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Abstract

This report presents a brief description of our method for
the AVA Active Speaker Detection (ASD) task at ActivityNet
Challenge 2021. Our solution, the Extended Unified Con-
text Network (Extended UniCon) is based on a novel Unified
Context Network (UniCon) designed for robust ASD, which
combines multiple types of contextual information to opti-
mize all candidates jointly. We propose a few changes to the
original UniCon in terms of audio features, temporal mod-
eling architecture, and loss function design. Together, our
best model ensemble sets a new state-of-the-art at 93.4%
mAP on the AVA-ActiveSpeaker test set without any form
of pretraining, and currently ranks first on the ActivityNet
challenge leaderboard.

1. Introduction
Active Speaker Detection (ASD) is the task of identi-

fying which visible person is speaking in a video, which
requires careful analysis of face motion and voices. It
has a variety of modern practical applications, and has
gained increased popularity in the audio-visual commu-
nity. Although many effective methods have been proposed
and verified [1, 2, 12] (especially on the large-scale AVA-
ActiveSpeaker dataset [9]), they do not sufficiently consider
the relationships among the visible candidates, which heav-
ily limits their performance in challenging scenarios with
low-resolution faces, multiple candidates, etc.

Our submission is based on a novel Unified Context Net-
work (UniCon) [11], which leverages multiple sources of
contextual information to analyze all speaker candidates si-
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multaneously. As part of our final solution, we extend the
original UniCon formulation in the following ways:

• We replace 13-dimensional MFCCs with 80-
dimensional log-Mel spectrograms, and apply
SpecAugment during training to increase model
robustness against noise.

• We replace the original Bi-GRU-based temporal con-
text module with a Conformer-based counterpart, and
sample longer training examples to enhance long-term
temporal modeling.

• We adjust the loss function to alleviate the previously
observed over-fitting problem with the audio branch.

• We ensemble predictions from both temporal convolu-
tion and Conformer back-ends to generate more reli-
able results.

With the above proposed changes, our final submis-
sion achieves state-of-the-art performance on the AVA-
ActiveSpeaker test set with 93.4% mAP. We now describe
our approach in detail.

2. Proposed Approach
To keep this report concise, we only provide a short re-

view of the UniCon framework, and describe the changes
we made leading to the new Extended UniCon.

2.1. UniCon Review

Fig. 1 provides an overview of UniCon. First, for each
candidate, the scale and position of all candidates’ faces
are introduced as global spatial context to complement fa-
cial information and help learn the relationships among the
speakers. Each candidate is then contrasted with others
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Figure 1. The original UniCon architecture [11].

from both a visual and audio-visual perspective in the re-
lational context modeling component. To further improve
the robustness of the model’s predictions, temporal context
is integrated. Finally, based on the aggregated contextual
features, speaker activity predictions for all candidates are
generated simultaneously using a shared prediction layer.

Encoders: Given an input video clip, audio tracks and
face tracks are first extracted for each candidate speaker.
The resulting audio and visual frames are transformed into
512-d average-pooled features with 2D ResNet-18s [5, 1],
whose dimensions are reduced to 128 with fully-connected
layers. For the visual stream, every five consecutive face
crops are stacked together to encode short-term dynamics.

Spatial Context: To represent the relative visual saliency
of the candidates in the scene and reflect gaze-related infor-
mation, face positions and sizes of all candidates are en-
coded using 64 × 64 coordinate-normalized maps of 2D
Gaussians, which is motivated by [7]. Color-coded versions
of the above head maps are then generated for each candi-
date i and candidate pair (i, j) with i 6= j, and embedded
into 64-dimensional vectors with a VGG-inspired convolu-
tional neural network [7]. The resulting embeddings are
termed each candidate’s spatial context.

Relational Context: The relational context component
completes two natural sub-tasks for ASD: learning a con-
textual visual representation for visual voice activity detec-
tion, and a contextual audio-visual representation for audio-
visual affinity modeling. For visual relational context (RV),
a permutation-equivariant layer aggregates each speaker’s
locally perceived activity and his/her pairwise interactions
with other candidates. For audio-visual relational context
(RAV), element-wise max-pooling is applied over all can-
didates’ initial A-V affinity features to obtain a global rep-
resentation. A shared multi-layer perceptron (MLP) con-

trasts each candidate’s initial features with the global in-
formation and refines the initial features, suppressing the
non-active speakers. Finally, the resulting representations
RV and RAV are concatenated and passed through a fully-
connected layer, yielding the final prediction.

Temporal Context: The temporal context components
(α, β, and η in Fig. 1), instantiated as Bidirectional Gate
Recurrent Units (Bi-GRUs), are embedded in RV and RAV.
They improve the temporal consistency of the relational
context modeling process, and smooth out local, instanta-
neous noises. In addition, they alleviate synchronization er-
rors between the audio and the video which are common
with in-the-wild videos and old films.

Loss function: The model is trained end-to-end with a
multi-task loss formulation, with two auxiliary losses asso-
ciated with auxiliary prediction layers for audio and visual-
based ground truths (see Fig. 1), and a joint loss for the final
speaker activity prediction layer:

L = La + Lv + Ljoint. (1)

Here, each loss term applies the standard binary cross-
entropy (BCE) loss, averaged over all time steps.

2.2. Extended UniCon

We now describe in detail the changes we made to the
original UniCon model.

Audio features: At each time step, instead of 13-
dimensional Mel Frequency Cepstrum Coefficients
(MFCCs), we calculate a 80-dimensional log-Mel spectro-
gram from a 400ms window preceding the video frame to
obtain the audio representation. The spectrograms, which
contain richer acoustic information compared to MFCCs,
are then processed with a ResNet-18 encoder and passed
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through a fully-connected layer, same as UniCon. During
training, we apply SpecAugment [8] (frequency and time
masking only) to increase our model’s robustness to noise
and different acoustic environments.

Temporal context: Instead of using a single Bi-GRU
layer, we adopt the recently proposed Convolution-
augmented Transformer (Conformer) [3] architecture,
which combines local convolutions with global self-
attention for higher temporal modeling capacity. We use 3
Conformer layers for α, β, and η. Among them, we set the
number of attention heads in the multi-head self-attention
(MHSA) module to 4 for α, and 8 for β and η. The kernel
size of the convolutions is set to 27.

We also increase the lengths of the randomly sampled
examples during training. The original version of Uni-
Con samples 28 frames at 25fps (1.12s, around the mean
speech segment duration), while here we increase the num-
ber twofold to 56 frames, to better capture speaker alterna-
tion patterns and long-term dependencies. Empirically, we
find that using longer training samples benefits Conformer-
based models.

Loss function: The original UniCon formulation applies
an auxiliary binary classification loss on the low-level 128-d
audio features (La in Fig. 1), which is dropped when train-
ing on multiple candidates (i.e. when relation context is
deployed), as it leads to serious over-fitting within the au-
dio modality. We find that removing this auxiliary audio
prediction layer and adding a new auxiliary active speaker
prediction layer after the contextual audio-visual features
(RAV) resolves the over-fitting problem (Lav in Fig. 1), and
leads to a unified loss formulation for both one candidate
and multiple candidates:

L = Lav + Lv + Ljoint. (2)

2.3. Ensembling

To further boost performance, we apply model ensem-
bling by combining the predictions from a temporal con-
volution (TCN) back-end and a Conformer back-end. Our
intuition is that the self-attention based Conformer model is
better at modeling long-term dependencies, while the TCN-
based model has a local receptive field and is more sensi-
tive to short utterances. Here, we average Wiener-smoothed
(over 11-frame, or 0.44s windows) TCN logits and the raw
Conformer logits, and pass the mean logits through the sig-
moid function to generate the final predictions.

2.4. Implementation Details

We carry out our experiments on the large-scale AVA-
ActiveSpeaker dataset [9] which consists of 262 YouTube
movies from film industries around the world. Our

data preprocessing scheme is identical to that described
in [11]. We implement our model with PyTorch and the
pytorch-lightning package. All models are trained
from scratch, using the AdamW optimizer [6] and auto-
matic mixed precision (AMP) on a single NVIDIA Titan
RTX GPU with 24GB memory. The network parameters are
initialized using He initialization [4]. We use a fairseq-
style Transformer learning rate schedule [10], warming up
linearly to a maximum learning rate of 0.0003 (when train-
ing on one candidate) or 0.0001 (when training on multiple
candidates) over 2, 000 updates, and decaying proportion-
ally to the inverse square root of the step number thereafter.

During training, we augment the data via random hori-
zontal flipping and uniform corner cropping along the input
face tracks, followed by random adjustments to brightness,
contrast, and saturation. All cropped face tracks are resized
to 144× 144, and randomly cropped to 128× 128 for train-
ing [1]. We use a central patch for testing.

3. Results

The official metric for the task is Mean Average Preci-
sion (mAP). We obtain the numbers using the official eval-
uation tool, after interpolating our predictions to the times-
tamps in the original annotations.

Table 1. The performance of previous state-of-the-art, the origi-
nal UniCon model, and our extension on the AVA-ActiveSpeaker
validation and test sets.

Method Val mAP (%) Test mAP (%)

UCAS [12] 84.0 83.5
ASC [1] 87.1 86.7
Naver Corporation [2] 87.8 87.8

UniCon [11] 92.0 90.7
Ours (Conformer) 93.6 93.3
Ours (Conformer + TCN) 93.8 93.4

As shown in Table 1, our extensions give our final so-
lution a competitive edge over the original UniCon model,
improving it by 1.6% on validation set and 2.7% on test
set in terms of mAP. The new temporal context module and
stronger acoustic features are crucial to the improvement.
Remarkably, our best single model submission improves
over the previous state-of-the-art [2] by as much as 5.5%
without any pre-training or ensembling. Finally, our best
model ensemble further yields small improvements (0.2%
on the validation set, and 0.1% on the test set).

An interesting observation is that the Conformer-based
models achieve very similar performance on the validation
and the test set, while the original Bi-GRU-based UniCon
performs slightly worse on the test set. One possibility is
that the Conformer back-end has a higher capacity, allowing
it to generalize better on the more diverse test set.
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