pB, x, ~) to nL~ 
else  

trap = nLt 
nL~ = x 
X R l  ~ n 

i f  trap ~ 3_ t h e n  
s e n d  (zipper0pB, tmp, ~) to x 

A l g o r i t h m  5: z ippe r0pF  for node n 

upon receiving (z ipper0pF,  x, t): 
i f  nRt <x.key t h e n  

s e n d  <zipper0pF, x, g) to nRe 
else 

tmp = nRt 
xL~ = n 
n R g  --~ x 

i f  trap ~ 3- t h e n  
s e n d  (z ipper0pF,  tmp, g/ to x 

Original Links Unchanged Links 

New Links 
( z i p p e r f l p  messages )  

Figure 3: z i p p e r 0 p  operation to merge nodes on the 
same level. 

THEOREM 3.3. In the absence of new failures, the 
repair mechanism described in Section 3.2 will even- 
tually restore the violated constraints of a skip graph, 
without losing existing connectivity. 

4 Fau l t  T o l e r a n c e  

In this section, we describe some of the fault tolerance 
properties of a skip graph. Fault tolerance of related 
data  structures, such as augmented versions of linked 
lists and binary trees, has been well-studied and some 
results can be seen in [MP84, AB96]. The main 
question is how many nodes can be separated from 
the primary component by the failure of other nodes, 
as this determines the size of the surviving skip graph 
after the repair mechanism finishes. 

We show first that  even a worst-case choice 
of failures by an adversary that  can observe the 
structure of the skip graph can do only limited 
damage. With high probability, a skip graph with 
n nodes has an tQ(1/logn) expansion ratio, implying 
that  at most O( f  log n) nodes can be separated from 
the primary component by ff failures. These results 
are described in Section 4.1 

For random failures, the situation appears even 
more promising; our experimental results, presented 
in Section 4.2, show that  for a reasonably large skip 
graph nearly all nodes remain in the primary com- 
ponent until about  two-thirds of the nodes fail, and 
that  it is possible to make searches highly resilient to 
failure even without using the repair mechanism by 
use of redundant links. 

4.1 A d v e r s a r i a l  f a i lu res  Given a subset A of the 
nodes of a skip graph, define 5A as the set of all nodes 
that  are not in A but  tha t  are adjacent to A. Further 
define ~hA as the set of all nodes that  are not in A 
but  are joined to a node in A by an edge at level h. 
Clearly 6A = Uh 5hA and 16AI > maxh 15hAl. 

The expansion ratio of a set A is ISAI/[AI. The 
expansion ratio of a graph is the minimum expansion 
ratio of any set A for which 1 < IA[ .< n/2. The 
expansion ratio determines the resilience of a skip 
graph in the presence of adversarial failures, because 
separating a set A from the primary component 
requires all nodes in 5A to fail. We will show that  
skip graphs have f~(1/logn) expansion ratios with 
high probability, implying that  only O ( f  log n) nodes 
can be separated by f failures, even if the failures are 
carefully targeted. 

Our strategy for showing a lower bound on the 
expansion ratio of a skip graph will be to show that  
with high probability, all sets A either have large ~0A 
(i.e., many neighbors at the bot tom level of the skip 
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graph) or have large 5hA for some particular h chosen 
based on the size of A. We begin by counting the 
number of sets A of a given size that  have small g0A. 

LEMMA 4.1. In an n-node skip graph, the number of 
sets A, where IAi = m < n and I~0A I < s, is less 

s--1 [m+l~ [n--m--l~ 
than Z r ~ I  ~ r #~ r--I 1" 

Sketch of proof: Represent each A as a bit-vector 
where 1 indicates a member of the set and 0 a 
non-member. Then I~0AI is at least the number of 
intervals of zeroes in this bit-vector. The bound in 
the lemma is then obtained by bounding the number 
of length n bit-vectors with m ones and at most s 
intervals of zeroes. | 

LEMMA 4.2. Let A be a subset of m < nl 2 nodes 
of an n-node skip graph S. Then for any h, 

Pr [l<f,,AI _< 2 h] < 

Sketch of proof: The key observation is that  for each 
b in {0, 1} h, each skip list Sb that  contains a member 
of both A and its complement contributes at least one 
distinct element to 5hA. We then show that  at least 
a third of the Sb are likely to do so by bounding the 
probability that  either A or S - A are represented in 
less than two-thirds of the Sb. | 

THEOREM 4.1. Let c >_ 6. Then a skip graph with n 
nodes has an expansion ratio of at least _ _ L _ _  with c l o g a / 2  n 

probability 1-0(n5-C),  where the constant factor does 
not depend on c. 

Sketch of proof: The probability bound is obtained 
by summing the probability of having 5hA too small 
over all A for which 5oA is too small. For each 

1 . 2 h set A of size m, h is chosen so that  the 
bound of Lemma 4.2 exceeds m times the expansion 
ratio. The probabilities derived from Lemma 4.2 are 
then summed over all sets A of a fixed size m using 
Lemma 4.1, and the result of this process is summed 
over all m > clog3/2 n to obtain the final bound, i 

4.2 R a n d o m  fa i lu res  In our experiments, skip 
graphs appear to be highly resilient against random 
failures. As shown in Figure 4, nearly all nodes re- 
main in the primary component even as the probabil- 
ity of individual node failure exceeds 0.6, and we sus- 
pect that  most of the lost nodes at this stage become 
isolated only because all of their immediate neighbors 
die. 

For searches, the fact that  the average search in- 
volves only O(logn) nodes establishes trivially that  

I1) 

e-t 0 .8  

0.6 
0 

0.4! 
¢1 
I.-I q-I 

m 0.2 
¢1 

N 0 

i , , , , ! , , , 

. . . . . . . . . . . . . . . . . .  

\ 

...... . . . . . . i i . i  I 

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Probability of node failure 

1.1 

Figure 4: Size of the largest connected component as 
a fraction of the surviving nodes with 131072 nodes. 
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Figure 5: Failed Searches with 131072 nodes and 
10000 messages. 

most searches succeed as long as the proportion of 
failed nodes is substantially less that  O(logn).  By 
detecting failures locally and using additional redun- 
dant edges, we can make searches highly tolerant to 
small numbers of random faults; some experimental 
results are shown in Figure 5. In these experiments, 
each node x has extra links to its five nearest neigh- 
bors on each side, at every level that  it is a member 
of. In general, we cannot make as strong guaran- 
tees as those provided by data  structures based on 
explicit use of expanders [FS02, Dat02], but  we be- 
lieve that  this is compensated for by the simplicity 
of skip graphs and the existence of good distributed 
mechanisms for constructing and repairing them. 

5 Load balancing 

In addition to fault-tolerance, a skip graph provides 
a limited form of load balancing, by smoothing out 
hot spots caused by popular search targets. The 
guarantees that  a skip graph makes in this case are 
similar to the guarantees made for survivability. Just  
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as an element stored at a particular node will not 
survive the loss of that  node or its neighbors in the 
graph, many searches directed at a particular element 
will lead to high load on the node that  stores it and on 
nodes likely to be on a search path. However, we can 
show that  this effect drops off rapidly with distance; 
elements that  are far away from a popular target in 
the bottom-level list produce little additional load on 
average. 

We give two characterizations of this result. The 
first shows that  the probability that  a particular 
search uses a node between the source and target 
drops off inversely with the distance from the node to 
the target. This fact is not necessarily reassuring to 
heavily-loaded nodes. Since the probability averages 
over all choices of membership vectors, it may be 
that  some particularly unlucky node finds itself with 
a membership vector that  puts it on nearly every 
search path to some very popular target. Our second 
characterization addresses this issue by showing that  
most of the load-spreading effects are the result of 
assuming a random membership vector for the source 
of the search. 

THEOREM 5.1. Let S be a skip graph with alphabet 
{0, 1}, and consider a search ~rom s to t in S. Let u 
be node with s < u < t in the key ordering and let d 
be the distance from u to t, defined as the number of 
nodes v with u < v < t. Then the probability that a 
search from s to t passes through u is less than 2 

Theorem 5.1 is of small consolation to some node 
that  draws a ~ straw and participates in every 
search. Fortunately, such things do not happen often. 
Define the a v e r a g e  load  Lt~ imposed by a search 
for t on a node u in a given skip graph S as the 
probability that  an s - t search hits u conditioned on 
the membership vectors of all nodes in the interval 
[u,t], where s < u < t. This approximates the 
situation in a fixed skip graph where a particular 
target t is used for many searches that  may hit u, 
but  the sources of these searches are chosen randomly 
from the other nodes in the graph. 

THEOREM 5.2. Let S be a skip graph with alphabet 
{0,1}. Fix nodes t and u, where u < t and I{v : u < 
v < t}l = d. T h e n f o r  a n y a  > 0, Pr[Lu~ > a] < 
2 e - - c x d / 2  . - -  _ 

6 Con c lus ion  

We have defined a new data  structure, the skip 
graph, for distributed data  stores that  has several 
desirable properties. Constructing, inserting new 

I.i ~ 1 T 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 

0 . 1  

0 
76400 76450 7~soo 7Gsso 76600 ~s5o 

Nodes 

Figure 6: Actual and expected load in a skip graph 
with 131072 nodes with the target=76539. Messages 
were delivered from each node to the target  and 
the actual load on each node was measured. The 
expected load is computed using Theorem 5.1. 

nodes into and searching in a skip graph can be done 
in logarithmic time. Using the repair mechanism, 
disruptions to the data  structure can be repaired 
in the absence of additional faults. Skip graphs 
also support  range queries which allows, for example, 
searching for a copy of a resource near a particular 
location by using the location as low-order field in the 
key and clustering of nodes with similar keys. 

This data  structure gives rise to a class of ran- 
dom graphs whose properties we have only begun 
to examine: some open problems remain regarding 
the reliability of these graphs. Also, skip graphs 
do not exploit geographical proximity in location of 
resources and it would be interesting to study per- 
formance benefits in that  direction, perhaps by us- 
ing multi-dimensional skip graphs. Finally, while the 
theoretical properties and relative simplicity of skip 
graphs make them a good candidate for implemen- 
tation, the ultimate test of their usefulness will be 
their performance in practice. This is an issue that  
we hope to study soon. 

References  

[AB96] Yonatan Aumann and Michael A. Bender. Fault 
tolerant data structures. In Thirty-Seventh Annual 
Symposium on Foundations off Computer Science, 
pages 580-589, Burlington, VT, USA, October 1996. 

lADS02] James Aspnes, Zo~ Diamadi, and Gauri Shah. 
Fault-tolerant routing in peer-to-peer systems. In 
Twenty-First ACM Symposium on Principles of 
Distributed Computing, pages 223-232, Monterey, 
MA, USA, July 2002. 



393 

[CDHR02] Miguel Castro, Peter Druschel, Y. Charlie 
Hu, and Anthony Rowstron. Exploiting network 
proximity in peer-to-peer overlay networks. In 
International Workshop on Future Directions in 
Distributed Computing, Bertinoro, Italy, June 2002. 
[Longer version submitted for publication]. 

[Dat02] Mayur Datar. Butterflies and peer-to-peer net- 
works. In Proceedings of the lOth European Sympo- 
sium on Algorithms, Rome, Italy, September 2002. 

[Dev92] L. Devroye. A limit theory for random skip 
lists. The Annals of Applied Probability, 2(3):597- 
609, 1992. 

[dlB59] Rene de la Briandals. File searching using vari- 
able length keys. In Western Joint Computer Con- 
ference, volume 15, pages 295-298, Montvale, N J, 
USA, 1959. AFIPS Press. 

[FRE] FREENET. http://www.freenet.sourceforge.net. 
[Fre60] Edward Fredkin. Trie memory. Communications 

of the ACM, 3(9):490-499, September 1960. 
[FS02] Amos Fiat and Jared Saia. Censorship resistant 

peer-to-peer content addressable networks. In Pro- 
ceedings of the Thirteenth Annual ACM-SIAM Sym- 
posium on Discrete Algorithms, San Francisco, CA, 
USA, January 2002. 

[GM97] J. Gabarr6 and X. Messeguer. A unified ap- 
proach to concurrent and parallel algorithms on bal- 
anced data structures. In XVII  International Con- 
ference of the Chilean Computer Society, 1997. 

[GMM93] J. Gabarr6,~C. Mart/nez, and X. Messeguer. 
Parallel update and search in skip lists. In 13th 
International Conference of the Chilean Computer 
Society, 1993. 

[GMM96] J. Gabarr6, C. Martinez, and X. Messeguer. A 
top-down design of a parallel dictionary using skip 
lists. Theoretical Computer Science, 158(1-2):1-33, 
May 1996. 

[GNU] GNUTELLA. http://gnutella.wego.com. 
[HHH+02] Matthew Harren, Joseph M. Hellerstein, Ryan 

Huebsch, Boon Thau Loo, Scott Shenker, and Ion 
Stoica. Complex queries in DHT-based peer-to-peer 
networks. In 1st International Workshop on Peer- 
to-Peer Systems (IPTPS), Cambridge, MA, USA, 
March 2002. 

[HKRZ02] Kirsten Hildrum, John D. Kubiatowicz, Satish 
Rao, and Ben Y. Zhao. Distributed object location 
in a dynamic network. In Fourteenth A CM Sympo- 
sium on Parallel Algorithms and Architectures, Win- 
nipeg, Manitoba, Canada, August 2002. 

[JKZ01] Anthony D. Joseph, John Kubiatowicz, and 
Ben Y. Zhao. Tapestry: An infrastructure for fault- 
tolerant wide-area location and routing. Technical 
Report UCB/CSD-01-1141, University of California, 
Berkeley, Apr 2001. 

[KMP95] P. Kirschenhofer, C. Martlnez, and 
H. Prodinger. Analysis of an optimized search 
algorithm for skip lists. Theoretical Computer 
Science, 144(1-2):119-220, 26 June 1995. 

[Knu73] Donald E. Knuth. The Art of Computer 

Programming: Sorting and Searching, volume 3. 
Addison-Wesley Publishing Company Inc., Reading, 
Massachusetts, 1973. 

[KP94] P. Kirschenhofer and H. Prodinger. The path 
length of random skip lists. Acta Informatica, 
31(8):775-792, 1994. 

[KR02] David Karger and Matthias Ruhl. Finding 
nearest neighbors in growth-restricted metrics. In 
Thirty-Fourth ACM Symposium on Theory of Com- 
puting, pages 741-750, Montreal, Canada, May 
2002. 

[MNR02] Dahlia Malkhi, Moni Naor, and David Rata- 
jczak. Viceroy: A scalabale and dynamic emulation 
of the butterfly. In Twenty-First ACM Symposium 
on Principles of Distributed Computing, pages 183- 
192, Monterey, CA, USA, July 2002. 

IMP84] J. Ian Munro and Patricio V. Poblete. Fault 
tolerance and storage reduction in binary search 
trees. Information and Control, 62(2/3):210-218, 
August 1984. 

[NAP] NAPSTER. Formerly, http://www.napster.com. 
[PMP90] T. Papadakis, J.I. Munro, and P.V. Poblete. 

Analysis of the expected search cost in skip lists. In 
J. R. Gilbert and R. G. Karlsson, editors, SWAT 90, 
2nd Scandinavian Workshop on Algorithm Theory, 
volume 447 of Lecture Notes in Computer Science, 
pages 160-172, Bergen, Norway, 11-14 July 1990. 
Springer. 

[PRR97] C. Plaxton, R. Rajaram, and A. W. Richa. Ac- 
cessing nearby copies of replicated objects in a dis- 
tributed environment. In Proceedings of the Ninth 
Annual ACM Symposium on Parallel Algorithms 
and Architectures (SPAA), June 1997. 

[Pugg0] William Pugh. Skip lists: A probabilistic alter- 
native to balanced trees. Communications of the 
ACM, 33(6):668-676, June 1990. 

[RD01] Antony Rowstron and Peter Druschel. Pastry: 
Scalable, distributed object location and routing for 
large-scale peer-to-peer systems. In Proceedings of 
the 18th IFIP/ACM International Conference on 
Distributed Systems Platforms (Middlewarc 2001), 
Heidelberg, Germany, November 2001. 

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Hand- 
ley, Richard Karp, and Scott Shenker. A scalable 
content-addressable network. In Proceedings of the 
ACM SIGCOMM, pages 161-170, 2001. 

[SBK02] Bujor Silaghi, Bobby Bhattachaxjee, and Pete 
Keleher. Query routing in the terradir distributed 
directory. In SPIE ITCOM 2002, August 2002. 

[SMK+01] Ion Stoica, Robert Morris, David Karger, 
Frans Ka~shoek, and Hari Balakrishna. Chord: 
A scalable peer-to-peer lookup service for internet 
applications. In Proceedings of SIGCOMM 2001, 
pages 149-160, 2001. 

[ZJK02] Ben Y. Zhao, Anthony D. Joseph, and John D. 
Kubiatowicz. Locality-aware mechanisms for large- 
scale networks. In Workshop on Future Directions in 
Distributed Computing, Bertinoro, Italy, June 2002. 


