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aLIRIS, UMR CNRS 5205, Bât. C, Université Lumière Lyon 2, 5 avenue Pierre Mendès France, F-69676 Bron cedex, France
bGoogle, 1600 Amphitheatre Pkwy, B1350-138B, Mountain View, CA 94043, USA

Available online 1 February 2008
Abstract

We propose a multi-timescale learning rule for spiking neuron networks, in the line of the recently emerging field of reservoir

computing. The reservoir is a network model of spiking neurons, with random topology and driven by STDP (spike-time-dependent

plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning

algorithm, based on a margin criterion, that affects the synaptic delays linking the network to the readout neurons, with classification as

a goal task. The network processing and the resulting performance can be explained by the concept of polychronization, proposed by

Izhikevich [Polychronization: computation with spikes, Neural Comput. 18(2) (2006) 245–282], on physiological grounds. The model

emphasizes that polychronization can be used as a tool for exploiting the computational power of synaptic delays and for monitoring the

topology and activity of a spiking neuron network.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Reservoir computing

Reservoir computing (RC) recently appeared [38,17] as a
generic name for designing a new research stream including
mainly echo state networks (ESNs) [15,16], liquid state
machines (LSMs) [25], and a few other models like back-
propagation decorrelation (BPDC) [42]. Although they
have been discovered independently, the algorithms share
common features and carry many highly challenging ideas
toward a new computational paradigm of neural networks.
The central specification is a large, distributed, nonlinear
recurrent network, the so-called ‘‘reservoir’’, with trainable
output connections, devoted to reading out the internal
states induced in the reservoir by input patterns. Usually,
e front matter r 2008 Elsevier B.V. All rights reserved.
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the internal connections are sparse and their weights are
kept fixed. According to the model, the reservoir can be
composed of different types of neurons, e.g. linear units,
sigmoid neurons, threshold gates or spiking neurons
(e.g. LIF1), as far as the internal network behaves like a
nonlinear dynamical system. In most models, simple
learning rules, such as linear regression or recursive least
mean squares, are applied to readout neurons only. In the
editorial of the special issue of neural networks [17], several
directions for further research have been pointed out,
among them is ‘‘the development of practical methods to
optimize a reservoir toward the task at hand’’. In the same
article, RC is presented as belonging to the ‘‘family of
versatile basic computational metaphors with a clear
biological footing’’. The model we developed [34] is clearly
based on similar principles: a network of spiking neurons,
sparsely connected, without pre-imposed topology, and
output neurons, with adaptable connections.
As stated in [38], the concept that is considered to be a

main advantage of RC is to use a fixed randomly connected
network as reservoir, without training burden. Recent
1LIF ¼ leaky integrate and fire.
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work also propose to add an unsupervised reservoir
adaptation through various forms of synaptic plasticity
such as spike-time-dependent plasticity (STDP) [31] or
intrinsic plasticity (IP) [47,50] (see [21] for a comparative
study). However, many articles point out the difficulty to
get a suitable reservoir w.r.t. a given task. According to the
cognitive metaphor, the brain may be viewed as a huge
reservoir able to process a wide variety of different tasks,
but synaptic connections are not kept fixed in the brain:
Very fast adaptation processes compete with long term
memory mechanisms [18]. Although the mystery of
memory and cognitive processing is far from being solved,
recent advances in neuroscience [2,28,41] help to get new
inspiration for conceiving computational models. Our
learning rule for readout neurons is justified by the
appealing notion of polychronization [14] from which
Izhikevich derives an explanation for a theoretically
‘‘infinite’’ capacity of memorizing in the brain. We based
our method to adapt the reservoir to the current task on an
implementation of synaptic plasticity inside a spiking
neuron network (SNN) and on the exploitation of the
polychronization concept.

1.2. Spiking neuron networks

A common thought that interactions between neurons
are governed by their mean firing rates has been the basis
of most traditional artificial neural network models. Since
the end of the 1990s, there is a growing evidence, both in
neuroscience and computer science, that precise timing of
spike firing is a central feature in cognitive processing.
SNNs derive their strength and interest from an accurate
modeling of synaptic interactions between neurons, taking
into account the time of spike firing. Many biological
arguments, as well as theoretical results (e.g. [22,37,40])
converge to establish that SNNs are potentially more
powerful than traditional artificial neural networks. How-
ever, discovering efficient learning rules adapted to SNNs is
still a hot topic. For the last 10 years, solutions were
proposed for emulating classic learning rules in SNNs
[24,30,4], by means of drastic simplifications that often
resulted in losing precious features of firing time-based
computing. As an alternative, various researchers have
proposed different ways to exploit recent advances in
neuroscience about synaptic plasticity [1], especially IP2

[10,9] or STDP3 [28,19], that is usually presented as the
Hebb rule, revisited in the context of temporal coding. A
current trend is to propose computational justifications for
plasticity-based learning rules, in terms of entropy mini-
mization [5] as well as log-likelihood [35] or mutual
information maximization [8,46,7]. However, since STDP
is a local unsupervised rule for adapting the weights of
connections, such a synaptic plasticity is not efficient
enough for controlling the behavior of an SNN in the
2IP ¼ intrinsic plasticity.
3STDP ¼ spike-time-dependent plasticity.
context of a given task. Hence we propose to couple STDP
with another learning rule, acting at a different timescale.

1.3. Multi-timescale learning

We propose to name ‘‘multi-timescale learning’’ a
learning rule combining at least two adaptation algorithms,
at different time scales. For instance, synaptic plasticity,
modifying the weights locally, in the millisecond time
range, can be coupled with a slower overall adaptation
rule, such as reinforcement learning driven by an evolu-
tionary algorithm, like in [29], or a supervised learning
algorithm, for classification purpose, as developed in the
present article.
The multi-timescale learning rule we propose is moti-

vated by two main ideas:
�

4

Delay adaptation: Several complexity analyses of SNNs
have proved the interest of programmable delays for
computational power [22,37] and learnability [26,27,23].
Although axonal transmission delays do not vary
continually in the brain, a wide range of delay values
have been observed.

�
 Polychronization: In [14] Izhikevich pointed out the

activation of polychronous groups (PGs), based on the
variability of transmission delays inside an STDP-driven
set of neurons (see Section 5 for details), and proposed
that the emergence of several PGs, with persistent
activation, could represent a stimulation pattern.

Our multi-timescale learning rule for RC comprises STDP,
modifying the weights inside the reservoir, and a supervised
adaptation of axonal transmission delays toward readout
neurons coding, via their times of spike firing, for different
classes. Without loss of generality, the model is mainly
presented in the two-class version. The basic idea is
to adapt the output delays in order to enhance the
influence of the PGs activated by a given pattern toward
the target output neuron, and to decrease the influence
toward the non-target neuron. A margin criterion is
applied, via a stochastic iterative learning process, for
strengthening the separation between the spike-timing of
the readout (output) neurons. This idea fits in the similarity
that has been recently proposed [38,17] between RC and
SVM,4 where the reservoir is compared to the high-
dimensional feature space resulting from a kernel trans-
formation. In our algorithm, like in the machine learning
literature, the application of a margin criterion is justified
by the fact that maximizing a margin between the positive
and the negative class yields better expected generalization
performance [48].
We point out that polychronization can be considered as

a tool for adapting synaptic delays properly, thus exploit-
ing their computational power, and for observing the
network topology and activity.
SVM ¼ support vector machine.
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The outline of the papers goes as follows: Section 2
describes the model of SNN for RC; Section 3 defines the
multi-timescale learning mechanism; experiments on clas-
sification tasks are presented in Section 4; Section 5
explains the notion of polychronization and Section 6
studies the internal dynamics of the reservoir.

2. Network architecture

The reservoir is a set of M neurons (internal network),
interfaced with a layer of K input cells and C readout cells,
one for each class (Fig. 1). The network is fed by input
vectors of real numbers, represented by spikes in temporal
coding: the higher the value, the earlier the spike fires
toward the reservoir. For clarity in experiments, successive
inputs are presented in large temporal intervals, without
overlapping input spike firing from a pattern to the next.
The index of the output cell firing first in this temporal
interval provides the class number as an answer of the
network to the input pattern.

Each cell is a spiking neuron (Section 2.1). Each synaptic
connection, from neuron Ni to neuron Nj , is defined by
two parameters: A weight wij and an axonal transmission
delay dij . The reservoir is composed of 80% excitatory
neurons and 20% inhibitory neurons, in accordance with
the ratio observed in the mammalian cortex [6]. The
internal connectivity is random and sparse, with prob-
ability Prsv for a connection to link Ni to Nj, for all
ði; jÞ 2 f1; . . . ;Mg2. For pattern stimulation, the input cells
are connected to the internal cells with probability Pin. The
connection parameters are tuned so that the input cells
forward spikes toward internal cells according to the
temporal pattern defined by the input stimulus (see Section
2.2). For class detection, the output neurons are fully
connected to each internal cell (Pout ¼ 1).

2.1. Neuron model

The neuron model is an SRM0 (zeroth order ‘‘Spike
Response Model’’), as defined by Gerstner [12], where the
state of a neuron Nj is dependent on its last spike time t

ðf Þ
j

only. The next firing time of Nj is governed by its
membrane potential ujðtÞ, in millivolts, and its threshold
yjðtÞ. Both variables depend on the last firing times of
cells
K input

M internal cells

Fig. 1. Architecture of the spiking neuron network. The reservoir is the intern

interface with environment. The network is presented for C ¼ 2 classes.
the neurons Ni belonging to the set Gj of neurons pre-
synaptic to Nj:

ujðtÞ ¼ Zðt� t
ðf Þ
j Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

threshold kernel

þ
X
i2Gj

wij �ðt� t
ðf Þ
i � dijÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

potential kernel

þurest (1)

firing condition for Nj:

ujðtÞXW with u0jðtÞ40 ¼) t
ðfþ1Þ
j ¼ t. (2)

The potential kernel is modelled by a Dirac increase in 0,
followed by an exponential decrease, from value umax in 0þ

toward 0, with a time constant tm, in milliseconds:

�ðsÞ ¼ umaxHðsÞe
ð�s=tmÞ, (3)

where H is the Heaviside function. In Eq. (2) the value wij

is a positive factor for excitatory weights and a negative
one for inhibitory weights.
The firing threshold W is set to a fixed negative value

(e.g. W ¼ �50mV) and the threshold kernel simulates an
absolute refractory period tabs, when the neuron cannot fire
again, followed by a reset to the resting potential urest,
lower than W (e.g. urest ¼ �65mV). The relative refractory
period is not simulated in our model. The simulation is
computed in discrete time with 1ms time steps. Time steps
0.1ms long have been tested also (Section 4.2). The
variables of neuron Nj are updated at each new incoming
spike (event-driven programming), which is sufficient for
computational purpose.

2.2. Weights and delays

Synaptic plasticity (see Section 3.1) is applied to the
weights of internal cells only. Starting from initial values w

such that kwk ¼ 0:5, internal weights vary, under STDP, in
the range ½0; 1� (excitatory) or ½�1; 0� (inhibitory). The
weights of connections from input layer to internal
network are kept fixed, all of them excitatory, with a value
win strong enough to induce immediate spike firing inside
the reservoir (e.g. win ¼ 3 in experiments, see Section 4).
The connections from internal network to output neurons
are excitatory and the output weights are fixed to the
intermediate value wout ¼ 0:5. In principle, STDP can be
applied also to the output weights (optional in our
class 1

class 2

2 output cells

internal connections

output connections,

input connections

with adaptable delays

al network (the colored square) and green (light gray) links represent the
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program) but no improvement has been observed. Hence,
for saving computational cost, the readout learning rule
has been further restricted to an adaptation of the synaptic
delays (Section 3.2).

Neuroscience experiments [44,45] give evidence to
the variability of transmission delay values, from 0.1 to
44ms. In the present model, the delays dij take integer
values, randomly chosen in fdmin; . . . ; dmaxg, rounded to
the nearest millisecond, both in the internal network and
toward readout neurons. The delays from input layer to
internal network have a zero value, for an immediate
transmission of input information.

A synaptic plasticity rule could be applied to delay
learning, as well as to weight learning, but the biological
plausibility of such a plasticity is not yet so clear in
neuroscience [39]. Moreover, our purpose is to exploit this
stage of the learning rule for making easier the adaptation
of the reservoir to a given task. Hence we do not apply
synaptic plasticity to delays, but we switch to machine
learning in designing a supervised mechanism, based on a
margin criterion, for adapting the output delays to the
reservoir computation in order to extract the relevant
information.
3. Learning mechanisms

In the model, the multi-timescale learning rule is based
on two concurrent mechanisms: a local unsupervised
learning of weights by STDP, operating in the millisecond
range, at each new incoming spike time tpre or outgoing
spike time tpost, and a supervised learning of output delays,
operating in the range of 100ms, at each pattern
presentation.
3.1. Synaptic plasticity

The weight wij of a synapse from neuron Ni to neuron Nj

is adapted by STDP, a form of synaptic plasticity based on
the respective order of pre- and post-synaptic firing times.
For excitatory synapses, if a causal order (pre- just before
post-) is respected, then the strength of the connection is
1.0

POTENTIATION

DEPRESSION −0.5

Δt

ΔW

10ms 20ms

−100ms

−infin

Fig. 2. Asymmetrical STDP temporal window for excitatory (left) and symm

(from [29]).
increased. Conversely the weight is decreased if the pre-
synaptic spike arrives at neuron Nj just after a post-
synaptic firing, and has probably no effect, due to the
refractory period of Nj . For inhibitory synapses, only a
temporal proximity leads to a weight increase, without
causal effect. Temporal windows, inspired from neurophy-
siological experiments by Bi and Poo [3], help to calcu-
late the weight modification DW as a function of the time
difference Dt ¼ tpost � tpre ¼ t

ðf Þ
j � ðt

ðf Þ
i þ dijÞ as can be

computed at the level of neuron Nj .
For updating excitatory synapses as well as inhibitory

synapses, a similar principle is applied, and only the temporal
windows differ (see Fig. 2). For updating excitatory
synapses, we adopt the model of Nowotny [32] with an
asymmetrical shape of temporal window. For inhibitory
synapses, weight updating is based on a correlation of
spikes, without influence of the temporal order, as proposed
in [51].
Following [36], in order to avoid a saturation of the

weights to the extremal values wmin ¼ 0 and wmax ¼ 1
(excitatory) or wmax ¼ �1 (inhibitory), we apply a multi-
plicative learning rule, as stated in Eq. (4), where a is a
positive learning rate. In our experiments: a ¼ aexc ¼
ainh ¼ 0:1. For excitatory synapses the sign of DW is the
sign of Dt. For inhibitory synapses DW40 iff jDtjo20.

if DWp0 depreciate the weight:

wij  wij þ a � ðwij � wminÞ � DW ,

if DWX0 potentiate the weight:

wij  wij þ a � ðwmax � wijÞ � DW . (4)

STDP is usually applied with an additive rule for weight
modification and many authors observe a resulting
bimodal distribution of weights, with an effect of satura-
tion toward the extremal values. In [21] Lazar et al.
propose to couple IP with STDP and show that the effect
of saturation is reduced. We obtain a similar result with a
multiplicative rule (see Section 4.1.3), but at a lower
computational cost.
1.0

Δt

ΔW

20ms−20ms

−0.25
DEPRESSION DEPRESSION

POTENTIATION

+infinityity

etrical STDP temporal window for inhibitory (right) synapse adaptation
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3.2. Delay adaptation algorithm

The refractory period of the readout neurons has been
set to a value toutabs, large enough to trigger at most one
output firing for each neuron, inside a temporal window of
T ms dedicated to an input pattern presentation.

The goal of the supervised learning mechanism is to
modify the delays from active internal neurons to readout
neurons in such a way that the output neuron correspond-
ing to the target class fires before the one corresponding
to the non-target class. Moreover, we intend to maximize
the margin between the positive and the negative class.
More formally, the aim is to minimize the following
criterion:

C ¼
X

p2class 1

jt1ðpÞ � t2ðpÞ þ mjþ

þ
X

p2class 2

jt2ðpÞ � t1ðpÞ þ mjþ, (5)

where tiðpÞ represents the firing time of readout neuron
Outi after the presentation of input pattern p, m represents
the minimum delay margin we want to enforce between the
two firing times, and jzjþ ¼ maxð0; zÞ. The margin constant
m is a hyper-parameter of the model and can be tuned
according to the task at hand. Convenient values are a few
milliseconds, e.g. m ¼ 5 or 8 in experiments (Section 4).

In order to minimize the criterion (5), we adopt a
stochastic training approach, iterating a delay adaptation
loop, as described in Algorithm 1. We define a triggering

connection as a connection that carries an incoming spike
responsible for a post-synaptic spike firing at the impact
time. Due to the integer values of delays and the discrete
time steps for computation, it may occur that several
u (t)
mV

t [ms]

u
m

u
m

u (t)
mV

t [ms]

Out 1
Out 2

t [ms]

1tuOfolaitnetop

membrane potential of Out 2

step k of delay learning iterations

μ

Fig. 3. An example illustrating the effect of one iteration of the delay
triggering connections accumulate their activities at a given
iteration. In such a case, we choose only one among these
candidate connections for delay adaptation.

Algorithm 1 (Two-class).

repeat

for each example X ¼ ðp; classÞ of the database

{ present the input pattern p;

define the target output neuron according to class;

if ( the target output neuron fires less than m ms

before the non-target one, or fires after it )

then

{ select one triggering connection of the target

output neuron and decrement its delay ð�1msÞ,

except if dmin is reached already;

select one triggering connection of the non-target

output neuron and increment its delay (þ1ms),

except if dmax is reached already;

}

}

until a given maximum learning time is over.

As an illustration, let us consider an input pattern
belonging to class 2. Hence we want output neuron Out2
to fire at least m milliseconds before output neuron Out1.
Fig. 3 shows the variation through time of the membrane
potential of the two readout neurons. Note that, without
loss of generality, the curves of exponential decrease have
been simplified into straight oblique lines, to represent
variations of uðtÞ. The effect of one iteration of delay
learning on the respective firing times is depicted from the
left graphic (step k) to the right one (step k þ 1). At step k,
the difference between firing times of the two output
neurons is lower than m, whereas at step k þ 1 the pattern is
well classified, with respect to the margin.
Although the context is not always as auspicious as in

Fig. 3, even so, at each iteration where a delay adaptation
occurs, the probability of an error in the next answer to a
 (t)
V

t [ms]

 (t)
V

t [ms]

Out 2
Out 1

t [ms]

μ

1tuOfolaitnetop

potential of Out 2

step k+1 of delay learning iterations

learning algorithm on the firing times of the two readout neurons.
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similar input has decreased. Actually, under the hypothesis
that the recent history of the membrane potential is similar
between the current and the next presentation of a pattern
p (verified condition in Fig. 3), the increment of the delay of
the non-target neuron leads to a later firing of Out1 with
probability 1. Under similar conditions, if the triggering
connection of the target neuron is alone, the decrement of
its delay causes a 1ms earlier spike, thus incoming in
addition to a higher value of the membrane potential as far
as the time constant tm generates an exponential decrease
less than 0.5 (equal to the contribution of wout) in a 1ms
time range, hence the readout neuron Out1 fires earlier,
with probability 1. The only hazardous situation occurs in
case of multiple triggering connections, where configura-
tions exist for later firing of Out1, but with a probability
close to 0, since the sparse connectivity of the reservoir
induces a low internal overall spiking activity (usually
close to 0.1 in experimental measurements). Finally, the
hypothesis of membrane potential history conservation
is not highly constraining, since the action of STDP has
the effect of reinforcing the weights of the connections, in
the reservoir, that are responsible for relevant information
transmission. Therefore, as the learning process goes
through time, spike-timing patterns become very stable,
as could be observed experimentally (see raster plots in
Section 4.1.1).

3.3. Extension to multi-class discrimination

The multi-timescale learning rule can be extended to
multi-class discrimination. The network architecture is
similar (Fig. 1), except that the output layer is composed of
C readout neurons, one for each of the C classes. The
response of the network to an input pattern p is the index
of the first firing output neuron. Whereas synaptic
plasticity is unchanged, the delay adaptation algorithm
has to be modified and several options arise, especially
concerning the action on one or several non-target
neurons. We propose to apply Algorithm 2.

A variant could be to increment the delays of all the first
firing non-target output neurons. Since the performance
improvement is not clear, in experiments the advantage has
been given to Algorithm 2, i.e. with at most one delay
adaptation at each iteration, in order to save computa-
tional cost.

Algorithm 2 (Multi-class).

repeat

for each example X ¼ ðp; classÞ of the database

{ present the input pattern p;

define the target output neuron according to class;

if ( the target output neuron fires less than m ms
before the second firing time among non-targets,

or fires later than one or several non-targets)

then

{ randomly select one triggering connection of the

target neuron and decrement its delay (�1ms),

exceptif dmin is reached already;

randomly select one neuron among all the non-target

readouts that fired in first;
for this neuron, randomly select one triggering

connection and increment its delay (þ1ms),

except if dmax is reached already;

}

}

until a given maximum learning time is over.

4. Experiments

A first set of experiments has been performed on a pair
of very simple patterns, borrowed from Figure 12 of [14], in
order to understand how the network processes and to
verify the prior hypotheses we formulated on the model
behavior, in particular the emergence of PGs with
persistent activity in response to a specific input pattern.
A second set of experiments is then presented on the USPS
handwritten digit database, in order to validate the model
ability to classify real-world, complex, large-scale data.
Since the main purpose is to study the internal behavior of
the network and the concept of polychronization, experi-
ments have been performed mainly in the two-class case,
even with the USPS database.

4.1. Two-class discrimination on Izhikevich’s patterns

The task consists in discriminating two diagonal bars, in
opposite directions. The patterns are presented inside
successive time windows of length T ¼ 20ms. For this
task, the neuron constants and network hyper-parameters
have been set as follows:

Network architecture:

K ¼ 10 input neurons

M ¼ 100 neurons in the reservoir.

Spiking neuron model:

umax ¼ 8mV for the membrane potential exponential decrease

tm ¼ 3ms for time constant of the membrane potential

exponential decrease

W ¼ �50mV for the neuron threshold

tabs ¼ 7ms for the absolute refractory period

urest ¼ �65mV for the resting potential

Connectivity parameters:

Pin ¼ 0:1 connectivity probability from input neurons toward

the reservoir

Prsv ¼ 0:3 connectivity probability inside the reservoir

win ¼ 3, fixed value of weights from input neurons to the

reservoir

wout ¼ 0:5, fixed value of weights from reservoir to output

neurons

dmin ¼ 1, minimum delay value, in the reservoir and toward the

readouts

dmax ¼ 20, maximum delay value, in the reservoir and toward the

readouts

Delay adaptation parameters:

tout
abs ¼ 80ms for the refractory period of readout neurons

m ¼ 5 for the margin constant.

At any time (initialization, learning and generalization

phases), the complete cartography of the network activity
can be observed on a spike raster plot presenting all the
firing times of all neurons (see for instance Fig. 4): Neuron
index with respect to time (in ms) with K ¼ 10 input
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neurons (bottom), followed by M ¼ 100 internal neurons,
including 20 inhibitory neurons, in blue (light gray). Firing
times of the two output neurons are isolated at the top.

A run starts by an initialization phase. All connections in
the reservoir are initialized with weights wij ¼ 0:5 (excitatory)
or wij ¼ �0:5 (inhibitory). Gaussian noise is presented in
input during the first 300ms, thus generating a high disordered
activity in the reservoir (Fig. 4) and frequent weight updating.
Output neurons spike simultaneously, as soon as their
refractory period ends. Due to STDP, the internal activity
slowly decreases until complete silence around 1750ms.

4.1.1. Learning

Afterwards, a learning phase is run, between times TL1

and TL2. Fig. 5 presents two time slices of a learning
run, with successive alternated presentations of the two
input patterns that represent examples for classes 1 and 2,
respectively. As can be observed, the internal network
activity quickly decreases and then stabilizes on a persistent
alternative between two different spike-timing patterns
(lasting slightly longer than the time range of pattern
presentation), one for each class. The learning performance
is a 100% success rate, even in experiments where the
patterns to be learned are presented in random order.

The evolution of the firing times of the two output
neurons reflects the application of the delay adaptation
algorithm. Starting from simultaneous firing, they slightly
dissociate their responses, from a pattern presentation to
the next, according to the class corresponding to the input
(top frame, Fig. 5). In the bottom frame of the figure,
the time interval separating the two output spikes has
become larger, due to delay adaptation, and is stable since
the margin m has been reached. The internal activity is quite
invariant, except for occasional differences due to the still
running STDP adaptation of weights. This point will be
discussed later (Sections 4.1.3 and 6).

4.1.2. Generalization

Finally, between TG1 and TG2 a generalization phase is
run with noisy patterns: Each spike time occurs at t� Z
where t is the firing time of the corresponding input neuron
for the example pattern of the same class and Z is some
uniform noise. In Fig. 6, two noise levels can be compared.
Although the internal network activity is clearly disrupted,
the classification performance remains good: Average
success rate, on 100 noisy patterns of each class, is 96%
for Z ¼ 4, when noisy patterns are presented alternatively,
class 2 after class 1, and still 81% for Z ¼ 8, where the input
patterns are hard to discriminate by a human observer. We
observed a slight effect of sequence learning: Only 91% and
73% success, respectively, for Z ¼ 4 and 8, when classes 1
and 2 are presented in random order.
We observe that the obtained margin between the two

output firing times can be higher or lower than m. For each
pattern, this margin could be exploited as a confidence
measure over the network answer. Moreover, most of the
non-successful cases are due to simultaneous firing of the
two output neurons (in Fig. 6, only one wrong order near
the left of 18 800ms). Such ambiguous responses can be
considered as ‘‘non-answers’’, and could lead to define a
subset of rejected patterns. Wrong order output spike-
firing patterns are seldom, which attest the robustness
of the learning algorithm.
The performance is increased and the sequence effect

disappears when the margin constant is set to a higher
value. For m ¼ 8 instead of m ¼ 5, the generalization
success rate reaches 100% for Z ¼ 4 and 90% for Z ¼ 8,
for both an alternate or a random presentation of the
patterns. In the latter case, the error rate is only 0.3%
and the 9.7% remaining cases are ‘‘non-answers’’. This
phenomenon could be used as a criterion for tuning the
margin hyper-parameter.

4.1.3. Weight distributions

In order to illustrate the weight adaptation that occurs in
the reservoir, Figs. 7 and 8 show, respectively, the distri-
bution of excitatory and inhibitory weights (in absolute
value) quantized into 10 uniform segments of 0.1 and
captured at different times. The distribution at time 0 is not
shown, as all the jwijj were initialized to 0.5. Afterwards, it
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can be checked that weights are widely distributed in the
range ½wmin;wmax�. First, at the end of initialization phase,
excitatory weights (Fig. 7) tend to be Gaussian around the
original distribution (time 300 and 2000). We have
measured that the average amount of time between two
spikes during the first 1700ms corresponds to 8ms. In the
excitatory STDP temporal window (Fig. 2, left), jDW j in
the range of 8ms is comparable at both sides of 0, and thus
explains this Gaussian redistribution. During the learning
phase, weights uniformly distribute, mainly from 0 to 0.7,
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Fig. 9. USPS patterns examples: 1, 5, 8, 9 digits.

5http://www-stat-class.stanford.edu/�tibs/ElemStatLearn/data.html.
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for instance at time 4000. Around 10 000ms, an equili-
brium is reachedsince strong variations of weights no
longer occur under the influence of STDP. It can be
thought that the causal order of firing has been captured
inside the network. The distribution of weight values is
approximately 50% very close to 0, other weights being
decreasingly distributed from 0.1 to 0.7.

Let us now consider inhibitory weights in Fig. 8. As the
initial internal activity is strong, the weights are modified
in a very short time range. Indeed, looking at time 300
(Fig. 8, left) we see that weights have already nearly all
migrated to an extremal value (close to �1). This surprising
violent migration can as well be explained by the inhibitory
STDP function, where close spikes in an inhibitory synapse
produce a strong weight potentiation (see Fig. 2, right).
A high activity strongly potentiates the inhibitory synapses
that, in turn, slow down the activity, thus playing a
regulatory role. After the initial stimulation stopped,
weights begin to redistribute as the reservoir activity slows
down. From then on, weight distribution has reached a
state that slightly evolves, until time 10 000, and stays very
stable until time 17 000 (end of learning phase).

Note that, due to the multiplicative [36] application of
STDP temporal windows (Section 3.1), the weights are
never strictly equal to wmin or wmax. Experiments show that
they do not saturate toward extremal values. This
observation confirms the interest of multiplicative STDP:
The effect on the weight distribution is comparable to
the result of combining IP and classic STDP, that has been
proved to enhance the performance and the network
stability [21].
In [15] Jaeger claims that the spectral radius of the

weight matrix must be smaller than 1. This point has been
widely discussed and confirmed by studies on the network
dynamics proving that a spectral radius close to 1 is an
optimal value. However, we share the opinion of Verstrae-
ten et al. [49] who claim that ‘‘for spiking neurons it has no
influence at all’’. In [43] Steil shows that a learning rule
based on IP has the effect to expand the eigenvalues away
from the center of the unit disk. On few measurements, we
observed a converse effect with our learning rule and with
spectral radii higher than 1, e.g. l ¼ 8:7 for the initial
weight matrix and l ¼ 2:3 after a learning phase of
20 000ms. This point remains to be more deeply investi-
gated, both through more experimental measurements and
a theoretical study.

4.2. OCR on the USPS database

The patterns of the USPS data set5 [13] consist of 256
dimensional vectors of real numbers between 0 and 2,
corresponding to 16� 16 pixels gray-scale images of
handwritten digits (examples in Fig. 9). They are presented
to the network in temporal coding: The higher the
numerical value, the darker the pixel color, the earlier the
spike firing of the corresponding input neuron, inside a

http://www-stat-class.stanford.edu/tibs/ElemStatLearn/data.html
http://www-stat-class.stanford.edu/tibs/ElemStatLearn/data.html
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Table 1

Best case of two-class discrimination, on the USPS digits: rates for classes

1 versus 9 with 100 neurons (left) and 2000 neurons (right) in the reservoir

Training

(%)

Generalization

(%)

Training

(%)

Generalization

(%)

Error rate 0.42 2.72 0.36 1.81

Success rate 99.2 96.8 99.4 97.3

Rejection rate 0.36 0.45 0.24 0.91

Table 2

Worst case of two-class discrimination, on the USPS digits: rates for

classes 5 versus 8 with 100 neurons (left) and 2000 neurons (right) in the

reservoir

Training

(%)

Generalization

(%)

Training

(%)

Generalization

(%)

Error rate 10.7 12.3 3.10 4.60

Success rate 85.4 80.7 90.4 84.4

Rejection rate 3.92 7.06 6.47 11.0
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time window of T ¼ 20ms. Hence, the significant part of
the pattern (i.e. the localization of the black pixels) is
presented first to the network, which is an advantage of
temporal processing compared to usual methods that scan
the image matrix of pixels line after line.

For this task, the neuron model constants and network
hyper-parameters have been set as follows:
Network architecture:

K ¼ 256 input neurons

M ¼ 100 neurons in the reservoir

Connectivity parameters:

Pin ¼ 0:01 connectivity probability from input neurons

toward the reservoir

All other parameters are the same as parameters of

Section 4.1.
4.2.1. Two-class setting

We first tested the model capacity to discriminate two
arbitrarily chosen USPS classes, where each class corre-
sponds to a specific digit. Thus we used a slightly modified
version of the stimulation protocol. Indeed, instead of
presenting the first class alternating with the second, all
training patterns of the two classes were presented in a
random order. Several epochs6 are iterated. Finally, in
order to allow error evaluation, all learning mechanisms
are stopped and an epoch with training patterns is
conducted, followed by a generalization epoch with testing
patterns, never presented so far. Performance in general-
ization dramatically depends on the two classes chosen for
the simulation. Left side of Tables 1 and 2 show the results
6An epoch corresponds to one presentation of all training examples (i.e.

several hundreds of patterns, the exact number depending on the digits to

be classified).
for two representative sets of classes, with a reservoir of
100 neurons. Few cases show very poor success rate. For
instance 5 versus 8 (Table 2) yields an error rate close to
12% in generalization. To improve on these cases, we
increased the size of the reservoir to 2000 neurons. This
slightly improved the rates as shown on the right side of
Tables 1 and 2. In particular, 5 versus 8 reaches 4.6% error
rate, but the rate of rejected patterns (see Section 4.1.2 for
definition) also increased.
As the dimension of a USPS pattern is about 13 times

higher than a pattern from Izhikevich’s experiments, we
expected more difficulties in order to reach reasonable
performance without making any change on the hyper-
parameters. Although this is only a two-class classification
task, the fact that we already obtain competitive error rates
using a reservoir with only 100 neurons is an exciting result,
considering the dimension of the patterns and the
notoriously ‘‘difficult’’ test set. Those results could be
slightly improved with a reservoir of 2000 neurons, which is
a common size in RC literature.
4.2.2. Multi-class setting

A few simulations have been performed on the whole 10
classes of the USPS data set. Several experimental tunings
of the hyper-parameters over the training set led to the
following values:

Network architecture:

K ¼ 256 input neurons

M ¼ 2000 neurons in the reservoir

10 readout neurons, instead of 2

Spiking neuron model:

tm ¼ 20ms for time constant of the membrane potential

exponential decrease

Connectivity parameters:

Pin ¼ 0:01 connectivity probability from input neurons toward

the reservoir

Prsv ¼ 0:0145 connectivity probability inside the reservoir

wOUT ¼ 0:02, fixed value of weights from reservoir to output

neurons

dmax ¼ 100, maximum delay value, only toward the readouts

All other parameters are the same as parameters of

Section 4.1.

We let the simulation go through 20 training epochs
before evaluating the rates on the train and test sets. We
obtain an error rate of 8.8% on the training set that jumps
to 13.5% on the testing set (Table 3). Although the
performance is not yet competitive with the best well-tuned
machine learning approaches that nearly reach 2% in test
error (see [20] for a review of performance on the multi-
class USPS data set), the multi-timescale learning rule
proves to behave correctly on real-world data. Benchmarks
of performance do not yet exist for RC classifiers. We
emphasize that our error rates have been reached after few
tunings w.r.t. the size and complexity of the database.
First, increasing the size of the reservoir from 100 to 2000
neurons yielded improved performance. Note that setting
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Table 3

Rates for all 10 classes of USPS data set

Training (%) Generalization (%)

Error rate 8.87 13.6

Success rate 85.0 79.1

Rejection rate 6.13 7.32

Time [ms]

8 ms

15 ms

N3

N2

N1

Fig. 10. Example of two triggering neurons giving rise to a third one

firing.
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tm (see Section 2.1) to a larger value (i.e. 20, instead of 3),
in the readout neurons only, induces a slower decrease of
their membrane potential. The neurons are thus tuned to
behave as integrators [33].

Another key point was to set a wider range of possible
delay values for the readout connections. Thus, allowing
the connections to be set in ½1; 100� instead of ½1; 20� also
improved the success rate, and reduced the rejection rate.
This let us think that the discretization of the delays is too
low to avoid coincidence of readout spikes. In order to
circumvent this effect, a test has been performed with a
different time step: 0.1ms instead of 1ms, on a reservoir
of 200 neurons. The result has been a 7% increase of the
generalization success rate, mainly coming from a decrease
ð�5:5%Þ of rejected patterns.

Although the multi-class case needs further investiga-
tion, we consider these preliminary results and observa-
tions as very encouraging. Hyper-parameters (mainly the
reservoir size and the connectivity probabilities) have to be
tuned. Hence their interactions with the neuron model
constants have to be controlled in order to keep a
convenient level of activity inside the reservoir. Under-
standing more deeply the activity and the effects of
modifying connectivity in the reservoir will hopefully help
to improve the classification performance. Nevertheless,
the concept is validated, as confirmed by the analysis of the
model behavior presented in the next two sections.

5. Polychronization

5.1. Cell assemblies and synchrony

A cell assembly can be defined as a group of neurons
with strong mutual excitatory connections. Since a cell
assembly tends to be activated as a whole once a subset of
its cells are stimulated, it can be considered as an
operational unit in the brain. Inherited from Hebb, current
thoughts about cell assemblies are that they could play a
role of ‘‘grandmother neural groups’’ as basis of memory
encoding, instead of the old debated notion of ‘‘grand-
mother cell’’, and that material entities (e.g. a book, a cup,
a dog) and, even more, mental entities (e.g. ideas or
concepts) could be represented by different cell assemblies.
However, although reproducible spike-timing patterns
have been observed in many physiological experiments,
the way these spike-timing patterns, at the millisecond
scale, are related to high-level cognitive processes is still an
open question.
Deep attention has been paid to synchronization of firing
times for subsets of neurons inside a network. The notion
of synfire chain [2,11], a pool of neurons firing synchro-
nously, can be described as follows: If several neurons
have a common post-synaptic neuron Nj and if they
fire synchronously then their firing will superimpose in
order to trigger Nj. However, the argument falls down if
the axonal transmission delays are to be considered, since
the incoming synapses of Nj have no reason to share a
common delay value. Synchronization appears to be a
too restrictive notion when it comes to grasp the full
power of cell assemblies processing. This point has been
highlighted by Izhikevich [14] who proposes the notion of
polychronization.
5.2. Polychronous groups

Polychronization is the ability of an SNN to exhibit
reproducible time-locked but not synchronous firing
patterns with millisecond precision, thus giving a new light
to the notion of cell assembly. Based on the connectivity
between neurons, a polychronous group is a possible
stereotypical time-locked firing pattern. For example, in
Fig. 10, if we consider a delay of 15ms from neuron N1 to
neuron N2, and a delay of 8ms from neuron N3 to neuron
N2, then neuron N1 emitting a spike at time t and neuron
N3 emitting at time tþ 7 will trigger a spike firing by
neuron N2 at time tþ 15 (supposing two coincident
incoming spikes are enough to make a neuron fire). Since
neurons of a PG have matching axonal conduction delays,
the group can be the basis of a reproducible spike-timing
pattern: Firing of the first few neurons with the right timing
is enough to activate most of the group (with a tolerance of
1ms jitter on spike-timing).
Since any neuron can be activated within several PGs, at

different times (e.g. neuron 76 in Fig. 11), the number of
coexisting PGs in a network can be much greater than its
number of neurons, thus opening possibility of huge
memory capacity. All the potential PGs in a reservoir
network of M neurons, depending on its topology and the
values of the internal transmission delays (that are kept
fixed), can be enumerated using a greedy algorithm of
complexity OðM2þF Þ, where F is the number of triggering
neurons to be considered. In the reservoir used for
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experiments on Izhikevich’s patterns (Section 4.1), we have
referenced all the possible PGs inherent in the network
topology, with F ¼ 3 triggering neurons (see Fig. 11 for
examples). We have detected 104 potentially activatable
PGs in a network of M ¼ 100 neurons. In similar
conditions, the number of PGs already overcomes 3000
in a network of M ¼ 200 neurons.

Our model proposes a way to confirm the link between
an input presentation and the activation of persistent spike-
timing patterns inside the reservoir, and the way we take
advantage of PGs for supervising the readout adaptation is
explained in the next section.

6. Reservoir internal dynamics

Since the number of PGs increases very rapidly when the
reservoir size grows (cf. Section 5.2), the dynamical
behavior of the network has been deeply examined only
for the two-class experiments on Izhikevich’s patterns,
where the network size remains small (104 PGs only).
All along the initialization, learning and generalization
phases, the reservoir internal dynamics has been analyzed
in terms of actually activated PGs. Fig. 12 presents
the evolution of PGs activation in experiments. The
evolution of activated PGs is entirely governed by STDP,
the only adaptation process acting inside the reservoir
network.
We observe that many PGs are frequently activated

during the initial random stimulation that generates a
strong disordered activity in the internal network (before
2000ms). At the beginning of the learning phase (which
goes from 2000ms to 17 000ms), many groups are
activated, and then, roughly after 5000ms, the activation
landscape becomes very stable. As anticipated, only a few
specific PGs continue to be busy. Small subsets of PGs can
be associated to each class: Groups 3, 41, 74, 75 and 83,
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switching to 85, fire for class 1, whereas groups 12, 36, 95,
sometimes 99, and 49, switching to 67, fire for class 2.
During the generalization phase (after 17 000ms), the main
and most frequently activated groups are those identified
during the learning phase. This observation supports the
hypothesis that PGs have become representative of the
class encoding realized by the multi-scale learning rule.

Several interesting observations can be reported. As
noticed by Izhikevich, there exist groups that start to be
activated only after a large number of repeated stimula-
tions (e.g. 41, 49, 67 and 85), whereas some other groups
stop their activation after a while (e.g. 5 and some others
[active until 4000/5000ms only], 49, 70, 83 and 99 [later]).
We can also observe that PGs specialize for one particular
class (later than 8000ms) instead of answering for both of
them, as they did first (mainly from 2000 to 5000ms).

An histogram representation of a subset of the 104
PGs (Fig. 13) points out the latter phenomenon. A very
interesting case is the PG number 95 which is first activated
by both example patterns, and then (around time 7500ms)
stops responding for class 1, thus specializing its activity
for class 2. Such phenomenon validates that synaptic
plasticity provides the network with valuable adaptability
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play the role of pre-synaptic neuron of a triggering connection producing a re
and highlights the importance of combining STDP with
delay learning.
The influence of active PGs on the learning process can

also be exhibited. We have recorded (Fig. 14) the indices
of the pre-synaptic neurons responsible for the application of
the output delay update rule, at each iteration where the
example pattern was not yet well classified (cf. Algorithm 1,
Section 3.2). For instance, neuron #42, which is repeatedly
responsible for delay adaptation, is one of the triggering
neurons of the PG number 12, activated for class 2 during
the training phase. One will notice that delay adaptation
stops before the learning phase is over, which means the
learning process is already efficient around 10 000ms. Such a
control could be implemented in the proposed algorithms, as
a heuristic for a better stopping criterion (rather than the
current ‘‘until a given maximum learning time is over’’).
Fig. 15 confirms the selection of active PGs during the

learning process, even on complex data. Although the
phenomenon is less precise, due to the high variability of
USPS patterns inside each class, it still remains observable:
After only five epochs of the learning phase, the activity of
many PGs has vanished and several of them are clearly
specialized for one class or the other.
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7. Conclusion

We have proposed a new model for RC, based on
a multi-timescale learning mechanism for adapting an SNN
to a classification task. The proof of concept is based
on the notion of polychronization. Under the effect of
synaptic plasticity (STDP), the reservoir network dynamics
induces the emergence of a few active PGs specific to the
patterns to be discriminated. The delay adaptation
mechanism of the readout neurons makes them capture
the internal activity so that the target class neuron fires
before the other ones, with an enforced time delay margin.
Adaptation to the task at hand is based on biological
inspiration. The delay learning rule is computationally easy
to implement and gives a way to supervise the overall
process. Performance on two-class discrimination tasks
is reasonably good, even with a small size of reservoir
network, on notoriously difficult patterns. Deeper investi-
gation on the interactions between the hyper-parameters
would help to improve the performance. A first track
consists in running the reservoir simulation with a smaller
time step for large and noisy databases.

While the notion of margin is important in modern
machine learning literature, it needs to be paired with some
form of regularization. We thus intend to also explore ways
to implement a regularization process in RC in the near
future. Another perspective is to adapt the method to
regression tasks or time series prediction in order to
stronger exploit the opportunity of temporal processing in
the reservoir. In future work we will test our classification
task on other RC models in order to compare the results of
our model to those of the literature, using, for instance, the
RC Toolbox available at http://www.elis.ugent.be/rct [38].
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