
384

Skip Graphs

James Aspnes* Gauri Shah t

A b s t r a c t

Skip graphs are a novel distributed data structure,
based on skip lists, that provide the full functional-
ity of a balanced tree in a distributed system where
elements are stored in separate nodes that may fall
at any time. They are designed for use in searching
peer-to-peer networks, and by providing the ability to
perform queries based on key ordering, they improve
on existing search tools that provide only hash ta-
ble functionality. Unlike skip lists or other tree data
structures, skip graphs are highly resilient, tolerating
a large fraction of failed nodes without losing con-
nectivity. In addition, constructing, inserting new el-
ements into, searching a skip graph and detecting and
repairing errors in the data structure introduced by
node failures can be done using simple and straight-
forward algorithms.

1 I n t r o d u c t i o n

Peer-to-peer networks are distributed systems with-
out any central authority that are used for efficient
location of shared resources. Such systems have be-
come very popular for Internet applications in a short
period of time. A survey of recent peer-to-peer re-
search yields a slew of desirable features for a peer-
to-peer network such as decentralization, scalabil-
ity, fault-tolerance, self-stabilization, data availabil-
ity, load balancing, dynamic addition and deletion of
peer nodes, efficient and complex query searching, in-
corporating geography in searches and exploiting spa-
tial as well as temporal locality in searches. The ini-
tial systems, such as Napster [NAP], Gnutella [GNU]
and Freenet [FRE], did not support most of these
features and were clearly unscalable either due to the
use of a central server (Napster) or due to high mes-
sage complexity from performing searches by flooding
the network (Gnutella). The performance of Freenet
is difficult to evaluate, but it provides no provable

"IYepartment of Computer Science, Yale University, New
Haven, CT 06520-8285, USA. Emaih aspnes@c~.yale.edu.
Supported by NSF grants CCR-9820888 and CCR-0098078.

?Department of Computer Science, Yale University, New
Haven, CT 06520-8285, USA. Email: shah¢cs.yale.edu. Sup-
ported by NSF grants CCR-9820888 and CCR-0098078.

guarantee on the search latency and permits accessi-
ble data to be missed.

Recent systems like CAN [RFH+01],
Chord [SMK+01], Pastry [RD01], Tapestry [JKZ01]
and Viceroy [MNR02] use a d i s t r ibu ted hash
table (DHT) approach to overcome scalability
problems. To ensure scalability, they hash the key
of a resource to determine which node it will be
stored at and balance out the load on the nodes in
the network. The main operation in these systems
is to retrieve the identity of the node which stores
the resource, from any other node in the system.
To this end, there is an overlay graph in which the
location of the nodes and resources is determined
by the hashed values of their identities and keys
respectively. Resource location using the overlay
graph is done in these various systems by using
different routing algorithms. Pastry and Tapestry
uses Plaxton's algorithm [PRR97], which is based
on hypercube routing: the message is forwarded
deterministically to a neighbor whose identifier is one
digit closer to the target identifier. CAN partitions
a d-dimensional coordinate space into zones that
are owned by nodes which store keys mapped to
their zone. Routing is done by greedily forwarding
messages to the neighbor closest to the target zone.
Chord maps nodes and resources to identities of
m bits placed around a modulo 2 TM identifier circle
and does greedy routing to the farthest possible
node stored in the routing table. Most of these
systems use O(log n) space and time for routing and
O(log 2 n) time for node insertion. Because hashing
destroys the ordering on keys, DHT systems do not
support queries that seek near matches to a key or
keys within a given range.

Some of these systems try to optimize perfor-
mance by taking locality into account. Pastry [RD01,
CDHR02] and Tapestry [JKZ01, ZJK02] exploit geo-
graphical proximity by choosing the physically closest
node out of all the possible nodes with an appropriate
identifier prefix. In CAN [RFH+01], each node mea-
sures its round-trip delay to a set of landmark nodes
and accordingly places itself in the co-ordinate space
to facilitate routing with respect to network prox-
imity. This last method is not fully self-organizing

385

and may cause imbalance in the distribution of nodes
leading to hotspots. Some methods to solve the near-
est neighbor problem for overlay networks can be seen
in [HKRZ02] and [KR02].

Some of these systems are partly resilient to
random node failures, but their performance may be
badly impaired by adversarial deletion of nodes. Fiat
and Saia [FS02] present a system which is resilient
to adversarial deletion of a constant fraction of the
nodes; some extensions of this result can be seen
in [Dat02]. However, they do not give efficient
methods to dynamically maintain such a system.

TerraDir [SBK02] is a recent system that pro-
vides locality and maintains a hierarchical data struc-
ture using caching and replication. There are as yet
no provable guarantees on load balancing and fault
tolerance for this system.

1.1 O u r a p p r o a c h The underlying structure of
Chord, CAN, and similar DHTs resembles a balanced
tree in which balancing depends on the near-uniform
distribution of the output of the hash function. So
the costs of constructing, maintaining, and searching
these data structures is closer to the O(logn) costs
of tree operations than the O(1) costs of traditional
hash tables. But because keys are hashed, DHTs can
provide only hash table functionality. Our approach
is to exploit the underlying tree structure to give
tree functionality, while applying a simple distributed
balancing scheme to preserve balance and distribute
load.

We describe a new model for a peer-to-peer net-
work based on a distributed data structure that we
call a skip g raph . This distributed data structure
has several benefits. Resource location and dynamic
node addition and deletion can be done in logarith-
mic time, and each node in a skip graph requires
only logarithmic space to store information about
its neighbors. More importantly, there is no hashing
of the resource keys so related resources are present
near each other in a skip graph. This may be use-
ful for certain applications such as prefetching of
web pages, enhanced browsing and efficient search-
ing. Skip graphs also support c o m p l e x que r i e s such
as range queries, i.e. locating resources whose keys
lie within a certain specified range. There has been
some interest in supporting complex queries in peer-
to-peer-systems [HHH+02], and designing a system
that supports range queries has been posed as an
open question. Skip graphs are resilient to node fail-
ures: a skip graph tolerates removal of a large fraction
of its nodes chosen at random without becoming dis-
connected, and even the loss of an O(1/ log n) fraction

of the nodes chosen by an adversary still leaves most
of the nodes in the largest surviving component. Skip
graphs can also be constructed without knowledge of
the total number of nodes in advance. In contrast,
DHT systems such as Pastry and Chord require a
priori knowledge about the size of the system or its
keyspace.

The rest of the paper is organized as follows:
we describe skip graphs and algorithms for them
in detail in Section 2. Sections 3 and 4 describe
the repair mechanism and fault-tolerance properties
for a skip graph. Contention analysis and load
balancing results are described in Section 5. Finally,
we conclude in Section 6.

1.2 M o d e l We briefly describe the model for our
algorithms. We assume a m e s s a g e pas s ing envi-
ronment in which all processes communicate with
each other by sending messages over a communication
channel. The system is p a r t i a l l y s y n c h r o n o u s , i.e.,
there is a fixed upper bound (time-out) on the trans-
mission delay of a message. Processes can c rash , i.e.,
halt prematurely, and crashes are permanent. We use
the term node to represent a process that is running
on a particular machine. We assume that each mes-
sage takes at most unit time to be delivered and any
internal processing at a machine takes no time.

2 Skip graphs
A skip list [Pug90] is a randomized balanced tree
data structure organized as a tower of increasingly
sparse linked lists. Level 0 of a skip list is a linked
list of all nodes in increasing order by key. For each
i greater than 0, each node in level i - 1 appears
in level i independently with some fixed probability
p. In a doubly-linked skip list, each node stores
a predecessor pointer and a successor pointer for
each list in which it appears, for an average of l i p
pointers per node. The lists at the higher level
act as "express lanes" that allow the sequence of
nodes to be traversed quickly. Searching for a node
with a particular key involves searching first in the
highest level, and repeatedly dropping down a level
whenever it becomes clear that the node is not in the
current level. Considering the search path in reverse
shows that no more than 1-~ nodes are searched on
average per level, giving an average search time of

() Skip lists have been extensively O logn(l_p~log ~ .

studied [Pug90, PMP90, Dev92, KP94, KMP95] and
because they require no global balancing operations
are particularly useful in parallel systems [GMM93,
GMM96, GM97].

386

HEAD TAIL

i "(";-~)" i l LEVEL 2

Figure 1: A skip list.

We would like to use a data structure similar to
a skip list to support typical binary tree operations
on a sequence whose elements are stored at separate
locations in a highly distributed system subject to
unpredictable failures. A skip list alone is not enough
for our purposes, because it lacks redundancy and
is thus vulnerable to both failures and contention.
Since only a few nodes appear in the highest-level
list, each such node acts as a single point of failure
whose removal partitions the list, and forms a hot
spot that must process a constant fraction of all
search operations. Skip lists also offer few guarantees
that individual nodes are not separated from their
fellows even with occasional random failures. Since
each node is connected on average to only O(1) other
nodes, even a constant probability of node failures
will isolate a large fraction of the surviving nodes.

Our solution is to define a generalization of a skip
list that we call a skip g r aph . As in a skip list,
each node in a skip graph is a member of multiple
linked lists. The level 0 list consists of all nodes in
sequence. Where a skip graph is distinguished from
a skip list is tha t there may be many lists at level
i, and every node participates in one of these lists,
until the nodes are splintered into singletons after
O(logn) levels on average. A skip graph supports
sea rch , i n s e r t , and d e l e t e operations analogous
to the corresponding operations for skip lists; indeed,
we show in Lemma 2.1 that algorithms for skip lists
can be applied directly to skip graphs, as a skip graph
is equivalent to a collection of up to n skip lists that
happen to share some of their lower levels.

Because there are many lists at each level, the
chances that any individual node participates in
some search is small, eliminating both single points
of failure and hot spots. Furthermore, each node
has O(logn) neighbors on average, and with high
probability no node is isolated. In Section 4 we
observe that skip graphs are resilient to node failures
and have an expansion ratio of ~ (1 / l o g n) with n
nodes in the graph.

In addition to providing fanlt-tolerance, having
an f~(logn) degree to support O(logn) search time

appears to be necessary for distributed data struc-
tures based on nodes in a one-dimensional space
linked by random connections whose distribution sat-
isfies certain symmetry properties lADS02]. While
this lower bound requires some independence as-
sumptions that are not satisfied by skip graphs, there
is enough similarity between skip graphs and the class
of models considered in lADS02] that an f~(log n) av-
erage degree is not surprising.

We now give a formal definition of a skip graph.
Precisely which lists an element x belongs to is
controlled by a m e m b e r s h i p v e c t o r re(x). We
think of rn(x) as an infinite random word over some
fixed alphabet, although in practice, only an O(log n)
length prefix of m(x) needs to be generated on
average. The idea of the membership vector is tha t
every doubly-linked list in the skip graph is labeled
by some finite word w, and an element x is in the list
labeled by w if and only if w is a prefix of re(x).

d('2 i)~ i ~ 3 3 ~ !

13) i
-~~o ~ ', ! 65 -il "il

i •
M E M B E R S H I P )----~ i - ~ L E V E L 1

VECTOR ! ~-,~'<~ T6 " - " :--~, ' ii "il
" . ! H 1 3) - - - - - " ~ 3 3) - - ~ 4 8 2

--! " 06 ol SKIP LIST i - " - : ~

\ " i ~ 13 ~ (21)----(33 '- - '~ 48) '---(75 ?--'i 99 p i I LEVEL 0
; "06]b ~L ~0 Ti qi ij

Figure 2: A skip graph with [log N] = 3 levels.

To reason about this structure formally, we will
need some notation. Let Z be a finite alphabet, let Z*
be the set of all finite words consisting of characters
in E, and let Z oo consist of all infinite words. We
use subscripts to refer to individual characters of a
word, starting with subscript 0; a word w is equal to
wowlw~ Let Iwl be the length of w, with Iwl = oo
if w E E ~. If Iw I _> i, write w [i for the prefix of w
of length i. Write e for the empty word.

Returning to skip graphs, the bot tom level is
always a doubly-linked list S~ consisting of all the
elements in order. In general, for each w in ~*,
the doublyqinked list Sw contains all x for which
w is a prefix of re(x), in increasing order. We
say that a particular list Svo is part of level i if
Iwl = i. This gives an infinite family of doubly-
linked lists; in an actual implementation, only those
Sw with at least two elements are represented. A
skip graph is precisely a family {Sw} of doubly-linked
lists generated in this fashion. Note that because the
membership vectors are random variables, each Sw is

3 8 7

also a random variable.
We can also think of a skip graph as a random

graph, where there is an edge between x and y
whenever x and y are adjacent in some Sw. Define
x's left and right neighbors at level i as its immediate
predecessor and successor, respectively, in Sin(t)ri, or
l if no such nodes exist. We will write xLi for x's
left neighbor at level i and xRi for its right neighbor,
and in general will think of Li and Ri as composable
operators, to allow writing expressions like xRiR~_ 1
etc.

An alternative view of a skip graph is a
trie [dlB59, Fre60, Knu73] of skip lists that share
their lower levels. If we think of a skip list formally as
a sequence of random variables So, $1 ,82 , . . . , where
the value of Si is the level i list, then we have:

LEMMA 2.1. Let {S~} be a skip graph with alphabet
~. For any z ~ ~ , the sequence So, $1, $2 , . . . , where
each Si = Szri, is a skip list with p = IZ1-1 .

Proof: By induction on i. The list So equals S~,
which is just the base list of all elements. An element
x appears in Si if re(x) ~ i = z I i; conditioned on this
event occurring, the probability that x also appears
in Si+l is just the probability that m(x)i+i = zi+l.
This event occurs with probability p = [E[-1, and it is
easy to see that it is independent of the corresponding
event for any other x t in Si. Thus each element in Si
appears in Si+l with independent probability p, and
So, S1, . . . form a skip list. I

For a peer-to-peer system, each resource will be
a node in a skip graph and the nodes are sorted
according to the resource key. Each node stores the
addresses and the keys of two neighbors at each of
the O(log n) levels. In addition, each node also needs
O(log n) bits of space for its membership vector.

2.1 A l g o r i t h m s for a skip graph We describe
the s e a r c h and i n s e r t operations for a skip graph
but omit the description of d e l e t e , which is fairly
straightforward, to save space.

2.1.1 T h e s e a r c h o p e r a t i o n The s e a r c h opera-
tion (Algorithm 1) is exactly the same as in the case
of a skip list with only minor adaptations to run in a
distributed system. The search is started at the top-
most level of the node seeking a key and it proceeds
along the same level without overshooting the key,
continuing at a lower level if required, until it reaches
level 0. Either the address of the node storing the
search key, if it exists, or the address of the node
storing the key closest to the search key is returned.

A l g o r i t h m 1: s e a r c h for node n

upon receiving (searchOp, startNode,
level):
i f n.key = searchKey then

send (search0p, n) to startNode
i f n.key < searchKey then

whi le level > 0 do
i f (nRt~vel).key < searehKey then

s en d (search0p, startNode,
level) to nRtevet
break

else leveN--level-1
else

whi le level > 0 do
i f (nLtewt).key > searchKey then

s e n d (search0p, startNode,
level) to nLlevei
b r e a k

else level+-level- 1

i f level < 0 then
s en d (search0p, n) to startNode

searchKey,

searchKey,

searchKey,

LEMMA 2.2. The search operation in a skip graph
S with n nodes takes expected O(logn) time and
O(log n) messages.

Skip graphs can support range queries in which
one is asked to find a key _> x, a key < x, the
largest key < x, the least key > x, some key in the
interval Ix, y], all keys in I x . . . , y], and so forth. For
most of these queries, the procedure is an obvious
modification of Algorithm I and runs in O(log n) time
with O(log n) messages. For finding all nodes in an
interval, we can use a modified Algorithm 1 to find a
single element of the interval (which takes O(log n)
time and O(logn) messages), and then broadcast
the query through the m nodes in the interval by
flooding (which takes O(log m) time and O(m log n)
messages). If the originator of the query is capable
of processing m simultaneous responses, the entire
operation still takes O(log n) time.

2.1.2 T h e i n s e r t o p e r a t i o n A new node n' in-
serts itself in some list at each level till it finds itself
alone in a list at any level (Algorithms 2 and 3). At
level 0, n ' will link to a node with a key closest to its
own key. At each level i, i > 1, n' will t ry to find the
closest node x in level i - 1 with re(x) r i = m(n') r i
and link to x at level i. Each existing node can delay
determining m(x)i until a new node shows up ask-
ing for its value; thus at any given time only a finite
prefix of any membership vector has to be generated.

388

Inserts can be trickier when we have to deal with
concurrent node joins. Before n' links to any neigh-
bors, it verifies that its join will not violate the skip
graph properties. So if any new nodes have joined the
skip graph between n' and its predetermined neigh-
bor, n' will advance over the new nodes if required
before linking in the correct place.

A l g o r i t h m 2: i n s e r t for new node n'
i f introducer = n' t h e n

n l L o = ±

n'Ro = ±
else

i f introducer.key < n'.key t h e n side = R
else side = L
send (searchOp, n', n'.key, 0 7 to introducer
upon receiving (searchOp, neighbor):
send (linkOp, n', side, O) to neighbor
level+- 1
whi le true do

if n'Llevel_ 1 # ± t h e n
send (buddy0p, n', level, m(n')level) to
n'Llevel_l
upon receiving (buddy0p, newBuddy, level):
i f newBuddy ¢ ± t h e n

send (l ink0p, n', R, level) to newBuddy
else i f (n'Rlevel_ 1 # ±) A (newBuddy = L)
t h e n

send (buddy0p, n', level, m(n')level) to
n'Rlevel_l
upon receiving (buddy0p, newBuddy, level):
i f newBuddy # I t h e n

send (linkOp, n', L, level) to newBuddy
else b r e a k

else b r e a k
level6-1evel+ 1
nJLlevet = ±

nIRleve l = ±

LEMMA 2.3. The i n s e r t operation in a skip graph
S with n nodes takes expected O(logn) time and
O(log n) messages.

3 R e p a i r M e c h a n i s m

In this section, we describe a self-stabilization mecha-
nism that repairs the skip graph in the event of node
and link failures. We first characterize the constraints
for an ideal skip graph. Let x be any node in the skip
graph; then for any level i:

1. If xRi # ±, xRi > x.

2. If xLi # ±, xLi < x.

A l g o r i t h m 3: I n s e r t for existing node n
upon receiving (l ink0p, n', side, level):
i f side = R t h e n crop = <
else cmp = >
if (n sidelevel).key crop n'.key t h e n

send (l ink0p, n', side, level) to n sideleve 1
else

adjust links to add n' as side neighbor
send (l ink0p, n', otherS±de, level) to n sidetevel

upon receiving (buddy0p, n', level, val) from side L(R):
if m(n)level = ± t h e n

m(n)level = getCoin 0
n n l e v e t = ±

nR leve l ---- ±

i f m(n)level = val t h e n
send (buddy0p, n, level) to n'

else
i f nRlevel(Llevel) # ± t h e n

send (buddy0p, n', val, level) to nRleve 1
(nLlevel)

else
send (buddyflp, l , level) to n '

3. If xLi # ±, xLiR~ = x.

4. If xRi # L, xRiLi = x.

5. If i > O, re(x) [i = m(xR~_l) [i and ~tk, k <
i ,m(x) [i = m (x R i k l) I i, then xRi = xR~_ 1.

6. If i > O, re(x) [i = m(xL~_l) r i and ~k ,k <
1,re(x) [i = m(xLi~_l) [i, then x i i = x i~_ 1.

THEOREM 3.1. Every connected component of the
data structure is a skip graph if and only if conditions
1 - 6 are satisfied.

3.1 M a i n t a i n i n g t h e inva r i an t Define _l_Li =
±Ri = ±. We define conditions 1 - 4 as an inva r i an t
for a skip graph as they hold in all states with no
undelivered messages, even in the presence of failures.
Conditions 5 - 6 may fail to hold with failures, but
they can be restored by the repair mechanism. We
shall call conditions 5 and 6 as the L and R successor
conditions respectively.

THEOREM 3.2. With no undelivered messages, the
invariant is maintained for a skip graph with node
insertions, deletions and node failures.

3.2 Res tor ing skip graph constra ints The
successor conditions get violated during insert and

389

delete operat ions as well as when a node or a link fails.

Al though the skip graph constraints may get
violated during an insert or a delete operat ion,
once no messages are pending and provided no
addit ional inserts, deletes or failures occur, the
successor conditions are satisfied. Thus we see tha t
the repair mechanism is required to restore the
successor conditions only in case of node or link
failures. We consider the possible cases in which the
successor conditions can be violated and provide a
repair mechanism for the each of those cases. We
will concentra te on the repair mechanism for the R
links arid fixing the L links is symmetric . I t may be
possible to combine the two mechanisms to improve
the performance but we will t reat them separately
for simplicity.

There are two cases when the R successor condi-
t ion is violated:

k' k' 1. xRi = xR~_x but Sa = x R i _ l , < k, re(x) I
i = re(a) I i. This case occurs when two nodes
are connected to each other at levels i - 1 and
i, and a new node in inserted between them at
level i - 1 but is pending to be inserted between
them at level i. If the left neighbor of the new
node checks its R successor condit ion at level i
before the insert of the new node at level i is
completed, it will detect a discrepancy.

2. xP~ ~ xR~_l, for any k. This case occurs with
the failure of any node or link in an ideal skip
graph.

We consider each case in detail and propose a
repair mechanism for each violation.

C a s e 1: xRi = xR~_l, but 3a = x ,~ i_ l , , ~ r , k ' t., <
k, m(x) r i = re(a) r i.

. I ' :=;" L E V E L i

A) :
zipperOpB - - i !- z ipperOpF

- - - / ~ - - () L_~-- L E V E L i - 1 kt
X a = X R i _ 1 x R i

Node a should be inserted into level i and this is
done by sending the following messages1:

TD-etails of the zipperOp a lgor i thm are given in Algo-
rithms 4 and 5.

• Send (z ippe r0pF , xRi , i) to a.

• Send (z±pper0pB, x, i) to a.

C a s e 2: xR i ~ xRik_l, for any k. There are
three ways to repair this violation depending on wha t
other nodes are present at level i - 1.

Case 2a: 3a = xR~_ 1 > xP~ and ~b = xRi+_x < a
such tha t re(b) r i = re(x) r i.

x xRi L E V E L i

7

" } z ipperOpF
: a L i - I _

z~.pperOpB / . _ ~ _ _ ~ # _ _ _ (~ _ _ L E V E L i - 1

L R

The nodes connected to a and xRi at level i - 1
have to be merged together into one ring by sending
the following messages:

k' s P robe level i - 1 to find largest x R i R i _ 1 = R < a.

• Send (z ippe r0pF , a, i - 1) to R.
ktl

• Probe level i - 1 to find smallest x R i L i _ 1 = L >
aLi-1.

• Send (z ipper0pB, aLi-1, i - 1) to L.

Case 2b: ~a = xR~_ 1 < xP~ ,m(a) ~ i = m(x) I i
and xRi+_l ~ xP~.

-"" ' ""- L E V E L i
• ~ . - 4 " " ! ") xR~

---CZ::- / ! L " 'C ~- -
: /) :

zippe~OpB d a R / - 1 i z ipperOpF

~ , , , . f T - - - - L E V E L i - 1

M

The nodes connected to a and xP~ have to be
merged at levels i and i - 1 respectively by sending
the following messages:

k' • P robe level i - 1 to find smallest x R i L i _ 1 = M >
a .

• Send (z±pper0pB, a, i - 1) to M.

• Send (z ippe r0pF , aRi-1 , i - 1) to M.

• Send (z ipper0pB, x, i) to a.

• Send (z ippe r0pF , xRi , i) to a.

390

Case 2c: 3a < xRi, aRi = 3_.

---~ "~ ~) - - L E V E L i

6

- / ' ~ - - - - - ~ - - - q , L E V E L i -- 1

z:i.pperOpB C~--- (~_')--~2~-----~ ;----~.~--)--
R

The nodes connected to a and xRi at level i - 1
have to be merged by sending the following messages:

• Probe level i - 1 to find smallest xRiLik_l = R >
a .

• Send (zipper0pB, a, i - 1) to R.

A l g o r i t h m 4: z ipper0pB for node n

upon receiving <zipper0pB, x, g):
i f nLt > x.key t h e n

s e n d (zipper0pB, x, ~) to nL~
else

trap = nLt
nL~ = x
X R l ~ n

i f trap ~ 3_ t h e n
s e n d (zipper0pB, tmp, ~) to x

A l g o r i t h m 5: z ippe r0pF for node n

upon receiving (z ipper0pF, x, t):
i f nRt <x.key t h e n

s e n d <zipper0pF, x, g) to nRe
else

tmp = nRt
xL~ = n
n R g --~ x

i f trap ~ 3- t h e n
s e n d (z ipper0pF, tmp, g/ to x

Original Links Unchanged Links

New Links
(z i p p e r f l p messages)

Figure 3: z i p p e r 0 p operation to merge nodes on the
same level.

THEOREM 3.3. In the absence of new failures, the
repair mechanism described in Section 3.2 will even-
tually restore the violated constraints of a skip graph,
without losing existing connectivity.

4 Fau l t T o l e r a n c e

In this section, we describe some of the fault tolerance
properties of a skip graph. Fault tolerance of related
data structures, such as augmented versions of linked
lists and binary trees, has been well-studied and some
results can be seen in [MP84, AB96]. The main
question is how many nodes can be separated from
the primary component by the failure of other nodes,
as this determines the size of the surviving skip graph
after the repair mechanism finishes.

We show first that even a worst-case choice
of failures by an adversary that can observe the
structure of the skip graph can do only limited
damage. With high probability, a skip graph with
n nodes has an tQ(1/logn) expansion ratio, implying
that at most O(f log n) nodes can be separated from
the primary component by ff failures. These results
are described in Section 4.1

For random failures, the situation appears even
more promising; our experimental results, presented
in Section 4.2, show that for a reasonably large skip
graph nearly all nodes remain in the primary com-
ponent until about two-thirds of the nodes fail, and
that it is possible to make searches highly resilient to
failure even without using the repair mechanism by
use of redundant links.

4.1 A d v e r s a r i a l f a i lu res Given a subset A of the
nodes of a skip graph, define 5A as the set of all nodes
that are not in A but tha t are adjacent to A. Further
define ~hA as the set of all nodes that are not in A
but are joined to a node in A by an edge at level h.
Clearly 6A = Uh 5hA and 16AI > maxh 15hAl.

The expansion ratio of a set A is ISAI/[AI. The
expansion ratio of a graph is the minimum expansion
ratio of any set A for which 1 < IA[.< n/2. The
expansion ratio determines the resilience of a skip
graph in the presence of adversarial failures, because
separating a set A from the primary component
requires all nodes in 5A to fail. We will show that
skip graphs have f~(1/logn) expansion ratios with
high probability, implying that only O (f log n) nodes
can be separated by f failures, even if the failures are
carefully targeted.

Our strategy for showing a lower bound on the
expansion ratio of a skip graph will be to show that
with high probability, all sets A either have large ~0A
(i.e., many neighbors at the bot tom level of the skip

391

graph) or have large 5hA for some particular h chosen
based on the size of A. We begin by counting the
number of sets A of a given size that have small g0A.

LEMMA 4.1. In an n-node skip graph, the number of
sets A, where IAi = m < n and I~0A I < s, is less

s--1 [m+l~ [n--m--l~
than Z r ~ I ~ r #~ r--I 1"

Sketch of proof: Represent each A as a bit-vector
where 1 indicates a member of the set and 0 a
non-member. Then I~0AI is at least the number of
intervals of zeroes in this bit-vector. The bound in
the lemma is then obtained by bounding the number
of length n bit-vectors with m ones and at most s
intervals of zeroes. |

LEMMA 4.2. Let A be a subset of m < nl 2 nodes
of an n-node skip graph S. Then for any h,

Pr [l<f,,AI _< 2 h] <

Sketch of proof: The key observation is that for each
b in {0, 1} h, each skip list Sb that contains a member
of both A and its complement contributes at least one
distinct element to 5hA. We then show that at least
a third of the Sb are likely to do so by bounding the
probability that either A or S - A are represented in
less than two-thirds of the Sb. |

THEOREM 4.1. Let c >_ 6. Then a skip graph with n
nodes has an expansion ratio of at least _ _ L _ _ with c l o g a / 2 n

probability 1-0(n5-C), where the constant factor does
not depend on c.

Sketch of proof: The probability bound is obtained
by summing the probability of having 5hA too small
over all A for which 5oA is too small. For each

1 . 2 h set A of size m, h is chosen so that the
bound of Lemma 4.2 exceeds m times the expansion
ratio. The probabilities derived from Lemma 4.2 are
then summed over all sets A of a fixed size m using
Lemma 4.1, and the result of this process is summed
over all m > clog3/2 n to obtain the final bound, i

4.2 R a n d o m fa i lu res In our experiments, skip
graphs appear to be highly resilient against random
failures. As shown in Figure 4, nearly all nodes re-
main in the primary component even as the probabil-
ity of individual node failure exceeds 0.6, and we sus-
pect that most of the lost nodes at this stage become
isolated only because all of their immediate neighbors
die.

For searches, the fact that the average search in-
volves only O(logn) nodes establishes trivially that

I1)

e-t 0 .8

0.6
0

0.4!
¢1
I.-I q-I

m 0.2
¢1

N 0

i , , , , ! , , ,

.

\

...... i i . i I

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of node failure

1.1

Figure 4: Size of the largest connected component as
a fraction of the surviving nodes with 131072 nodes.

l 0.25
..el
U
Iq

0.2

~ 0 . 1 5

~ 0.1

.0 0,05

~ 0

r , i ~ i ,

0.1 0.2 0.3 0.4 0.5 0.5
Probability of node failure

0.7

Figure 5: Failed Searches with 131072 nodes and
10000 messages.

most searches succeed as long as the proportion of
failed nodes is substantially less that O(logn). By
detecting failures locally and using additional redun-
dant edges, we can make searches highly tolerant to
small numbers of random faults; some experimental
results are shown in Figure 5. In these experiments,
each node x has extra links to its five nearest neigh-
bors on each side, at every level that it is a member
of. In general, we cannot make as strong guaran-
tees as those provided by data structures based on
explicit use of expanders [FS02, Dat02], but we be-
lieve that this is compensated for by the simplicity
of skip graphs and the existence of good distributed
mechanisms for constructing and repairing them.

5 Load balancing

In addition to fault-tolerance, a skip graph provides
a limited form of load balancing, by smoothing out
hot spots caused by popular search targets. The
guarantees that a skip graph makes in this case are
similar to the guarantees made for survivability. Just

392

as an element stored at a particular node will not
survive the loss of that node or its neighbors in the
graph, many searches directed at a particular element
will lead to high load on the node that stores it and on
nodes likely to be on a search path. However, we can
show that this effect drops off rapidly with distance;
elements that are far away from a popular target in
the bottom-level list produce little additional load on
average.

We give two characterizations of this result. The
first shows that the probability that a particular
search uses a node between the source and target
drops off inversely with the distance from the node to
the target. This fact is not necessarily reassuring to
heavily-loaded nodes. Since the probability averages
over all choices of membership vectors, it may be
that some particularly unlucky node finds itself with
a membership vector that puts it on nearly every
search path to some very popular target. Our second
characterization addresses this issue by showing that
most of the load-spreading effects are the result of
assuming a random membership vector for the source
of the search.

THEOREM 5.1. Let S be a skip graph with alphabet
{0, 1}, and consider a search ~rom s to t in S. Let u
be node with s < u < t in the key ordering and let d
be the distance from u to t, defined as the number of
nodes v with u < v < t. Then the probability that a
search from s to t passes through u is less than 2

Theorem 5.1 is of small consolation to some node
that draws a ~ straw and participates in every
search. Fortunately, such things do not happen often.
Define the a v e r a g e load Lt~ imposed by a search
for t on a node u in a given skip graph S as the
probability that an s - t search hits u conditioned on
the membership vectors of all nodes in the interval
[u,t], where s < u < t. This approximates the
situation in a fixed skip graph where a particular
target t is used for many searches that may hit u,
but the sources of these searches are chosen randomly
from the other nodes in the graph.

THEOREM 5.2. Let S be a skip graph with alphabet
{0,1}. Fix nodes t and u, where u < t and I{v : u <
v < t}l = d. T h e n f o r a n y a > 0, Pr[Lu~ > a] <
2 e - - c x d / 2 . - - _

6 Con c lus ion

We have defined a new data structure, the skip
graph, for distributed data stores that has several
desirable properties. Constructing, inserting new

I.i ~ 1 T

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0 . 1

0
76400 76450 7~soo 7Gsso 76600 ~s5o

Nodes

Figure 6: Actual and expected load in a skip graph
with 131072 nodes with the target=76539. Messages
were delivered from each node to the target and
the actual load on each node was measured. The
expected load is computed using Theorem 5.1.

nodes into and searching in a skip graph can be done
in logarithmic time. Using the repair mechanism,
disruptions to the data structure can be repaired
in the absence of additional faults. Skip graphs
also support range queries which allows, for example,
searching for a copy of a resource near a particular
location by using the location as low-order field in the
key and clustering of nodes with similar keys.

This data structure gives rise to a class of ran-
dom graphs whose properties we have only begun
to examine: some open problems remain regarding
the reliability of these graphs. Also, skip graphs
do not exploit geographical proximity in location of
resources and it would be interesting to study per-
formance benefits in that direction, perhaps by us-
ing multi-dimensional skip graphs. Finally, while the
theoretical properties and relative simplicity of skip
graphs make them a good candidate for implemen-
tation, the ultimate test of their usefulness will be
their performance in practice. This is an issue that
we hope to study soon.

References

[AB96] Yonatan Aumann and Michael A. Bender. Fault
tolerant data structures. In Thirty-Seventh Annual
Symposium on Foundations off Computer Science,
pages 580-589, Burlington, VT, USA, October 1996.

lADS02] James Aspnes, Zo~ Diamadi, and Gauri Shah.
Fault-tolerant routing in peer-to-peer systems. In
Twenty-First ACM Symposium on Principles of
Distributed Computing, pages 223-232, Monterey,
MA, USA, July 2002.

393

[CDHR02] Miguel Castro, Peter Druschel, Y. Charlie
Hu, and Anthony Rowstron. Exploiting network
proximity in peer-to-peer overlay networks. In
International Workshop on Future Directions in
Distributed Computing, Bertinoro, Italy, June 2002.
[Longer version submitted for publication].

[Dat02] Mayur Datar. Butterflies and peer-to-peer net-
works. In Proceedings of the lOth European Sympo-
sium on Algorithms, Rome, Italy, September 2002.

[Dev92] L. Devroye. A limit theory for random skip
lists. The Annals of Applied Probability, 2(3):597-
609, 1992.

[dlB59] Rene de la Briandals. File searching using vari-
able length keys. In Western Joint Computer Con-
ference, volume 15, pages 295-298, Montvale, N J,
USA, 1959. AFIPS Press.

[FRE] FREENET. http://www.freenet.sourceforge.net.
[Fre60] Edward Fredkin. Trie memory. Communications

of the ACM, 3(9):490-499, September 1960.
[FS02] Amos Fiat and Jared Saia. Censorship resistant

peer-to-peer content addressable networks. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, San Francisco, CA,
USA, January 2002.

[GM97] J. Gabarr6 and X. Messeguer. A unified ap-
proach to concurrent and parallel algorithms on bal-
anced data structures. In XVII International Con-
ference of the Chilean Computer Society, 1997.

[GMM93] J. Gabarr6,~C. Mart/nez, and X. Messeguer.
Parallel update and search in skip lists. In 13th
International Conference of the Chilean Computer
Society, 1993.

[GMM96] J. Gabarr6, C. Martinez, and X. Messeguer. A
top-down design of a parallel dictionary using skip
lists. Theoretical Computer Science, 158(1-2):1-33,
May 1996.

[GNU] GNUTELLA. http://gnutella.wego.com.
[HHH+02] Matthew Harren, Joseph M. Hellerstein, Ryan

Huebsch, Boon Thau Loo, Scott Shenker, and Ion
Stoica. Complex queries in DHT-based peer-to-peer
networks. In 1st International Workshop on Peer-
to-Peer Systems (IPTPS), Cambridge, MA, USA,
March 2002.

[HKRZ02] Kirsten Hildrum, John D. Kubiatowicz, Satish
Rao, and Ben Y. Zhao. Distributed object location
in a dynamic network. In Fourteenth A CM Sympo-
sium on Parallel Algorithms and Architectures, Win-
nipeg, Manitoba, Canada, August 2002.

[JKZ01] Anthony D. Joseph, John Kubiatowicz, and
Ben Y. Zhao. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, University of California,
Berkeley, Apr 2001.

[KMP95] P. Kirschenhofer, C. Martlnez, and
H. Prodinger. Analysis of an optimized search
algorithm for skip lists. Theoretical Computer
Science, 144(1-2):119-220, 26 June 1995.

[Knu73] Donald E. Knuth. The Art of Computer

Programming: Sorting and Searching, volume 3.
Addison-Wesley Publishing Company Inc., Reading,
Massachusetts, 1973.

[KP94] P. Kirschenhofer and H. Prodinger. The path
length of random skip lists. Acta Informatica,
31(8):775-792, 1994.

[KR02] David Karger and Matthias Ruhl. Finding
nearest neighbors in growth-restricted metrics. In
Thirty-Fourth ACM Symposium on Theory of Com-
puting, pages 741-750, Montreal, Canada, May
2002.

[MNR02] Dahlia Malkhi, Moni Naor, and David Rata-
jczak. Viceroy: A scalabale and dynamic emulation
of the butterfly. In Twenty-First ACM Symposium
on Principles of Distributed Computing, pages 183-
192, Monterey, CA, USA, July 2002.

IMP84] J. Ian Munro and Patricio V. Poblete. Fault
tolerance and storage reduction in binary search
trees. Information and Control, 62(2/3):210-218,
August 1984.

[NAP] NAPSTER. Formerly, http://www.napster.com.
[PMP90] T. Papadakis, J.I. Munro, and P.V. Poblete.

Analysis of the expected search cost in skip lists. In
J. R. Gilbert and R. G. Karlsson, editors, SWAT 90,
2nd Scandinavian Workshop on Algorithm Theory,
volume 447 of Lecture Notes in Computer Science,
pages 160-172, Bergen, Norway, 11-14 July 1990.
Springer.

[PRR97] C. Plaxton, R. Rajaram, and A. W. Richa. Ac-
cessing nearby copies of replicated objects in a dis-
tributed environment. In Proceedings of the Ninth
Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), June 1997.

[Pugg0] William Pugh. Skip lists: A probabilistic alter-
native to balanced trees. Communications of the
ACM, 33(6):668-676, June 1990.

[RD01] Antony Rowstron and Peter Druschel. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings of
the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middlewarc 2001),
Heidelberg, Germany, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Hand-
ley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In Proceedings of the
ACM SIGCOMM, pages 161-170, 2001.

[SBK02] Bujor Silaghi, Bobby Bhattachaxjee, and Pete
Keleher. Query routing in the terradir distributed
directory. In SPIE ITCOM 2002, August 2002.

[SMK+01] Ion Stoica, Robert Morris, David Karger,
Frans Ka~shoek, and Hari Balakrishna. Chord:
A scalable peer-to-peer lookup service for internet
applications. In Proceedings of SIGCOMM 2001,
pages 149-160, 2001.

[ZJK02] Ben Y. Zhao, Anthony D. Joseph, and John D.
Kubiatowicz. Locality-aware mechanisms for large-
scale networks. In Workshop on Future Directions in
Distributed Computing, Bertinoro, Italy, June 2002.

