
Online Multiclass Learning by Interclass Hypothesis Sharing

Michael Fink FINK@CS.HUJI.AC.IL

Center for Neural Computation, The Hebrew University, Jerusalem 91904, Israel

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

School of Computer Science & Engineering, The Hebrew University, Jerusalem 91904, Israel

Yoram Singer SINGER@GOOGLE.COM

Google Inc., 1600 Amphitheatre Parkway, Mountain View CA 94043, USA

Shimon Ullman SHIMON.ULLMAN@WEIZMANN.AC.IL

Weizmann Institute, Rehovot 76100, Israel

Abstract

We describe a general framework for online mul-

ticlass learning based on the notion of hypoth-

esis sharing. In our framework sets of classes

are associated with hypotheses. Thus, all classes

within a given set share the same hypothesis.

This framework includes as special cases com-

monly used constructions for multiclass catego-

rization such as allocating a unique hypothesis

for each class and allocating a single common

hypothesis for all classes. We generalize the mul-

ticlass Perceptron to our framework and derive a

unifying mistake bound analysis. Our construc-

tion naturally extends to settings where the num-

ber of classes is not known in advance but, rather,

is revealed along the online learning process. We

demonstrate the merits of our approach by com-

paring it to previous methods on both synthetic

and natural datasets.

1. Introduction

A Zoologist in a research expedition is required to identify

beetle species. There are over 350, 000 different known

beetle species and new species are being discovered all the

time. In this paper we describe, analyze, and experiment

with a framework for multiclass learning aimed at address-

ing our Zoologist’s classification task. In the multiclass

problem we discuss, the learner is required to make pre-

dictions on-the-fly while the identity of the target classes is

Appearing in Proceedings of the 23
rd International Conference

on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

incrementally revealed as the learning proceeds. We thus

use online learning as the learning apparatus and analyze

our algorithms within the mistake bound model. In online

learning we observe instances in a sequence of trials. After

each observation, we need to predict the class of the ob-

served instance. To do so, we maintain a hypothesis which

scores each of the candidate classes and the predicted label

is the one attaining the highest score. Once a prediction is

made, we receive the correct class label. Then, we may up-

date our hypothesis in order to improve the chance of mak-

ing an accurate prediction on subsequent trials. Our goal is

to minimize the number of online prediction mistakes.

Our solution builds on two commonly used constructions

for multiclass categorization problems. The first dedicates

an individual hypothesis for each target class (Duda & Hart,

1973; Vapnik, 1998) and is common in applications where

the input instance is class independent. We refer to this

construction as the multi-vector model. The second con-

struction, abbreviated as the single-vector model, main-

tains a single hypothesis shared by all the classes while

the input is class dependent. The latter construction is

used in generalized additive models (Hastie & Tibshirani,

1995), boosting algorithms (Freund & Schapire, 1997), and

structured multiclass problems (Collins, 2002). A common

thread of the single-vector and the multi-vector models is

that both were developed under the assumption that the set

of target classes is known in advance. One of the goals of

this paper is to provide a unified framework which encom-

passes these two models as special cases while lifting the

requirement that the set of classes is known before learning

takes place.

In the multiclass learning paradigm we study in this pa-

per, sets of classes are associated with hypotheses. Thus,

all classes within a given set share the same hypothe-

Online Multiclass Learning by Interclass Hypothesis Sharing

sis. This framework naturally includes as special cases

the two models discussed above. After introducing our

new multiclass learning framework, we describe a gener-

alization of the Perceptron algorithm (Rosenblatt, 1958)

to our framework and derive a unifying mistake bound

analysis. Our construction naturally extends to settings

where the number of classes is not known in advance but

rather revealed along the online learning process. The

analysis we present is applicable to both the single-vector

model and the multi-vector model and underscores a nat-

ural complexity-performance tradeoff. The complexity of

the multi-vector model increases linearly with the number

of classes while the model complexity of the single-vector

approach is invariant to the number of classes. However,

the higher complexity of the multi-vector model is occa-

sionally necessary for achieving more accurate predictions.

The generalized Perceptron algorithm we derive can be

viewed as an automatic mixing mechanism between the

single-vector and the multi-vector models, as well as any

model that shares hypotheses between classes. The per-

formance of the generalized Perceptron is competitive with

any hypothesis sharing model and in particular the single

and multi vector models. Our construction also allows to

share features across classes via a feature mapping mecha-

nism. For example, our dextrous Zoologist can share fea-

ture mappings and hypotheses between groups of classes

such as desert dweller beetles or terrestrial beetles. While

our framework is especially appealing in settings where the

classes are revealed on-the-fly, it can be used verbatim in

standard multiclass problems. We illustrate the merits of

our hypotheses sharing framework in a series of experi-

ments with synthetic and natural datasets.

2. Problem Setting

Online learning is performed in a sequence of trials. At

trial t the algorithm first receives an instance xt ∈ R
n and

is required to predict a class label associated with that in-

stance. The set of all possible labels constitutes a finite set

denoted by Y . Most if not all online classification algo-

rithms assume that Y is known in advance. In contrast, in

our setting the set Y is incrementally revealed as the on-

line learning proceeds. We denote by Yt the set of unique

labels observed on rounds 1 through t − 1. After the on-

line learning algorithm predicts the class ŷt, the true class

yt ∈ Y is revealed and the set of known classes is updated

accordingly, Yt+1 = Yt ∪ {yt}. We say that the algorithm

makes a prediction mistake if ŷt 6= yt and the class yt is not

a novel class, yt ∈ Yt. We thus exclude from our mistake

analysis all the rounds on which a label is observed for the

first time. The goal of the algorithm is to minimize the total

number of prediction mistakes it makes, denoted by M . To

achieve this goal, the algorithm may update its prediction

mechanism at the end of each trial.

The prediction of the algorithm at trial t is determined by

a hypothesis, ht : R
n × Y → R, which induces a score

for each of the possible classes in Y . The predicted label

is set to be, ŷt = arg maxr∈Yt
ht(xt, r) . To evaluate

the performance of a hypothesis h on the example (xt, yt)
we need to check whether h makes a prediction mistake,

namely determine if ŷt 6= yt ∈ Yt. To derive bounds on

prediction mistakes we use a second way for evaluating the

performance of h which is based on the multiclass hinge-

loss function, defined as follows. If the current class is not

novel (yt ∈ Yt), then we set

ℓt(h) =

(

1− h(xt, yt) + max
r∈Yt\{yt}

h(xt, r)

)

+

,

where (a)+ = max{a, 0}. Since in our setting the algo-

rithm is not penalized for the first instance of each class,

we simply set ℓt(h) = 0 whenever yt /∈ Yt. The term

h(xt, yt) − maxr h(xt, r) in the definition of the hinge-

loss is a generalization of the notion of margin from bi-

nary classification. The hinge-loss penalizes a hypothesis

for any margin less than 1. Additionally, if ŷt 6= yt then

ℓt(h) ≥ 1. Thus, the cumulative hinge-loss suffered over a

sequence of examples upper bounds the number of predic-

tion mistakes, M .

Recall that the prediction on each trial is based on a hy-

pothesis which is a function from R
n × Y into the reals.

In this paper we focus on hypotheses which are parameter-

ized by weight vectors. A common construction (Duda &

Hart, 1973; Vapnik, 1998; Crammer & Singer, 2003) of a

hypothesis space is the set of functions parameterized by

|Y| vectors W = {wr : r ∈ Y} where,

h(x, r) = 〈wr,x〉 .

That is, h associates a different weight vector with each

class and the prediction at trial t is,

ŷt = argmax
r∈Yt

〈wr
t ,xt〉 .

To obtain a concrete online learning algorithm we must de-

termine the initial value of each weight vector and the up-

date rule used to modify the weight vectors at the end of

each trial. Following Kesler’s construction (Duda & Hart,

1973; Crammer & Singer, 2003), we address the multiclass

setting using a Perceptron update. The multiclass Percep-

tron algorithm initializes all the weight vectors to be zero.

On trial t, if the algorithm makes a prediction mistake,

ŷt 6= yt ∈ Yt, then the weight vectors are updated as fol-

lows,

w
yt

t+1 = w
yt

t + xt , w
ŷt

t+1 = w
ŷt

t − xt ,

Online Multiclass Learning by Interclass Hypothesis Sharing

and wr
t+1 = wr

t for all r ∈ Yt \ {yt, ŷt}. In words,

we add the instance xt to the weight vector of the cor-

rect class and subtract xt from the weight vector of the

(wrongly) predicted class. We would like to note in passing

that other Perceptron-style updates can be devised for mul-

ticlass problems (Crammer & Singer, 2003). Finally, if we

do not make a prediction mistake then the weight vectors

are kept intact. We refer to the above construction as the

multi-vector method.

Several mistake bounds have been derived for the multi-

vector method. In this paper we obtain the following mis-

take bound, which follows as a corollary from our anal-

ysis in Sec. 4. Let (x1, y1), . . . , (xm, ym) be a sequence

of examples and define R = 2maxt ‖xt‖2. Let h⋆ be

a fixed hypothesis defined by any set of weight vectors

U = {ur : r ∈ Y}. We denote by

L =

m
∑

t=1

ℓt(h
⋆) , (1)

the cumulative hinge-loss of h⋆ over the sequence of exam-

ples and by

C = R2
∑

r∈Y

‖ur‖2 , (2)

the complexity of h⋆. Then the number of prediction mis-

takes of the multi-vector method is at most,

M ≤ L + C +
√

LC . (3)

The mistake bound in Eq. (3) consists of three terms: the

loss of h⋆, the complexity of h⋆, and a sub-linear term

which is often negligible. We would like to underscore that

the complexity term increases with the number of classes

since we have a different weight vector for each class.

We now describe an alternative construction and an ac-

companying learning algorithm which maintains a single-

vector. We show in the sequel that the second construction

entertains a mistake bound of the form given in Eq. (3).

However, the complexity term in this bound does not in-

crease with the number of classes, in contrast to the com-

plexity term for the multi-vector method given in Eq. (2).

The second multiclass construction uses a single weight

vector, denoted w, for all the classes, paired with a class-

specific feature mapping, φ : R
n × Y → R

d. That is, the

score given by a hypothesis h for class r is,

h(x, r) = 〈w,φ(x, r)〉 .

We denote by wt the single weight vector of the algorithm

at trial t and its prediction is thus,

ŷt = argmax
r∈Yt

〈wt,φ(x, r)〉 .

This construction is common in generalized additive mod-

els (Hastie & Tibshirani, 1995), multiclass versions of

boosting (Freund & Schapire, 1997), and has been popu-

larized lately due to its role in prediction with structured

output where the number of classes is exponentially large

(Collins, 2002; Taskar et al., 2003; Tsochantaridis et al.,

2004; Shalev-Shwartz et al., 2004). Following a simple

Perceptron-based mechanism we initialize w1 = 0 and

only update w if we have a prediction mistake, ŷt 6= yt ∈
Yt. The update takes the form,

wt+1 = wt + φ(xt, yt)− φ(xt, ŷt) .

We refer to the above construction as the single-vector

method.

The single-vector method is based on a class specific fea-

ture mapping φ. Usually, this class specific mapping relies

on an a-priori knowledge of the set of possible classes Y .

This paper emphasizes the setting where the identity of the

target classes is incrementally revealed only during the on-

line stream. Since Y is not known a-priori, we apply a class

specific feature mapping which is data dependent. For each

class r ∈ Y , let pr ∈ R
n be the first instance of class r in

the sequence of examples. We define φ(xt, r) to be the

vector in R
n whose i’th element is,

φi(xt, r) = xt,i pr
i . (4)

That is, φ(xt, r) is the coordinate-wise product between

xt and pr. In Sec. 5 we describe additional data-dependent

constructions of φ.

A relative mistake bound can also be derived for the

single-vector method. Specifically, in Sec. 4 we show

that the bound in Eq. (3) holds where now R =
2maxt,r ‖φ(xt, r)‖2, the competing hypothesis h⋆ is pa-

rameterized by any single weight vector u, and the com-

plexity of h⋆ is,

C = R2‖u‖2 . (5)

The complexity term for the single-vector method does not

increase with the number of classes, in contrast to the com-

plexity term for the multi-vector method given in Eq. (2).

However, the value of the cumulative loss, L, in the multi-

vector method is upper bounded by the cumulative loss in

the single-vector method. This follows from the fact that

the hypotheses space employed by the multi-vector method

is richer than that of the single-vector method. To see this,

note that given any single weight vector u, we can con-

struct the set of multiple weight vectors U = {ur : r ∈ Y}
where ur

i = uip
r
i . Using this construction we observe that

〈u,φ(xt, r)〉 = 〈ur,xt〉 and therefore the cumulative loss

of u in the single-vector method equals to the cumulative

loss of U = {ur : r ∈ Y} in the multi-vector method.

The prevailing question is which of the two approaches

would perform better in practical applications. Indeed, our

Online Multiclass Learning by Interclass Hypothesis Sharing

0 2000 4000 6000 8000
0

100

200

300

400

500

600

700

800

900

1000

trial

M
i
s
t
a
k
e
s

Multi
Single
Hybrid

0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

trial

M
i
s
t
a
k
e
s

Multi
Single
Hybrid

Figure 1. The performance of the single-vector and the multi-

vector methods described in Sec. 2, and a hybrid method de-

scribed in Sec. 3 on two synthetic datasets.

experiments indicate that on certain datasets the single-

vector method outperforms the multi-vector approach

while on other datasets an opposite effect is exhibited and

the richer model complexity of the multi-vector method is

necessary. One of the main contributions of this paper is a

mixing method, whose performance on any dataset is com-

petitive with the best of the aforementioned alternatives.

To illustrate the difference between the single-vector and

multi-vector methods we have constructed two synthetic

datasets. Both datasets contain 8, 000 instances from

{−1, 1}64 and the set of classes is Y = {0, . . . , 15}. In the

first dataset, the class of an instance x is the value of the

binary number (x1, x2, x3, x4). In the second dataset, the

class of an instance x is r if x4r+1 = . . . = x4r+4 = 1 (we

made sure that for each instance, only one class satisfies

the above). We presented both datasets to the single-vector

and multi-vector methods. The cumulative number of mis-

takes of the two algorithms as a function of the trial number

is depicted in Fig. 1. As can be seen from the figure, the

single-vector method clearly outperforms the multi-vector

method on the first dataset while the opposite phenomenon

is exhibited in the second dataset. This difference can be at-

tributed to the interplay between the loss and the complex-

ity terms in our mistake bounds. Indeed, in the first dataset,

the single-vector model is capable of achieving zero cumu-

lative loss by setting the first 4 elements of u to be 1
2 and

the rest to be zero. Our mistake bound for the single-vector

method reduces to 2 · 64 · 1 = 128. In contrast, the mis-

take bound for the multi-vector method is 16 times higher

and equals to 2048. In the second dataset, the single-vector

model is not rich enough for perfectly predicting the cor-

rect labels. Therefore, the number of mistakes sustained by

the single-vector method increases linearly with the num-

ber of examples. In this dataset, the opulent complexity of

the multi-vector method is beneficial.

3. Mixing the Single and Multi Vector

Methods

In this section we describe a hybrid method whose perfor-

mance on any dataset is competitive with the best of the

two alternative multiclass approaches described in the pre-

vious section. Moreover, we show that on certain datasets

the hybrid method outperforms both the single-vector and

multi-vector methods.

The hypotheses of the hybrid method are parameterized by

a set of |Y| + 1 weight vectors. As in the single-vector

method we maintain one weight vector, denoted wY , which

is shared among all classes in Y . As in the multi-vector

method the remaining |Y| weight vectors are specific to

each of the classes. The score of h for class r is,

h(x, r) = 〈wY ,φ(x, r)〉+ 〈wr,x〉 .

We denote by {wY
t } ∪ {wr

t : r ∈ Yt} the weight vectors

of the algorithm at trial t and its prediction is thus,

ŷt = argmax
r∈Yt

(

〈wY
t ,φ(xt, r)〉 + 〈wr

t ,xt〉
)

.

We now describe a Perceptron-style update for the hybrid

method. Initially, all the weight vectors are set to zero. On

trial t, the weight vectors are updated only if the algorithm

made a prediction mistake (ŷt 6= yt ∈ Yt) by using the

update rule,

wY
t+1 = wY

t + φ(xt, yt) − φ(xt, ŷt) ,

w
yt

t+1 = w
yt

t + xt ,

w
ŷt

t+1 = w
ŷt

t − xt ,

and for all r ∈ Yt \ {yt, ŷt}, wr
t+1 = wr

t .

A relative mistake bound can be proven for the hybrid

method as well. In particular, in Sec. 4 we show that a

bound of the same form given in Eq. (3) holds for the hy-

brid method. That is, given a hypothesis h⋆, parameterized

by any set of vectors U = {uY} ∪ {ur : r ∈ Y}, the fol-

lowing bound holds, M ≤ L + C +
√

LC, where C is

defined to be,

C = 2R2

(

‖uY‖2 +
∑

r∈Y

‖ur‖2
)

, (6)

and R is now the maximal value between 2maxt ‖xt‖ and

2maxt,r ‖φ(xt, r)‖2.

We now compare the above mistake bound of the hybrid

method to the mistake bounds of the single-vector and

multi-vector methods. The cumulative loss of the hybrid

method is bounded above by both the loss of the single-

vector method and the loss of the multi-vector method.

This follows directly from the fact that the hypothesis space

of the hybrid method includes both the hypothesis space

of the single-vector method and that of the multi-vector

method. To facilitate a clear comparison of the complexity

term, let us assume that maxt ‖xt‖ = maxt,r ‖φ(xt, r)‖
and thus the value of R for all methods is identical. This

equality indeed holds for the datasets described in Sec. 2.

Online Multiclass Learning by Interclass Hypothesis Sharing

0 2000 4000 6000 8000
0

200

400

600

800

1000

1200

1400

1600

1800

trial

M
i
s
t
a
k
e
s

Multi
Single
Hybrid

Figure 2. Performance of the hybrid method, the single-vector

method, and the multi-vector method on the third synthetic

dataset.

Moreover, if the norm of φ is not restricted relatively to

‖xt‖ and is allowed to grow with the number of classes

then by concatenating class vectors we can reduce the

multi-vector method to the single-vector method. There-

fore, throughout the paper we focus on constructions in

which the norm of φ is of the same order of magnitude of

‖xt‖. Equipped with this assumption we note that the com-

plexity term of the hybrid method is at most twice the min-

imum between the complexity of the single-vector method

and the multi-vector method.

In Fig. 1 we compare the performance of the hybrid method

to the performance of the single-vector and the multi-vector

methods on the two synthetic datasets described in Sec. 2.

As expected, the performance of the hybrid method is com-

parable to the best of the two alternatives. The two syn-

thetic datasets we constructed in Sec. 2 represent two ex-

tremes: the relevant components for each class are ei-

ther common (first dataset) or completely disjoint (sec-

ond dataset). In practical situations, it might be the case

that while most of the classes share the same relevant di-

mensions several of the classes might depend on other di-

mensions. For example, if the task in hand is bird clas-

sification, the features used in recognizing most birds are

common but are not applicable to penguins. To illus-

trate this point we have generated a third dataset as fol-

lows. As in our previous datasets, we chose 8, 000 in-

stances from {+1,−1}64 and the set of classes was set to

Y = {0, . . . , 15}. Instances of the first 15 classes have

been generated as in the first dataset, that is, the class la-

bel was the value of the binary number (x1, . . . , x4). In-

stances of the last class (r = 15) were generated as in

the second dataset by setting x61 = . . . = x64 = 1.

We have presented this dataset to the hybrid method and

to the single-vector and multi-vector methods. The per-

formance of the different algorithms is depicted in Fig. 2.

It is clear from the figure that the hybrid method outper-

forms the two alternatives. It should also be noted that in

the first half of the input sequence the single-vector method

errs less than the multi-vector method while in the second

half the multi-vector method outperforms the single-vector

method. These effects can be explained in the light of our

analysis. Our mistake bounds depend on a fixed complex-

ity term and on a loss term which depends on the number

of trials. The complexity term in the bound of the multi-

vector method is higher than the complexity term in the

bound of the single-vector method while an opposite trend

characterizes the loss term.

4. A General Mixing Framework

In the previous sections we described the single-vector

method, the multi-vector method and the hybrid method.

In this section we propose a general mixing framework of

which the above three methods are special cases. We also

utilize this framework for deriving new mixing algorithms.

Finally, we provide a unified analysis for our general mix-

ing framework and in particular obtain the mistake bounds

for the three methods described in previous sections.

Our general mixing framework assumes the existence of a

collection of indicator functions, denoted T , where each

τ ∈ T is a function from Y into {0, 1}. Thus, each func-

tion τ corresponds to the set Sτ = {r ∈ Y : τ(r) = 1},
which includes all the classes in Y for which τ(r) = 1.

The hypotheses of the general mixing framework are pa-

rameterized by a set of |T | weight vectors. For each τ ∈ T
we maintain one weight vector, wτ , which is shared among

all classes in Sτ . In addition, we assume that there exists

a feature mapping function φτ (x, r) for each τ ∈ T . The

score given by a hypothesis h for class r is,

h(x, r) =
∑

τ∈T

τ(r) 〈wτ ,φτ (x, r)〉 . (7)

We denote by {wτ
t : τ ∈ T } the weight vectors of the

algorithm at trial t and its prediction is thus,

ŷt = argmax
r∈Yt

∑

τ∈T

τ(r) 〈wτ ,φτ (x, r)〉 .

In our beetle recognition example, a function τ ∈ T might

indicate whether a beetle is a desert dweller. This infor-

mation is known before a zoologist might encounter a new

species and is beneficial for transferring representational

knowledge from previously learned distinctions.

We now describe a Perceptron-style update for the general

mixing framework. Initially, all the weight vectors are set

to zero. If there was a prediction mistake on trial t, ŷt 6=
yt ∈ Yt, then we update each of the vectors in {wτ : τ ∈
T } as follows,

wτ
t+1 = wτ

t + τ(yt)φτ (xt, yt)− τ(ŷt)φτ (xt, ŷt) .

If the algorithm does not err then wτ
t+1 = wτ

t for all τ ∈ T .

A pseudo-code summarizing the general mixing method is

given in Fig. 3.

The single-vector method is a special case of the general

mixing framework that can be derived by setting T =

Online Multiclass Learning by Interclass Hypothesis Sharing

INPUT: Collection of indicator functions T and

corresponding feature mappings {φτ : τ ∈ T }
INITIALIZE: Y1 = ∅ ; ∀τ ∈ T ,wτ = 0

For t = 1, 2, . . .

receive an instance xt

predict: ŷt = argmax
r∈Yt

∑

τ∈T

τ(r) 〈wτ ,φτ (xt, r)〉

receive correct label yt

If ŷt 6= yt and yt ∈ Yt

forall τ ∈ T ,

wτ ← wτ + τ(yt)φτ (xt, yt)− τ(ŷt)φτ (xt, ŷt)

Yt+1 = Yt ∪ {yt}

Figure 3. The general mixing algorithm.

{τY} where τY(r) = 1 for all r ∈ Y . Thus, SτY

= Y
and we obtain a single weight vector wτY

which is shared

by all the classes in Y . The multi-vector method can also

be derived from the general mixing framework by setting

T = {τ r : r ∈ Y }, where τ r(k) is one if k = r and zero

otherwise. We therefore associate a different weight vec-

tor with each label in Y . In the multi-vector method, the

value of φτ (x, r) reduces to x. The hybrid method can be

derived in a similar manner by a simple conjunction of the

above indicator functions.

The algorithm from Fig. 3 can be adjusted to incorporate

Mercer kernels. Note that each vector wτ can be repre-

sented as a sum of vectors of the form φτ (xi, r) where

i < t. Furthermore, the inner-product 〈wτ ,φτ (xt, r)〉
can be rewritten as a sum of inner-products each taking

the form 〈φτ (xt, r),φ
τ (x′, r′)〉. We can replace the inner-

products in this sum with a general Mercer kernel operator,

Kτ ((xt, r), (x
′, r′)), and leave the rest of the derivation

intact. The formal analysis presented in the sequel can be

extended verbatim and applied with Mercer kernels.

We now turn to the analysis of the algorithm in Fig. 3. Our

analysis is based on the following lemma.

Lemma 1 Let a1, . . . ,aM be a sequence of vectors and

define R = maxi ‖ai‖2. Assume that for all i ∈
{1, . . . ,M} we have that 〈wi,ai〉 ≤ 0 where wi =
∑i−1

t=1 ai. Let u be an arbitrary vector and let C and

L be two scalars such that C = R2‖u‖2 and L ≥
∑M

i=1 (1− 〈ai,u〉)+. Then, M ≤ L + C +
√

LC .

The proof of this lemma can be derived from the analysis

of the Perceptron algorithm for binary classification given

in (Gentile, 2002), and is omitted due to the lack of space.

Equipped with the above lemma we now prove a mistake

bound for the algorithm. Let h⋆ be any competing hy-

pothesis defined by a set of vectors U = {uτ : τ ∈ T }.
As in previous sections, our mistake bound takes the form

M ≤ L+C +
√

LC, where L is the cumulative loss of h⋆

defined by Eq. (1) and C is the complexity of h⋆ which we

now define. Let ρ be the maximal number of sets Sτ which

include r, that is, ρ = maxr∈Y

∑

τ∈T τ(r). For example,

in the single-vector and multi-vector methods the value of

ρ is one while in the hybrid method ρ = 2. The complexity

of h⋆ is formally defined to be,

C = ρR2
∑

τ∈T

‖uτ‖2 , (8)

where R = 2 maxt,r,τ τ(r) ‖φτ (xt, r)‖2 .

Theorem 1 Let ((x1, y1), . . . , (xm, ym)) ∈ (Rn × Y)m

be a sequence of examples and assume that this sequence

is presented to the general mixing algorithm given in Fig. 3.

Let h⋆ be any competing hypothesis defined by a set of

weight vectors U = {uτ : τ ∈ T }. Define L and C as

given by Eq. (1) and Eq. (8). Then, the number of predic-

tion mistakes the general mixing algorithm makes on the

sequence is upper bounded by,

M ≤ L + C +
√

LC .

Proof Let i1, . . . , iM be the indices of trials in which the

algorithm makes a prediction mistake. We prove the the-

orem by constructing a sequence of vectors Ai1 , . . . , AiM

in a Hilbert space H, which satisfies the condition given in

Lemma 1. For each τ ∈ T , the function φτ maps an in-

stance xt and a label r into a Hilbert space, denoted Hτ .

LetH =
⊗

τ∈T Hτ be the product of these feature spaces.

Let V1 = {vτ
1 ∈ Hτ : τ ∈ T } and V2 = {vτ

2 ∈ Hτ :
τ ∈ T } be two vectors in H. Then, the vector addition V1

and V2 in H is defined as V1 + V2 = {vτ
1 + vτ

2 : τ ∈ T }
and their inner-product as 〈V1, V2〉 =

∑

τ∈T 〈vτ
1 ,vτ

2 〉. The

sets Wt = {wτ
t : τ ∈ T } and U = {uτ : τ ∈ T }

are vectors in H. For a trial t and a label r ∈ Y , de-

fine V r
t ∈ H to be, V r

t = {τ(r)φτ (xt, r) : τ ∈ T }.
Thus, the prediction of the algorithm can be rewritten as,

ŷt = arg maxr∈Yt
〈Wt, V

r
t 〉 . Let t be a trial in which the

algorithm makes a prediction mistake (ŷt 6= yt ∈ Yt) and

define At = V yt

t − V ŷt

t . From the definitions of ŷt and At

and the fact that the algorithm makes a prediction mistake

on this trial we get that, 〈Wt, At〉 ≤ 0. In addition, the up-

date of the algorithm can be rewritten as a vector addition

in H, Wt+1 = Wt + At. The definition of the hinge-loss

of h⋆ gives that,

ℓt(h
⋆) = max

r 6=yt

(1− 〈U, V yt

t − V r
t 〉)+

≥
(

1− 〈U, V yt

t − V ŷt

t 〉
)

+
= (1− 〈U,At〉)+ .

Next, we upper bound the norm of At as follows. For all r,

‖V r
t ‖2 =

∑

τ∈T

τ(r) ‖φτ (xt, r)‖2 ≤ ρ (R/2)2 .

Online Multiclass Learning by Interclass Hypothesis Sharing

Thus, ‖At‖ ≤ ‖V yt

t ‖ + ‖V ŷt

t ‖ ≤ 2
√

ρ R/2 =
√

ρ R.

We now apply Lemma 1 to the sequence Ai1 , . . . , AiM
in

conjunction with U and obtain the mistake bound in the

theorem.

5. Experiments

In this section we present experimental results that demon-

strate different aspects of our proposed framework. All

experiments compare the multi-vector and single-vector

methods to the hybrid method. Our first experiment was

performed with the Enron email dataset (available from

http://www.cs.umass.edu/∼ronb/datasets/enron flat.tar.gz).

The task is to automatically classify email messages into

user defined folders. Thus, the instances in this dataset are

email messages while the set of classes is the email folders.

Note that the set of folders is not known in advance and

the user can define new folders on-the-fly. Therefore, our

online setting, in which the set of classes is revealed as the

online learning proceeds, naturally captures the essence of

this email classification task. We represented each email

message as a binary vector x ∈ {0, 1}n with a coordinate

for each word, so that xi = 1 if the word corresponding

to the index i appears in the email message and zero

otherwise. At each trial, we constructed class specific

mappings φ(xt, r), for each class r ∈ Yt, as follows. Let

Ir
t = {i < t : yi = r} be the set of previous trials in which

the class label is r and define pr
t to be the average instance

over Ir
t ,

pr
t =

1

|Ir
t |
∑

i∈Ir
t

xi . (9)

We define φ(xt, r) to be the vector in R
n whose i’th ele-

ment is,

φi(xt, r) =

2 xt,i = 1 ∧ pr
t,i ≥ 0.2

−1 xt,i = 1 ∧ pr
t,i ≤ 0.02

0 otherwise

. (10)

That is, φi(xt, r) = 2 if the word corresponding to index

i appears in the current email message and also appears in

at least fifth of the previously observed messages of class

r. If the word appears in the current message but is very

rare in previous messages of class r, then φi(xt, r) = −1.

In all other cases, φi(xr, t) = 0. We ran the various al-

gorithms on sequences of email messages from 7 users.

The results are summarized in Table 1. As can be seen,

the hybrid method consistently outperforms both the multi-

vector and single-vector methods. It should also be noted

that for 4 users the multi-vector method outperforms the

single-vector method while for the remaining 3 users an

opposite trend is apparent.

Our second experiment was performed with a

Table 1. The average number of online mistakes of the multi-

vector method, the single-vector method, and the hybrid method

on various datasets. The datasets labeled Enron1-Enron7, corre-

spond to email messages of the users beck-s, farmer-d, kaminski-

v, kitchen-l, lokay-m, sanders-r, and williams-w3 in the Enron

dataset.

dataset |Y| m multi single hybrid

Enron1 101 1971 60.0 52.3 47.7

Enron2 25 3672 29.5 35.5 26.3

Enron3 41 4477 50.9 58.4 46.0

Enron4 47 4015 48.4 53.6 42.5

Enron5 11 2489 25.2 27.7 22.3

Enron6 30 1188 30.2 23.7 21.8

Enron7 18 2769 4.84 3.54 3.35

Office 51 362 8.01 6.63 4.42

YaleB 30 1920 18.3 15.2 12.9

ISOLET 26 6238 12.7 8.52 9.08

LETTER 26 20000 11.8 16.7 11.4

dataset of office workspace images (available from

http://www.cs.huji.ac.il/∼fink/office.html). To motivate

the learning task, imagine a robot that is required to deliver

packages in a large office building. Every day the robot

must wander throughout the building and upon reaching

a person’s desk, deliver the appropriate package. Here

again the identity of the classes is not known in advance.

An office complex with 51 different desks was selected

for constructing the dataset. The dataset contains 362
images of the different desks. Images were taken while

the camera was facing the desk typically 1m away from

the target and at an approximate height of 1.5m. The

variation in the images due to changing pose and lighting

conditions suggests that a representation based on sets

of local descriptors might be suitable for our task. This

representation choice seems to be especially appropriate

since the characteristic components of each workspace,

e.g. a telephone, mug or briefcase, might appear in

any location within the image. We therefore chose a

representation of images which is based on SIFT key

descriptors (Lowe, 2004). Similarly to email messages in

the Enron dataset, we represented each instance as a binary

vector x ∈ {0, 1}n with a coordinate for each possible

SIFT key, where xi = 1 if the SIFT key corresponding to

index i matches a SIFT key in the image x. As suggested

in the SIFT key literature, we declare a match between

two SIFT keys if the Euclidean distance between them is

significantly lower than any other key extracted from the

image. The set of SIFT keys is incrementally constructed

by adding all the SIFT keys of each new image that were

not matched with previous images in the sequence of

examples. As in the Enron dataset, we used the class

specific mapping given in Eq. (10). The performance of

Online Multiclass Learning by Interclass Hypothesis Sharing

the various algorithms on the office dataset is given in

Table 1. Here too the hybrid method outperforms the other

two alternatives. It should be noted that similar results are

obtained when averaging the performance of the algorithm

over different permutations of the examples in the dataset.

Our next experiment was performed with the YaleB dataset

containing 1920 face images of 30 different people under

various illumination conditions. Following (Hertz et al.,

2004), we automatically centered all images using optical

flow and converted each image to a vector using its first

60 PCA coefficients. We normalized the resulting vec-

tors so that the standard deviation of each coordinate of

an instance will be 1. For the single-vector method we de-

fined φi(xt, r) = |xt,i − pr
t,i|, where pt

r is as defined in

Eq. (9). The performance of the three methods is given in

Table 1. The single-vector method outperforms the multi-

vector method while the hybrid method achieves the best

results.

Our last experiment was performed with two standard mul-

ticlass datasets: ISOLET and LETTER taken from the UCI

repository. Here, we implemented the various algorithms

using Mercer kernels. The classes in both datasets are the

26 English letters. However, the instances are represented

in two different modalities: the ISOLET instances encode

auditory recordings of subjects pronouncing the names of

the 26 letters, while the LETTER instances encode features

derived from black and white images of the 26 uppercase

letters. For the multi-vector method we used a Gaussian

kernel. The value of σ was set to 0.16 for the ISOLET

dataset and to 0.07 for the LETTER dataset. In the single-

vector method we define the kernel,

K((xt, r), (xj , s)) = e−
1

2σ
‖(xt−p

r
t)−(xj−p

s
j)‖2

, (11)

where pr
t is as defined in Eq. (9) and σ was again 0.16

for ISOLET and 0.07 for LETTER. As can be seen in

Table 1, the multi-vector method outperforms the single-

vector method on LETTER while an opposite trend is ap-

parent on ISOLET. This experiment emphasizes the fact

that although the classes are known a-priori, we cannot de-

termine in advance which of the two methods will be better.

The hybrid method is comparable to the best of the two al-

ternatives and thus relieves us from the necessity to make

an early choice between the multi-vector and single-vector

methods.

6. Discussion

In this paper we introduced a framework for online multi-

class learning by hypothesis sharing. We described the hy-

pothesis sharing model which, together with a feature map-

ping mechanism, enables learning without prior knowledge

of class labels. Our analysis and experiments indicate that

the proposed framework is a viable alternative to the com-

mon multiclass learning approaches. The hypothesis shar-

ing approach relies heavily on the set of indicator functions

defined by T . In certain applications, it is natural to assume

that these indicator functions are provided in advance. For

example, in the beetle recognition task, a function in T can

indicate whether a beetle is a member of the set of desert

dwelling beetles. In the specific case where the set of indi-

cator functions T reflects a hierarchical structure, the gen-

eral mixing model can be viewed as a generalization of the

model described in (Dekel et al., 2004). In general, the

indicator functions might not be provided in advance and

thus, learning T is a worthwhile challenge which is dif-

fered to future work.

Acknowledgments Part of the work of MF and SS was performed

while visiting Google. The work of MF and SU was supported by

grant 7-0369 from the Israeli Science Foundation and by EU IST

Grant FP6-2005-015803. The work of YS and SS was supported

by grant 522-04 from the Israeli Science Foundation (ISF).

References

Collins, M. (2002). Discriminative training methods for hidden
markov models: Theory and experiments with perceptron al-
gorithms. Conf. on Empirical Methods in Natural Language
Processing.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algo-
rithms for multiclass problems. Journal of Machine Learning
Research, 3, 951–991.

Dekel, O., Keshet, J., & Singer, Y. (2004). Large margin hierar-
chical classification. Proc. 21st Intl. Conf. Machine Learning.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene
analysis. Wiley.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55, 119–139.

Gentile, C. (2002). The robustness of the p-norm algorithms. Ma-
chine Learning, 53.

Hastie, T., & Tibshirani, R. (1995). Generalized additive models.
Chapman & Hall.

Hertz, T., Bar-Hillel, A., & Weinshall, D. (2004). Learning dis-
tance functions for image retrieval. CVPR.

Lowe, D. (2004). Distinctive image features from scale-invariant
keypoints. IJCV.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychologi-
cal Review, 65, 386–407.

Shalev-Shwartz, S., Keshet, J., & Singer, Y. (2004). Learning to
align polyphonic music. Proc. 5th Intl. Conf. on Music Infor-
mation Retrieval.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin markov
networks. Advances in Neural Info. Processing Systems 17.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004).
Support vector machine learning for interdependent and struc-
tured output spaces. Proc. 21st Intl. Conf. Machine Learning.

Vapnik, V. N. (1998). Statistical learning theory. Wiley.

