
Clustering Billions of Images with
Large Scale Nearest Neighbor Search

Ting Liu
tingliu@google.com

Charles Rosenberg
chuck@google.com

Google Inc., Mountain View, CA, USA

Henry A. Rowley
har@google.com

Abstract

The proliferation of the web and digital photography
have made large scale image collections containing bil-
lions of images a reality. Image collections on this scale
make performing even the most common and simple com-
puter vision, image processing, and machine learning tasks
non-trivial. An example is nearest neighbor search, which
not only serves as a fundamental subproblem in many more
sophisticated algorithms, but also has direct applications,
such as image retrieval and image clustering. In this paper,
we address the nearest neighbor problem as the first step
towards scalable image processing. We describe a scalable
version of an approximate nearest neighbor search algo-
rithm and discuss how it can be used to find near duplicates
among over a billion images.

1. Introduction
One of the most challenging areas in the field of com-

puter vision and image processing is scalability. As an ex-
ample, a modern image search engine may contain billions
of images, which makes some of the most common tasks
non-trivial. One such task is nearest neighbor search, which
is often seen as the first step for a variety image process-
ing problems, such as image clustering, object recognition
and classification. In this paper, we illustrate the usefulness
of large scale nearest neighbor search to tackle a real-world
image processing problem.

Very large scale image collections are difficult to orga-
nize and navigate. One operation which can facilitate this
task is the identification of near duplicate images in the col-
lection. Near duplicate images of popular items, such as
book covers, CD covers, and movie posters, appear fre-
quently on the web. This is because they are often scanned
or photographed multiple times with varying resolutions
and color balances. To tackle this problem at the scale of
the whole web is a very challenging task, one which needs
efficient, scalable, and parallelizable algorithms for locating
and clustering nearest neighbors in the image feature space.

In this work, we tackle the problem of finding approxi-
mate nearest neighbors for a repository of over one billion
(
�����

) images, and perform clustering based on these results.
To accomplish this, we introduce a parallel version of a
state of art approximate nearest neighbor search algorithm,
known as spill trees [11]. Existing spill tree algorithms scale
very well with both feature space dimensionality and data
set size, but break down when all of the data does not fit
into a single machine’s memory. We also present a new
parallel search method for the parallel spill trees. In addi-
tion to the scalable algorithms, we also report on interesting
patterns and statistics observed from the experiment. We
believe this work can be the basis of more active research in
large scale image processing.

2. Background
Nearest Neighbor Search Nearest neighbor search is a
subproblem in many machine learning and clustering algo-
rithms. Each object is described by a feature vector, of-
ten with many dimensions. Given a new object’s features,
the goal is to find the existing object which has the closest
feature vector according to some distance measure, such as
Euclidean distance. This has direct applications in numer-
ous areas, such as information retrieval [5], pattern recog-
nition, databases and data mining, image and multimedia
search [6].

Over the years, techniques for solving the exact and ap-
proximate � nearest neighbor (� -NN) problem have evolved
from doing a linear search of all objects, to � -D trees [7]
which do axis parallel partitions of the data, to metric trees
(or ball trees) [13] which split the data with arbitrary hyper-
planes, to spill trees [11] and LSH [8]. Unfortunately, these
methods are all designed to run on a single machine. For a
large scale image clustering problem like ours, which can-
not fit on a single machine, the traditional algorithms simply
cannot be applied. One way to solve this problem is to store
the data on disk, and load part of the data into main memory
as needed. Although there exist sophisticated paging algo-
rithms, these types of algorithms are far slower than mem-
ory based methods. An alternate solution is to use multiple

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

������ 	�	
�
 �������� ��������
������
��������

���� ���������� ��
A

overlapping buffer

L LRLL

v.lpv v.rpv

u

τ τ

(a) (b)
Figure 1. (a) Overlap buffer. (b) Hybrid spill
tree. Non-overlap nodes are black, and over-
lap nodes are white.

machines simultaneously, and perform the � -NN search in
parallel. In this work, we use spill trees as a starting point,
and adapt the spill tree algorithms to work in parallel. We
next review spill trees, then introduce our parallel version
of spill trees.

Spill Trees Spill trees are a variant of metric trees which
support efficient approximate � -NN searches. Unlike met-
ric trees, the children of a spill tree node can share objects.
Formally, we use � to denote a node in the spill tree, and
use ����� � and ���� !� to denote its left and right children. We
first choose two pivots �����#"$� and ���� %"�� , and find the deci-
sion boundary & that goes through the midpoint ' between
the pivots. The partition procedure of a metric tree implies
that point sets of ����� � and �(��)� are disjoint, separated by the
decision boundary & , as shown in Figure 1(a). In a spill tree,
the splitting criteria is relaxed to allow overlaps between the
two children. We define two new separating planes, &*& and
&,+ , both of which are parallel to and at distance - from & .
Then, all the objects to the right of plane &,& belong to the
child �(��)� , and all the objects to the left of plane &,+ belong
to the child ���.� � . Since all objects that fall in the region be-
tween &*& and &*+ are shared by �(��� � and ���.)� , this region
is called overlap buffer, and we call /0- the overlap buffer
width.

A spill tree based � -NN search uses defeatist search,
which descends the tree quickly using the decision bound-
aries at each level without backtracking [11]. In practice,
hybrid spill trees are used which are a combination of spill
trees and metric trees, where a decision is made at each
node whether to use an overlap node or non-overlap node.
We only use defeatist search on overlap nodes, and for non-
overlap nodes, we still do backtracking as in conventional
metric trees, as illustrated in Figure 1(b). Notice, for hybrid
spill trees, - is the critical parameter for both tree generation
and search. In general, the greater - is, the more accurate
and the slower the search algorithm becomes.

The above algorithms are serial algorithms, running on
a single machine and requiring random access to the entire
set of objects to be placed in the tree. This work focuses on
three extensions to the above work: making the tree build-
ing algorithms work in parallel to handle large data sets
which cannot fit on a single machine, doing a large number

of queries efficiently in parallel, and automatically setting
the overlap buffer size.

Although we have focused on extending hybrid spill
trees, there exist other algorithms for fast approximate near-
est neighbor search. Among the most popular is locality
sensitive hashing (LSH) [8]. One of the deficiencies of this
algorithm is the number of parameters which need to be
tuned for optimal performance in different domains. Some
of the parameters which need to be adjusted and are critical
to the accuracy and speed are: the number of LSH tables
to use, the number of bins in each table, and the stop value
after finding too many neighbors. The difficulty of setting
these LSH parameters is one reason that its efficiency often
does not match that of hybrid spill trees [11]. Another issue
with LSH is that if you cannot find enough neighbors in the
bins examined, there is no way to expand the set.

Image Features Before building a search tree of images,
we need to define how the images will be represented as
feature vectors. We first normalize an image by scaling
the maximum value of each color channel to cover the full
range of intensities, and then scale the image to a fixed
size of 1�24351�2 pixels. From here, one obvious represen-
tation might be the image pixels themselves, however this
would likely be quite sensitive to noise and other small im-
age variations. Instead we used an adaptation of the tech-
nique presented by [9], in which the image is converted to
the Haar wavelet domain, all but the largest 1 � magnitude
coefficients are set to

�
, and the remaining coefficients are

quantized to 6 � . The feature vector as described is quite
large, 1728341�293;: , so random projection [1] using random
unit-length vectors is used to reduce the dimensionality of
the feature vector to

�����
dimensions. The average of each

color channel (the ranges were
�=<>�

,
<?� �#@7AB1 <5� �#@7AB1 , and<?� �#@�/�: <C� �#@�/�: for Y, I and Q, respectively) and the aspect

ratio DFE�GHDJI>KML (range
�N<J�

) are appended to this feature
vector for a total of 104 dimensions. No effort was made to
tune the relative scalings of the features. The nearest neigh-
bor algorithm described in this paper is designed to handle
generic feature vectors, and is not restricted to this particu-
lar representation.

Parallel Computing Framework All of the parallel al-
gorithms described will be expressed in terms of MapRe-
duce operations [4], which provide a convenient framework
hiding many of the details necessary to coordinate process-
ing on a large number of machines. An operation in the
MapReduce framework takes as input a collection of items
in the form of key-value pairs, and produces a collection of
output in the same format. It has three basic phases, which
are described in Figure 2. In essence, an operation in the
MapReduce framework is completely described by the map
operation, the shuffle operation, and the reduce operation.
The algorithms below will be described in terms of these

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

Map A user-defined Map Operation is performed on each in-
put key-value pair, optionally generating one or more
key-value pairs. This phase works in parallel, with the
input pairs being arbitrarily distributed across machines.

Shuffle Each key-value pair generated by the Map phase is
distributed to a collection of machines, based on a user-
defined Shuffle Operation of their keys. In addition,
within each machine the key-value pairs are grouped by
their keys.

Reduce A user-defined Reduce Operation is applied to the
collection of all key-value pairs having the same key, op-
tionally producing one or more output key-value pairs.

Figure 2. The three phases which make up
the MapReduce framework. All steps run in
parallel on many machines.

operations, however this should not be taken as the only
way to implement these algorithms.

3. Algorithms
Building Hybrid Spill Trees in Parallel The main chal-
lenge in scaling up the hybrid spill tree generation algorithm
is that it requires all the objects’ feature vectors to be in
memory, and random access to this data. When the number
of objects becomes large enough, it is no longer possible to
store everything in memory. For our domain, with 104 float-
ing point numbers to represent each object, or around 416
bytes, this means we could typically fit eight million objects
comfortably on a machine with 4GB of memory. In a col-
lection of over a billion images, there are nearly a thousand
times as many image as can fit into one machine’s machine.

The first question is how to partition the data. One pos-
sibility is to randomly partition the data, building a sepa-
rate hybrid spill tree for each partition. However, at query
time, this would require each query be run through all the
trees. While this could be done in parallel, the overall query
throughput would be limited.

Another alternative is to make a more intelligent parti-
tion of the data. We propose to do this through the use of
a metric tree structure. We first create a random sample of
the data small enough to fit on a single machine, say

� EPO
of the data, and build a metric tree for this data. Each of the
leaf nodes in this top tree then defines a partition, for which
a hybrid spill tree can be built on a separate machine. The
overall tree consisting of the top tree along with all the leaf
subtrees can be viewed conceptually as a single hybrid spill
tree, spanning a large number of machines.

At first glance it might appear that the top tree should
also be a spill tree, because of the benefits of not needing
to backtrack during search. However, a negative aspect of
spill trees is that objects appear in multiple leaf subtrees. In
practice however we found that this data duplication lead to
an unacceptable increase in the total storage required by the

Sample Data Input is all the objects, output is a sampled sub-
set for building the top tree.

Map For each input object, output it with probabilityQSRUT
.

Shuffle All objects map to a single machine.

Reduce Copy all objects to the output.

Build Top Tree On a single machine, build the top tree using
the standard metric tree building algorithm as described
in [11], with an upper bound V and lower bound W on
the number of objects in each leaf node.

Partition Data and Create Leaf Subtrees Input is all the
objects, output is the set of leaf subtrees.

Map For each object, find which leaf subtree number it
falls into, and output this number as the key along
with the object.

Shuffle Each distinct key is mapped to a different ma-
chine, to collect the data for each leaf subtree.

Reduce For all the objects in the leaf subtree, use the
serial hybrid spill tree algorithm [11] to create the
leaf subtree.

Figure 3. Building a parallel hybrid spill tree.

system. The resolution was to force the top tree to be a met-
ric tree, and to make modifications to the search procedure
which will be described in the next subsection.

The metric tree building procedure needs a stopping con-
dition for its leaves. Typically the condition is an upper
bound on the leaf size. In order for each partition to fit on
a single machine, we set the upper bound X such that the
expected number of objects X5YZO which will fall into a sin-
gle leaf subtree can fit on a single machine. We typically set
X[Y$O a factor of two or more smaller than the actual limit,
to allow for variability in the actual number of objects end-
ing up in each leaf. In addition we set a lower bound on the
number of nodes. The lower bound & is set empirically to
prevent individual partitions from being too small, typically
we use a value of five.

The algorithm as described so far is implemented in a
sequence of two MapReduce operations and one sequential
operation, as shown in Figure 3.

Efficient Queries of Parallel Hybrid Spill Trees After
the trees have been built, they can be queried. As men-
tioned earlier, the top tree together with the leaf subtrees can
be viewed as one large hybrid spill tree. The normal way
to query such a tree allows for backtracking through non-
overlap nodes, such as those which appear in the top tree.
However such an approach would be expensive to imple-
ment since the entire tree is not stored on a single machine.
Instead, we speculatively send each query object to mul-
tiple leaf subtrees when the query appears to be too close
to the boundary. This is effectively a run-time version of

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

Find Neighbors in Each Leaf Subtree Input is the set of
query objects, output is the \ -NN lists for each query ob-
ject for each subtree the query was routed to.

Map For each input query, compute which leaf subtree
numbers it falls into. At each node, the query may
be sent to both children if it falls within the overlap
buffer width of the decision plane. Generate one
key-value pair for each leaf subtree to be searched.

Shuffle Each distinct key is mapped to a different ma-
chine, grouping the data for each leaf subtree so
they can be searched in parallel.

Reduce The standard hybrid spill tree search is used for
the objects routed to each leaf subtree, and the \ -
NN lists for each query object are generated.

Combine \ -NN Lists Inputs are \ -NN lists for each object
in each leaf subtree, outputs merged \ -NN list for each
query.

Map Copy each query, \ -NN list pair to the output.

Shuffle The queries (object numbers) are partitioned
randomly by their numerical value.

Reduce The \ -NN lists for each query are merged,
keeping only the \ objects closest to the query.

Figure 4. Batch � -NN search.

the overlap buffer which was previously only applied at tree
building time. The benefit of this is that fewer machines
are required to hold the leaf subtrees (because there is no
duplication of objects across the subtrees), but with the ex-
pense that each query may be sent to several leaf trees dur-
ing search. In practice we can adjust the overlap buffer size
to control the amount of computation done at query time.

For our application of image clustering, we need the � -
NN lists for every object, so we organize the searches as a
batch process, which takes as input a list of queries (which
will be every image), and produces their � -NN lists. The
process is described in Figure 4, using two MapReduces.

Parameter Estimation As mentioned earlier, one of the
critical parameters for spill tree generation and search is
the overlap buffer width. Ideally, the overlap buffer width
should be large enough to always include the � nearest
neighbors of a point, because this will guarantee that they
will always be found. However, a smaller value may be ac-
ceptable if we are willing to tolerate a certain number of er-
rors. Below we describe an algorithm to estimate the ideal
overlap buffer size, which is then relaxed in practice (by
making the buffer smaller) to improve speed.

To estimate the overlap buffer size, we need to estimate
+=] , the average distance (averaged over the objects in set ^)
to their nearest neighbors. Following the heuristic described
in [2] (after Equation 8), if we make the approximation that
points are uniformly distributed, we expect that the number
of objects falling within a certain radius of a given object is

proportional to the density of the objects (which is in turn
proportional to the number of samples _]) raised to the
power of the dimensionality of the manifold ` on which the
objects are distributed. In particular, if we fix the expected
number of points to � , then the radius of interest is +a] ,
giving the following equation:

�9bc_] YP+]ed f +]hg i_]MjlkUd (1)

where i is a proportionality constant. To compute +a]nmpo o
for the whole set of objects ^rqtsus , we first need to estimate
the constant i and the effective dimensionality ` . These
can be estimated by generating a number of different sized
subsets of the data, typically between 20 and 500 samples.
For each of these sets, we can find the nearest neighbor of
each point by computing all _]ev distances, and recording
the average distance to the nearest neighbor of each point.
By taking the log of both sides of the expression for +] in
Equation 1, we can then estimate i and ` with linear regres-
sion. Plugging these values along with the full sample set
size into Equation 1, we arrive at an estimate of the average
nearest neighbor distance over the whole set.

At first it might appear that we should set the overlap
buffer width to +] mpo o . However, we need to take into ac-
count that the partition hyperplanes are unlikely to be per-
pendicular to the vector between objects which are +a] mpo o
apart. According to the Johnson-Lindenstrauss lemma [10],
after randomly projecting a point from the effective dimen-
sionality ` of the samples down to the one dimensional
space normal to the partitioning hyperplane, the expected
distance will be as follows:

/0- g +] mpo ow ` (2)

This yields an estimate of the overlapping buffer size.
Because our original assumption of a uniform distribution
is the worst case, we usually use a smaller value for the
overlap buffer than what is computed above for greater effi-
ciency. This procedure provides an efficient method to get
close to the right value.

4. Experiments
Data Sets There were two main data sets of images used
for these experiments, one in which the clusters were hand
labeled for setting various algorithm parameters, and the
second larger set which is our target for clustering.

The labeled set was generated by performing text-based
image search queries on several large search engines and
collecting the first 1 � results for each query. The queries
were chosen to provide a large number of near duplicate im-
ages. Queries for movie posters, CDs, and popular novels
worked well for this. The duplicate sets within the results

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

Map Input is the \ -NN list for each image, along with the dis-
tances to each of those images. We first apply a threshold
to the distances, shortening the neighbor list. The list is
then treated as a prototype cluster, and reordered so that
the lowest image number is first. The generated output
consists of this lowest number as the key, and value is
the full set. Any images with no neighbors within the
distance threshold are dropped.

Shuffle The keys (image numbers) are partitioned randomly
by their numerical value.

Reduce Within a single set of results, the standard union-find
algorithm [3] is used to combine the prototype clusters.

Figure 5. Algorithm for initial clustering.

of each query were manually labeled. In addition, 1000 im-
ages were chosen at random to represent non-duplicate im-
ages. The full collection consisted of 3385 images, in which
each pair of images is labeled as either a duplicate or not.

The second much larger set of images consisted of nearly
1.5 billion images from the web (hereafter the 1.5B image
set). This was our target for clustering. We have no way of
knowing in advance how many of these images are dupli-
cates of one another.

Clustering Procedure Most of the work described so far
was concerned with efficiently finding the � nearest neigh-
bors of points, either for single points or in a batch mode. In
order to adapt this for clustering, we compute the � nearest
neighbors for all images in the set and apply a threshold to
drop images which are considered too far apart. This can be
done as a MapReduce operation as shown in Figure 5.

The result of this algorithm is a set of prototype clusters,
which further need to be combined. Once singleton images
are dropped in the 1.5B image set, we are left with fewer
than 200 million images, which is a small enough set to run
the final union-find algorithm on a single machine.

Clustering Results To evaluate the image features, we
first performed clustering on the smaller labeled data set.
For each pair of images, we compute the distance between
their feature vectors (since this is a small enough data set
this is practical). As the distance threshold is varied, we
compute clusters by joining all pairs of images which are
within the distance threshold of one another. Each image
pair within these clusters is then checked against the man-
ual labelling. The results are shown in Figure 6. From this
graph, along with manual examination of the clusters, we
determined that a distance threshold of 0.45 works well.
The graph also shows the result of using at most 10 near-
est neighbors (instead of all within the distance threshold),
and the approximate 10 nearest neighbor lists generated by
the spill tree algorithm and hybrid spill tree algorithms. All
of these results are quite close in accuracy, although the
spill tree-based algorithms are almost 20 times faster for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

A
cc

ur
ac

y
on

 D
up

lic
at

e
Im

ag
es

Error on Nonduplicate Images

ROC vs. Distance Threshold

 distance = 0.45

All Neighbors
Naive 10-NN

Spill Tree 10-NN
Hybrid tree 10-NN

Figure 6. Plot of the error rate on dupli-
cate image pairs vs. the error rate on non-
duplicate image pairs on the small labeled
test set.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
um

be
r o

f C
lu

st
er

s

Number of Images in Cluster

Number of Clusters vs. Number of Images in Cluster

Figure 7. Histogram of cluster sizes for the
1.5B image set. Note the logarithmic scale
on both axes.

this smaller set. This difference in speed will grow as the
size of the set grows.

We then applied the parallel nearest neighbor finder and
clustering procedure to the 1.5B image set. The entire pro-
cessing time from start to finish was less than 10 hours on
the equivalent of 2000 CPUs. Much of that time was spent
with just a few machines running, as the sizes of the leaf
subtrees was not controlled directly (this will be a direc-
tion for future work). Although not discussed here, the
computation of the features themselves was also done us-
ing the MapReduce framework, and took roughly the same
amount of time as the clustering (but with fewer machines).
The resulting distribution of cluster sizes is shown in Fig-
ure 7. Around 50 million clusters are found, containing
nearly 200 million images. The most common cluster size
is two, which is perhaps not surprising given the number of
thumbnail-fullsize image pairs which exist on the web.

As there is no ground truth labeling for clusters in this
larger set, we could not to objectively evaluate the accuracy
of the clustering. For a subjective evaluation, we show sub-
sets of some of the actual clusters in Figure 8. As can be
seen the images tend to be quite similar to one another, al-

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

a: 2 images

b: 59 images

c: 860 images

d: 79 images

e: 77009 images

f: 144 images

g: 1115 images

Figure 8. Selection of clusters found by the
algorithm. Note the many different sizes of
the object in B, and the different words on the
same pattern in F and G, as well as additional
visually similar false matches in D.

though in some cases images which are quite far apart are
grouped together. It is expected that by combining these re-
sults with the results of a text query, it will be possible to
get more precise clusters when displaying results to users.
Another alternative will be to apply a postprocessing step to
cut clusters which are “long and thin” into smaller clusters.

5. Summary and Future Work
We have described an algorithm for building parallel dis-

tributed hybrid spill trees which can be used for efficient
online or batch searches for nearest neighbors of points in
high dimensional spaces. Although at first glance a parallel
extension of the original spill tree method seems straightfor-
ward, there were many non-trivial issues that needed to be
addressed. These included how to create a roughly balanced
tree, how to automatically find the intrinsic dimensionality
and other parameters, how to adapt the hybrid tree to avoid
constant communication between machines. This algorithm
has enabled us to perform clustering on a set of over a bil-
lion images with the goal of finding near duplicates. To our
knowledge, this is the largest image set that has been pro-
cessed in this way.

We choose to apply the algorithm to the image near-
duplicate domain because it is relatively straightforward
and well understood, allowing us to focus on scaling to
larger data sets. However the algorithm does not depend
on the types of objects or the application; all it requires is
that the objects be described by a feature vector in a met-
ric space. Because of this, we look forward to seeing its

application in a wide variety of domains, for instance face
recognition, OCR, matching SIFT descriptors [12], and ma-
chine learning and classification problems. All of these ap-
plications have online settings in which a query object is
presented and we want to find the nearest neighbor, and of-
fline or batch settings in which we want to find the nearest
neighbors of every point in our collection.

References
[1] E. Bingham and H. Mannila. Random projection in di-

mensionality reduction: applications to image and text data.
In Knowledge Discovery and Data Mining, pages 245–250,
2001.

[2] K. L. Clarkson. Nearest-neighbor searching and metric
space dimensions. In T. Darrell, P. Indyk, G. Shakhnarovich,
and P. Viola, editors, Nearest-Neighbor Methods for Learn-
ing and Vision: Theory and Practice. MIT Press, 2006.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (Second Edition). McGraw-Hill,
2002.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In Symposium on Operating Sys-
tem Design and Implementation, San Francisco, CA, Dec.
2004.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

[6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video con-
tent: the qbic system. IEEE Computer, 28:23–32, 1995.

[7] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algo-
rithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3(3):209–
226, September 1977.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the 25th
VLDB Conference, Edinburg, Scotland, 1999.

[9] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast mul-
tiresolution image querying. In Proceedings of SIGGRAPH,
pages 227–286, 1995.

[10] W. B. Johnson and J. Lindenstrauss. Extensions of lipshitz
mapping into hilbert space. In Conference in Modern Anal-
ysis and Probability, volume 26, pages 189–206. American
Mathematical Society, 1984.

[11] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation
of practical approximate nearest neighbor algorithms. In Ad-
vances in Neural Information Processing Systems, Vancou-
ver, BC, Canada, 2004.

[12] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, Nov. 2004.

[13] A. W. Moore. The Anchors Hierarchy: Using the Triangle
Inequality to Survive High-Dimensional Data. In Twelfth
Conference on Uncertainty in Artificial Intelligence. AAAI
Press, 2000.

IEEE Workshop on Applications of Computer Vision (WACV'07)
0-7695-2794-9/07 $20.00 © 2007

