
Burst photography for high dynamic range and low-light imaging
on mobile cameras

Supplemental Material

Samuel W. Hasinoff Dillon Sharlet Ryan Geiss Andrew Adams
Jonathan T. Barron Florian Kainz Jiawen Chen Marc Levoy

Google Research

1 Brute-force L1 alignment

At the finest scale of our coarse-to-fine alignment strategy, we re-
quire an alignment technique which performs well given large tile
sizes but a very small search radius. In this context, techniques
such as our previously-described fast subpixel L2 alignment, or even
simpler techniques such as phase correlation [Kuglin and Hines
1975] are outperformed by a well-implemented brute-force proce-
dure which minimizes absolute residuals. We use absolute residuals
instead of squared residuals because they map well to low level
computer architectures. In contrast with squared residuals, absolute
residuals require fewer bits for the same input data, enabling higher
throughput. On ARM architectures, there is in fact an operation
which computes an absolute difference and then accumulates, mak-
ing brute-force computation of L1 distances very computationally
light. This approach scales quadratically with the search radius,
making it most appealing in contexts where the search radius is
small.

2 Image alignment pyramids

The image pyramids we use for alignment are constructed to bal-
ance computational effort and the quality of the alignment results.
The main control we have over quality versus computation is the
distance in which we search at each pyramid level. Larger search
distances allow larger downsampling factors between pyramid lev-
els, which reduces the likelihood of the search getting trapped in a
local minimum. Generally, larger search distances are impractical;
however, the fast L2 norm search introduced in the paper enables
us to use relatively large search areas of ±4 pixels. However, while
the fast L2 norm search is algorithmically efficient, it is still slower
than a simpler search of a smaller area. Because of this, we use an
L1 search (section 1) of ±1 pixel for the bottom (high resolution)
pyramid levels.

Putting all of this together, a typical alignment pyramid in our
pipeline will look like:

• Bottom level of the pyramid, downsampled Bayer to grayscale.
This pyramid level uses a ±1 pixel search using the L1 align-
ment algorithm, using tiles of size 16× 16.

• Because the bottom pyramid level uses a ±1 pixel search, this
pyramid level can be downsampled from the bottom level by a
factor of 2. This pyramid level uses a ±4 pixel search using
the fast L2 alignment algorithm, using tiles of size 16× 16.

• Because the previous level uses a±4 pixel search, this pyramid
level can be downsampled by a factor of 4. Again, this pyra-
mid level uses a ±4 pixel search using the fast L2 alignment
algorithm, using tiles of size 16× 16.

• The last level is similar to the previous level; it is downsampled
by a factor of 4, and uses the same search algorithm. However,
at this point, we have downsampled so much that a tile size of
16 × 16 is effectively very large in the original image. Tiles

covering a large effective area in the original image are useful
to reduce the impact of noise on the search, and to avoid
local minima. However, large tiles begin to fail to be able
to approximate scene motion that is not strictly translational.
At the same time, tiles that are large enough have largely
eliminated the impact of noise on the results. Therefore, we
reduce the tile size to 8× 8.

3 Fast L2 residual computation

First, let us address the problem of taking two small sub-images,
and computing a “distance image” which measures the mis-match
between the two sub-images for all possible offsets (translations) of
the images. Effectively, this will tell us the relative goodness of all
possible translations of the two image, with our assumption being
that the translation which minimizes our distance measure is a good
estimate of the motion which transforms the first sub-image into the
second sub-image.

First, let’s begin our derivation with a simplified case. Consider the
problem of computing the squared L2 distance between two vectors
a and b:

d2 = ‖a− b‖22 (1)

This distance can be rewritten by simply reorganizing the math:

d2 = ‖a− b‖22 (2)

=
∑
i

(ai − bi)
2 (3)

=
∑
i

(ai − bi)(ai − bi) (4)

=
∑
i

(a2
i + b2i − 2aibi) (5)

= ‖a‖22 + ‖b‖
2
2 − 2aTb (6)

We see that the squared L2 distance between two vectors decouples
into the squared L2 norm of each vector, minus twice the inner
product of the two vectors.

Now let us consider an n × n image template T and a m × m
image I , where m > n. That is, we have some large image, and
we have an image template that we want to compare to each n× n
sub-image of image. We will assume that our images and templates
are grayscale for convenience, though our approach can generalize
to color images trivially. More formally, we would like to compute
a (m− n+ 1)× (m− n+ 1) “distance image” D2 such that:

D2(u, v) =

n−1∑
x=0

n−1∑
y=0

(T (x, y)− I(x+ u, y + v))2 (7)

See figure 2 for examples of templates, images, and distance images.

0.8

0.95

0.95

x−displacement

y−
di
sp
la
ce
m
en
t

−128 −96 −64 −32 0 32 64 96 128

−128

−96

−64

−32

0

32

64

96

128

(a) 2D alignment

0 4 16 36 64 100
0%

20%

40%

60%

80%

100%

Displacement Magnitude

P
er

ce
nt

 W
ith

in
 D

is
pl

ac
em

en
t

(b) 1D alignment

Figure 1: Histogram of displacements found in a random sample of
100 bursts.

Just as before, this distance calculation can be simplified:

D2(u, v) =

n−1∑
x=0

n−1∑
y=0

T (x, y)2 (8)

+

n−1∑
x=0

n−1∑
y=0

I(x+ u, y + v)2 (9)

− 2

n−1∑
x=0

n−1∑
y=0

T (x, y)I(x+ u, y + v) (10)

The first term depends only on T and not at all on u and v, and so
it can be computed once and re-used when computing all values of
D2(u, v). The second term can be computed for all values of (u, v)
by box filtering I(x, y)2, which can be done efficiently using sliding-
window image filtering techniques or (somewhat less efficiently)
using integral images. And the third term can also be computed for
all values of (u, v) by cross-correlating I and T . Cross-correlation
can be expensive to compute naı̈vely, but can be sped up significantly
using fast Fourier transforms. From the convolution theorem, we
know that:

a ? b = F−1 {F{a}∗ ◦ F{b}} (11)

where F{·} is the Fourier transform, F−1{·} is the inverse Fourier
transform, ◦ is the pointwise product (Hadamard product) of two
vectors, and F{a}∗ is the conjugate transpose of F{a}. This natu-
rally generalizes from one-dimensional signals to two-dimensional
images.

With these three observations, we can rewrite the computation of the
distance “image” D2 for all possible offsets (u, v) as:

D2 = ‖T‖22 + box(I ◦ I, n)− 2
(
F−1 {F{I}∗ ◦ F{T}}

)
(12)

where the first term is the sum of the squared elements of T , the
second term is the squared elements of image I filtered with a box
filter of size n × n (where the box filter is not normalized), and
the third term is −2× the cross-correlation of I and T , computed
efficiently using the fast Fourier transform.

4 Subpixel accurate translation

Given distance image D2(u, v), we would like to find the single
best match between T and I by localizing the minimum of D2. To
produce subpixel-accurate translation estimations, we will use a
bivariate quadratic function (a 2D polynomial), fit near the per-pixel
minimum of D2. This approach produces higher-quality translation

(a) Template T (b) Image I (c) Distance D2

Figure 2: Visualization of the distance surfaces (c) produced by
computing the squared residual between a small image template (a)
and every possible matching sub-image of a larger image (b).

estimates than the standard approach of fitting two separable func-
tions [Stone et al. 2001], as it jointly estimates the minimum in two
dimensions rather than independently estimating each dimensions
minimum produces more accurate results in the case when the axes
of D2(u, v) are not isotropic in u and v, which they rarely are in
practice (see figure 2c). More formally, we will approximate D2 as
follows:

D2(u, v) ≈
1

2
[u; v]TA[u; v] + bT[u; v] + c (13)

where A is a 2× 2 positive semi-definite matrix, b is a 2× 1 vector,
and c is a scalar. A is assumed to be PSD because we expect the
shape of D2 near the minimum to be an upward-facing quadratic
surface, rather than a saddle or a downward-facing surface. Let
(û, v̂) be the coordinate of the pixel in D2 with the smallest distance
value. We will consider the 3 × 3 pixel area around (û, v̂) when
fitting our quadratic function:

Dsub
2 =

D2(û− 1, v̂ − 1) D2(û, v̂ − 1) D2(û+ 1, v̂ − 1)
D2(û− 1, v̂) D2(û, v̂) D2(û+ 1, v̂)

D2(û− 1, v̂ + 1) D2(û, v̂ + 1) D2(û+ 1, v̂ + 1)

 (14)

When fitting our bivariate polynomial, we will weight the pixels
nearby the minimum according to a 3× 3-sized patch of binomial
weights:

W =

1 2 1
2 4 2
1 2 1

 (15)

With Dsub
2 and W we can set up a least-squares problem with respect

to the free parameters in our quadratic approximation (A,b, c) and
solve it. Without loss of generality, we will solve for a fit of Dsub

2

which assumes that the center pixel has a (u, v) coordinate of (0, 0),
and then shift the sub-pixel position that we will estimate by (û, v̂).
To construct our least-squares problem, we must first construct a

matrix X which contains a second-order polynomial expansion of
the 9 (u, v) coordinates in our 3× 3 patch:

X =

½ 1 ½ −1 −1 1
0 0 ½ 0 −1 1
½ −1 ½ 1 −1 1
½ 0 0 −1 0 1
0 0 0 0 0 1
½ 0 0 1 0 1
½ −1 ½ −1 1 1
0 0 ½ 0 1 1
½ 1 ½ 1 1 1

(16)

We will additionally construct a diagonal “weight” matrix from our
(vectorized) 3× 3 weight “image” in equation 15, and a RHS vector
y as the vectorized version of Dsub

2 :

W = diag(vec(W) (17)

y = vec(Dsub
2) (18)

With these we can construct a least-squares problem which corre-
sponds to fitting our bivariate polynomial:

argmin
β

∥∥∥W½(y −Xβ)
∥∥∥2 (19)

This is a conventional weighted least-squares problem, and so can
be solved in a variety of ways. Ideally we would like to avoid
repeatedly solving this linear system of equations for each tile in
our alignment. This repeated fitting can be sped up significantly by
taking advantage of the fact that X and W are constant across all
tiles. We can therefore rearrange our linear system such that the
polynomial fit parameters β are a linear function of the image patch
y and a fixed matrix F:

β = Fy (20)

F = (XTWX)−1XTW (21)

From this we can see that we can compute the parameters of the
bivariate polynomial by simply taking the inner product of y (the
3 × 3 image patch of D2, vectorized) by each row of a F. This
matrix F is equivalent to a filter bank, where each filter corresponds
to some unknown parameter in (A,b, c):

FA1,1 =

1 −2 1
2 −4 2
1 −2 1

 /4, FA2,2 =

 1 2 1
−2 −4 −2
1 2 1

 /4

FA1,2 = FA2,1 =

 1 0 −1
0 0 0
−1 0 1

 /4

Fb1 =

−1 0 1
−2 0 2
−1 0 1

 /8, Fb2 =

−1 −2 −1
0 0 0
1 2 1

 /8

Fc =

−1 2 −1
2 12 2
−1 2 −1

 /16 (22)

With these filters we can estimate the free parameters of our quadratic
approximation by simply taking the inner product of Dsub

2 with
these filters (assuming the error surface and the filter have been
vectorized), or equivalently by computing the cross-correlation of

Dsub
2 with these filters:

A =

[
FA1,1 ·Dsub

2 FA1,2 ·Dsub
2

FA1,2 ·Dsub
2 FA2,2 ·Dsub

2

]
(23)

b =

[
Fb1 ·Dsub

2

Fb2 ·Dsub
2

]
(24)

c = Fc ·Dsub
2 (25)

This process is similar to the polynomial expansion approach of
[Farnebäck 2002]. The constant shift c and its filter Fc are irrelevant
for our subpixel minimum localization, but are included here for the
sake of completeness.

Depending on the shape of Dsub
2 , the estimated A may not be pos-

itive semi-definite, contrary to our initial assumptions. To fix this,
after estimating the parameters of our quadratic, we first force the
diagonal elements of A to be non-negative:

A1,1 ← max(0,A1,1) (26)
A2,2 ← max(0,A2,2) (27)

We then compute the determinant of A:

det(A) = A1,1A2,2 −A2
1,2 (28)

if det(A) < 0, then we set the off-diagonal elements of A to be
zero. These corrections give us a A which is guaranteed to be
positive semi-definite.

With our quadratic approximation, we can now estimate the min-
imum of that quadratic. Doing so requires that we rewrite our
quadratic in a different form by completing the square:

1

2
xTAx+ bTx+ c =

1

2
(x− µ)TA(x− µ) + s (29)

Given a quadratic defined in the first form, we can convert it into the
second form as follows:

µ = −A−1b (30)

s = c− µTAµ

2
(31)

For our particular bivariate case, this is equivalent to:

µ = −
[
A2,2b1 −A1,2b2, A1,1b2 −A1,2b1

]T
A1,1A2,2 −A2

1,2

(32)

s = c− A1,1µ
2
1 + 2A1,2µ1µ2 +A2,2µ

2
2

2
(33)

Once we have recovered the location of the minimum of the
quadratic µ, we can simply take that as the sub-pixel location of the
minimum. Note that the fitted surface we produce treats the center
pixel of Dsub

2 as (0, 0), so after fitting we need to add the per-pixel
minimum location (û, v̂) into µ, which gives us the actual location
of the minimum in D2. In the presence of severe noise or very flat
images, it is possible for the predicted sub-pixel minimum µ to be
very different from the observed per-pixel minimum (û, v̂), so in
practice if we observe that the two are sufficiently different (more
than 1 pixel removed) we set µ = [û; v̂].

5 Example-based auto-exposure

In the following, we elaborate on implementation details for our
example-based auto-exposure method. While this treatment should
be of interest to someone implementing their own auto-exposure
algorithm, our experience is that the quality of the labels and di-
versity of scenes in our database of about 5,000 scenes dominates
these engineering decisions. Moreover, the specifics of the scene
descriptors we use is guided heavily by concerns for efficiency.

Exposure labels We label each scene in our auto-exposure
database with two exposures, a short exposure for the highlights
and a long exposure for the shadows, hand tuned to produce the
most pleasing tone mapping result using our variant of exposure
fusion [Mertens et al. 2007]. To represent these exposures we use the
average pixel brightness of the two corresponding gamma-corrected
images that serve as input to exposure fusion. Representing expo-
sure in this way helps decouple our labeling from the absolute scene
luminance or the sensitivity of the camera. As a refinement, we
compute average pixel brightness differently for the two exposures.
For the short exposure, we use the L2 norm (emphasizing the high-
lights); for the long exposure, we use the L0.5 norm (emphasizing
the shadows) instead.

Scene descriptor Given a raw viewfinder frame as input, we
compute a scene descriptor and use this to find the most similar
scenes in our auto-exposure database. The descriptor we use encodes
the basic information necessary for exposure decisions, but also has
enough expressive power to help distinguish between categories of
scenes. While our descriptor is simpler than typical descriptors used
in computer vision for scene recognition, e.g., [Oliva and Torralba
2001], it plays a similar role in our system.

Note that consuming raw frames for auto-exposure produces more
useful descriptors than consuming tone mapped ISP-processed
frames. For the relatively wide-angle cameras on mobile devices,
the pixel values at the corners are usually about 2 f-stops darker than
those at the center, due to vignetting. Further, because the green
channels are the most sensitive, the red and blue channel values are
typically 1 f-stop darker than the green values. To take advantage
of this extra dynamic range, our auto-exposure method leaves pixel
values unclipped when applying white balance gains, lens shading
correction, etc. In a normal imaging pipeline, this approach is unac-
ceptable, as it can lead to false color shifts (often towards pink) in the
highlights. In the context of auto-exposure, however, the unclipped
signal is useful.

The core feature we use to build our descriptor is the spatially-
weighted image brightness distribution, computed on an aggressively
downsampled version of the image (25:1). In the course of down-
sampling, we perform a naı̈ve demosaic by multiplexing the Bayer
color planes, averaging the two green channels. For the 12–13 Mpix
input we typically handle, this initial downsampling corresponds to
a thumbnail-sized 160x120 linear RGB image.

Starting from this downsampled image, we subtract the black level
and correct the color using the ISP-suggested white balance gains,
lens shading correction, and 3x3 color correction matrix (all without
clipping). To capture information at multiple spatial frequencies we
make a copy of the downsampled image and apply a low pass filter to
the copy. From each of these spatial scales, we downsample further
(4:1) and extract two single-channel images: the maximum and the
average of the RGB channels. We also compute spatial weights: a
fixed weighting to favor the center of the image (3:1, with a radial
falloff), and a strong boost (40:1) where faces are detected. In total
this processing yields 4 single-channel linear 40x30 images and a
corresponding weight map.

Next, we normalize these downsampled images, so that we can
match similarly-shaped image brightness distributions across scenes
with different luminance. To do this, we take the logarithm of image
brightness values, compute the weighted mean of all unclipped
values, and subtract this mean.

For efficiency, we implement two optimizations:

• We modify the second (4:1) downsampling operation to out-
put two brightness values per pixel. This lets us downsample

more aggressively while preserving higher-frequency bright-
ness information. We start by averaging the 4x4 input pixels
that contribute to each downsampled pixel, as usual. Then we
perform a second pass, dividing the pixels into two groups:
those brighter than the average, and those darker. Finally, we
compute the average of each group and what fraction of the
input samples correspond to each. This “split-pixel” represen-
tation lets us produce higher quality descriptors for a given
level of downsampling.

• We represent the weighted brightness distribution of each
downsampled image using 64 quantiles, rather than a typi-
cal histogram. The quantiles contain enough information to
describe the scene, but store the information more compactly.
For the long exposure case, each quantile in a set represents
1/64th of the weighted pixels. However, in the short exposure
case, the top 8 quantiles, representing the highlights, corre-
spond to fewer of the weighted pixels (about 1/512th each).
This has the dual effect of adding precision to the highlights
and giving them more weight in our distance metric.

Our final descriptor for auto-exposure is a 256-element vector,
formed by concatenating the sets of 64 quantiles for each of the
4 downsampled images.

Distance metric To match an input image to our auto-exposure
database, we use the L1 distance between descriptors. Because
our descriptor is built from quantiles, this corresponds to the earth-
mover’s distance [Cohen and Guibas 1997] summed over the 4
underlying brightness distributions. In our implementation, we
search exhaustively over our database of 5,000 scenes, recording
the L1 distance from the input to each labeled example.

Extra attention is required to handle clipped input pixels. Because
our labeled examples are built from traditional HDR exposure brack-
eting, their histograms rarely include clipping, except when bright
light sources are visible in the frame. However, our input is a single
raw image captured during ISP-controlled viewfinding, so it will in-
clude clipped pixels in general. To address this, we track the fraction
of pixels clipped (for at least one channel) in the input image and
use this to determine which quantiles were contaminated. We then
ignore these quantiles when computing the L1 distance.

Blending exposure labels To determine what short and long
exposures to use for the input, we blend the exposure labels of the
examples in our auto-exposure database, weighted by how closely
they match the input. For a given labeled example i, we compute its
weight as min

(
max

(
2− di

min dk
, 0
)
, 1
)
, where di is the distance

between the descriptors for input and the example. This scheme
assigns a weight of 1 for the top match, and a weight of 0 for any
example whose distance is double that or more. As described in the
paper, we also ignore examples whose absolute luminance differs
from the current scene by a factor of 8 or more. This helps retain
perception of scene brightness, avoiding, for example, unnatural
day-for-night renditions.

Target brightness to overall exposure So far, our example-
based auto-exposure has provided us with a target pixel brightness
(after gamma correction) for each of the short and long exposures.
To translate these into overall exposures (the product of exposure
time and gain) for the current scene, we use a lightweight simulation
of our finishing pipeline. This simulation tells us how adjusting the
overall exposure, relative to the parameters used to capture the input
frame, influences the average image brightness of the final gamma-
corrected image. Because the mapping between overall exposure
and scene brightness is smooth and monotonic, we can invert this
function with several steps of bisection.

6 Comparison with JPEG burst fusion

In our system, a key design decision is to use raw images as input
to our align and merge algorithms, and then finish the raw merged
result. Using raw images gives us both increased dynamic range and
the ability to model sensor noise simply and accurately. By contrast,
most previous burst fusion methods, e.g. [Liu et al. 2014; Dabov
et al. 2007; Maggioni et al. 2012], consume JPEG images, which
have already been finished by a photographic imaging pipeline.

To compare our system with such JPEG-based methods, we start
from a dataset of 30 raw bursts and apply the same raw-to-JPEG
finishing pipeline for all methods. For our method, this means
running align and merge on raw bursts as usual, but substituting a
different finishing pipeline. For JPEG-based methods, this means
generating the JPEG input from the raw image bursts using the
given finishing pipeline. This experimental approach lets us focus
on the performance of the align and merge algorithms, without the
confounding effect of the finishing pipeline, which can vary widely
in tuning and overall quality across implementations.

Experimental details The 30-burst dataset we use for this evalua-
tion is a subset of our larger dataset of several thousand raw bursts, to
be released on publication, and includes the 10 bursts corresponding
to figures 3-11 in the main paper. These bursts were captured for
their coverage of different types of scenes, levels of motion, and
brightness. The bursts were captured with 3 types of cameras, whose
raw images are 12–13 Mpix.

For a raw-to-JPEG converter we used dcraw [Coffin 2016], followed
by JPEG encoding at quality level 98, which effectively eliminates
artifacts due to compression. While the pipeline implemented by
dcraw is basic compared to commercial systems like Adobe Camera
Raw, its predictability and lack of local tonemapping is an advan-
tage for analysis. Furthermore, the AHD demosaicking method
[Hirakawa and Parks 2005] implemented by dcraw works reason-
ably well in practice and is representative of the algorithms used
by mobile ISPs. Color rendition in the results is somewhat com-
promised, due to limitations of both the DNG format and dcraw’s
treatment of color metadata, but the effect is uniform across methods.
Also note that some bursts are underexposed. This follows from
our capture strategy for HDR scenes, together with the conservative
global tonemapping applied by dcraw, which sets the white level at
the 99th percentile.

We compare our method against several state of the art JPEG-based
burst fusion methods from the academic literature: two variants of
the burst denoising method proposed by Liu et al. [2014], as well as
CV-BM3D [Dabov et al. 2007]. For [Liu et al. 2014], the authors
used their implementation to process our dataset, holding settings
fixed for all results. For 3 manually selected bursts, the authors
brightened the input using a global tonemapping curve, consistent
with the approach proposed in [Liu et al. 2014] for handling “ex-
treme low-light” scenes. For CV-BM3D, we ran the authors’ Matlab
implementation from the BM3D webpage1. Because this method
does not include a mechanism for automatically setting the key noise
level parameter, we ran a grid search over 17 different noise lev-
els and hand-selected the result that visually seemed like the best
tradeoff between noise reduction and loss of detail. We also tried
comparing against V-BM4D [Maggioni et al. 2012], but the authors’
implementation was not able to handle our 12–13 Mpix bursts.

To illustrate the performance of commercially available tools, we
also compare against the JPEG-based “Merge to HDR Pro” feature
of Adobe Photoshop CC 2015.1.2 [Adobe Inc. 2016] with “ghost

1http://www.cs.tut.fi/∼foi/GCF-BM3D

removal” enabled, without further tonemapping. Although this Pho-
toshop feature supports merging raw images as well, we found the
HDR output unsuitable for input to dcraw because it already partially
has photographic processing applied. In our experiments, Photo-
shop’s JPEG-based and raw-based results were qualitatively similar,
so we only include the JPEG-based results in this comparison. We
also tried the “Photo Merge HDR” feature in Lightroom CC 2015,
but we found that when the input images all have the same expo-
sure, this feature has no denoising effect; each pixel in the output is
apparently derived from a single input frame.

Summary of burst fusion results We include full-resolution im-
age results for all methods over all 30 bursts in supplemental material,
to allow detailed inspection at 1:1 magnification. Here we summa-
rize our high-level findings, and in figures 3–5 present results several
illustrative bursts. Crops in these figures are roughly 600× 600, so
we encourage the reader to zoom in aggressively (300% or more) to
appreciate fine pixel-level differences.

• In general, all the methods we evaluated are capable at handling
the smooth motion due to camera shake for reasonably bright
scenes. With moving subjects, more complicated occlusion
relationships, or lower-light scenes, performance begins to
degrade.

• We found Photoshop’s merging feature to be the most conserva-
tive of all methods, only implementing a very limited amount
of denoising. Photoshop’s most notable artifact is strongly
colored ghosts in regions of clipped pixels. It also sometimes
produces thin “echoes” at boundaries of heavy motion.

• Both variants of [Liu et al. 2014] show artifacts at motion
boundaries, where differing amounts of merging leads to dis-
continuities in the level of retained noise. Both of these meth-
ods occasionally demonstrate ghosting artifacts as well. In
certain scenes, we also found that the fast pixel-based variant
of [Liu et al. 2014] also shows a significant loss of contrast,
possibly due to issues in pyramid blending.

• CV-BM3D behaves robustly with respect to motion across the
30-burst dataset, producing typical wavelet denoising results,
without any artifacts that can be definitively ascribed to mo-
tion. Depending on the noise level chosen, results may look
either too noisy or oversmoothed, but a reasonable balance
was generally available, at the cost of some detail. For higher
noise levels, residual wavelet basis functions were sometimes
visible at a pixel scale in the result, and isolated hot pixels
were sometimes visually exaggerated by the denoising.

• Our align and merge method, like CV-BM3D, is very robust
to motion, with no objectionable artifacts across the 30-burst
dataset. When alignment does break down, our method de-
grades gracefully to the base frame and the resulting denoising
sometimes has the appearance of motion blur. Our method
generally dominates all other approaches in this comparison at
both detail preservation and denoising. We attribute this suc-
cess primarily to our robust merging approach and the accurate
noise model enabled by processing raw images.

As a reminder, this evaluation is only a comparison of alignment and
merging quality. Our paper represents an entire system for both low-
light and HDR imaging, from capture strategy to finishing, which
runs efficiently on mobile devices and reliably produces artifact-free
results.

Runtime performance As table 1 shows, performance for these
burst fusion methods vary widely over several orders of magnitude.
While platform differences make comparing runtimes challenging,

http://www.cs.tut.fi/~foi/GCF-BM3D

in
pu

t
fr

am
e

(2
 o

f 1
0)

ou
r

m
et

ho
d

(a
lig

n
an

d
m

er
ge

)
C

V-
B

M
3D

 (σ
 =

 1
3)

[D
ab

ov
 e

t a
l.

20
07

]
Ph

ot
os

ho
p

CC
20

15
“M

er
ge

 to
 H

D
R

 P
ro

”
[L

iu
 e

t a
l.

20
14

]
pi

xe
l-b

as
ed

[L
iu

 e
t a

l.
20

14
]

pa
tc

h-
ba

se
d

Figure 3: Burst fusion results, for a low-light scene with moderate motion. For readability the crops have been made uniformly brighter.
Readers are encouraged to zoom aggressively (300% or more). Our method denoises effectively while retaining the finest detail of all methods.
In areas where alignment was unsuccessful (foreground person in rightmost crop), our results degrade to the appearance of motion blur.
CV-BM3D recovers less detail and produces a slightly blotchy appearance, but behaves robustly with motion. Photoshop has very little
denoising effect, likely due to overly conservative deghosting. Both variants of [Liu et al. 2014] demonstrate ghosting (face in the middle crops)
and show discontinuities in the amount of denoising near motion boundaries (rightmost crop).

in
pu

t
fr

am
e

(1
 o

f 1
0)

ou
r

m
et

ho
d

(a
lig

n
an

d
m

er
ge

)
C

V-
B

M
3D

 (σ
 =

 1
3)

[D
ab

ov
 e

t a
l.

20
07

]
Ph

ot
os

ho
p

CC
20

15
“M

er
ge

 to
 H

D
R

 P
ro

”
[L

iu
 e

t a
l.

20
14

]
pi

xe
l-b

as
ed

[L
iu

 e
t a

l.
20

14
]

pa
tc

h-
ba

se
d

Figure 4: Burst fusion results, for an indoor scene with heavy motion. Readers are encouraged to zoom aggressively (300% or more).
Our method denoises while preserving detail, and shows no merging artifacts despite heavy motion and blurry input. CV-BM3D performs
comparably but retains somewhat more noise. Photoshop has very little denoising effect, likely due to overly conservative deghosting. The
[Liu et al. 2014] results take most image content from a different and sharper frame, however the fused result is oversmoothed, shows severe
posterization and blocky artifacts (face and foot, two leftmost crops), and also demonstrates ghosting (flesh tone over shirt in leftmost crop,
orange wood texture over boot in rightmost crop).

in
pu

t
fr

am
e

(1
 o

f 1
0)

ou
r

m
et

ho
d

(a
lig

n
an

d
m

er
ge

)
C

V-
B

M
3D

 (σ
 =

 5
)

[D
ab

ov
 e

t a
l.

20
07

]
Ph

ot
os

ho
p

CC
20

15
“M

er
ge

 to
 H

D
R

 P
ro

”
[L

iu
 e

t a
l.

20
14

]
pi

xe
l-b

as
ed

[L
iu

 e
t a

l.
20

14
]

pa
tc

h-
ba

se
d

Figure 5: Burst fusion results, for a bright outdoor scene with varying motion. Readers are encouraged to zoom aggressively (300% or more).
For this bright and relatively low dynamic range scene, merging confers limited improvement over capturing a single input frame. Our method,
CV-BM3D, and Photoshop perform comparably, with the denoising effect most visible in low-texture regions. However, Photoshop introduces
strong colored ghosting artifacts in clipped pixel regions (middle crop). Both variants of [Liu et al. 2014] demonstrate blocky artifacts (near
left man’s back, leftmost crop) and sacrifice more fine detail than other methods. The pixel-based variant also produces hazy results for this
burst (all crops), perhaps related to the pyramid blending approach.

method platform type cores used average processing time (sec)
ours (align and merge) Qualcomm Snapdragon 810 mobile 4+4 CPU 1.7
[Liu et al. 2014], pixel-based i5 3.2GHz desktop 1 CPU 2.2
[Liu et al. 2014], patch-based i5 3.2GHz desktop 1 CPU 40.7
CV-BM3D [Dabov et al. 2007] i7 3.2GHz desktop 1 CPU 300
Photoshop “Merge to HDR Pro” i7 2.8GHz Macbook Pro laptop unknown 25

Table 1: Align and merge runtime performance, averaged over our dataset of 30 bursts (section 6). The dataset consists of 264 images in total,
each of which is 12–13 Mpix, corresponding to an average of 113 Mpix per burst.

it is clear that both our method and the faster pixel-based variant
of [Liu et al. 2014] are at least an order of magnitude faster than
all other methods in the comparison. After adjusting for platform
differences, our method and the pixel-based variant of [Liu et al.
2014] still have roughly comparable performance. However, since
their implementation does not make use of SIMD they may have
significant room for optimization.

7 Comparison with raw burst fusion

Burst fusion methods starting from raw input are less common than
those starting from JPEG. To date, previous raw-based burst fusion
methods have concentrated on the benefit of jointly demosaicking
and merging multiple frames, e.g., [Farsiu et al. 2006; Heide et al.
2014], taking advantage of subpixel alignment to recover high fre-
quency content lost to Bayer undersampling. While our raw-based
approach is several orders of magnitude faster than these methods,
our less sophisticated treatment of undersampling—aligning tiles
to a multiple of 2 pixels and relying on our robust merge to handle
aliasing issues—limits the detail we can recover at the finest scale.

To compare our system with previous raw burst fusion methods, we
use the recent FlexISP method [Heide et al. 2014] as a representative
example, and ran our method on their small dataset.

Experimental details The FlexISP dataset for burst fusion con-
sists of 5 bursts, with resolutions ranging from 0.4–1.8 MPix, gener-
ated by downsampling or cropping higher-resolution input frames.
Of these, 2 bursts are synthetic, created by warping and adding noise
to a ground truth raw image. An additional 2 bursts are small crops
from handheld sequences of 18 MPix dSLR images of static scenes.
The final burst is a crop from a handheld portrait sequence captured
with a 3 MPix machine vision camera. None of the bursts include
significant scene motion or motion blur. Raw input frames were
provided by the FlexISP authors.

Note that while the FlexISP paper [Heide et al. 2014] and supple-
mental material seem to imply otherwise, all FlexISP image results
for burst fusion used only the first 8 images in each burst as input
[Heide and Kautz 2016]. Accordingly, we restricted our method to
use the first 8 images of each burst as well.

The most direct comparison between our method and FlexISP would
involve holding the raw-to-JPEG finishing pipeline constant (with
the exception of the demosaicking integrated in FlexISP). Unfor-
tunately, this kind of direct comparison is only possible for the
synthetic bursts, for which the raw-to-JPEG finishing consists purely
of demosaicking. For the other bursts in the FlexISP dataset, linear
pre-tonemapped FlexISP results were not available, nor were we
able to reproduce the color and tonemapping of the FlexISP perfectly.
Despite this mismatch, visual comparisons are still informative.

Summary of burst fusion results We include results for all 5
bursts in supplemental material, to allow detailed inspection at 1:1
magnification. We also include a comparison with BM3D [Dabov

et al. 2007] applied to the demosaicked first frame, which FlexISP
uses as a denoising prior in all their results [Heide and Kautz 2016].
Here we summarize our high-level findings, and in figures 6–8
present results for 3 of these bursts.

• None of the results show artifacts due to motion. This is
expected, given that the dataset does not include significant
scene motion, motion blur, or parallax due to camera motion.
All bursts in the FlexISP dataset except the portrait (figure 8)
are of static scenes, and motion in the portrait scene is mild.

• Replacing our robust temporal merge with a simple temporal
average produces significantly more denoising, without ghost-
ing artifacts and with only a mild loss of detail. This shows
that our alignment method works well for scenes with mild
motion. The difference between these two merging strategies
also illustrates how conservatively our robust merge behaves,
particularly in scenes with very low SNR (figure 6).

• BM3D produces oversmoothed results, with residual wavelet
basis functions sometimes visible. This level of denoising re-
flects the tuning chosen by the FlexISP authors; other tradeoffs
between noise and detail are possible. Perhaps the smoother
tuning makes BM3D more effective as a denoising prior for
FlexISP.

• For scenes with very low SNR (figure 6), our method denoises
less aggressively than either FlexISP or BM3D. In part this is
an aesthetic choice. For the 12–13 Mpix images our method
normally handles, luminance noise at this spatial scale is gen-
erally not objectionable. Our reduced denoising also follows
from a conservative merging approach designed to handle real-
world scene motions.

• For scenes with low SNR (figures 6–7), FlexISP recovers an
impressive amount of fine detail not visible in the input image.
Neither BM3D nor our method recovers as much fine detail,
despite our weaker denoising. This demonstrates the value
of subpixel alignment and joint demosaicking to account for
undersampling. However, it is unclear to what extent these
results generalize to more realistic scenes. Because the scenes
are planar (figure 6) or nearly so (figure 7), subpixel alignment
is well explained by the global homography fit that FlexISP
uses to initialize its alignment [Heide and Kautz 2016].

• For the one real scene with moderate SNR (figure 8), our
method recovers a similar amount of detail as FlexISP, and
joint demosaicking does not appear to confer an advantage.
While it is difficult to generalize from a single burst, this may
reflect the fact that the burst is closer in SNR and spatial scale
to the input normally handled by our system.

Runtime performance FlexISP reports timings for a 16-image
[sic] 0.4 MPix burst (6.4 Mpix total). Since all FlexISP burst fusion
image results used BM3D as a denoising prior [Heide and Kautz
2016] we compare against corresponding timings. For the GPU
implementation of FlexISP, optimized with a reduced number of

B
M

3D
 (f

irs
t f

ra
m

e)
[D

ab
ov

 e
t a

l.
20

07
]

in
pu

t
fr

am
e

(1
 o

f 8
)

ou
r

m
et

ho
d

(r
ob

us
t m

er
ge

)
ou

r m
et

ho
d

(te
m

po
ra

l a
ve

ra
ge

)
gr

ou
nd

tru

th
Fl

ex
IS

P
(B

M
3D

 p
rio

r)
[H

ei
de

 e
t a

l.
20

14
]

Figure 6: Raw burst fusion results, for a very noisy 0.4 Mpix synthetic example. Each burst frame was generated by warping the ground truth
image with a global homography, then adding synthetic noise. Readers are encouraged to zoom in. FlexISP recovers fine detail not visible
in other methods (isolated strands of hair, fine texture on dress, striations on leaves). Replacing our robust temporal merge with a simple
temporal average yields significantly stronger denoising, showing how conservatively our robust merge behaves in low-SNR scenes like this
one. While our method recovers less detail, it is several orders of magnitude faster than FlexISP.

B
M

3D
 (f

irs
t f

ra
m

e)
[D

ab
ov

 e
t a

l.
20

07
]

in
pu

t
fr

am
e

(1
 o

f 8
)

ou
r

m
et

ho
d

(r
ob

us
t m

er
ge

)
ou

r m
et

ho
d

(te
m

po
ra

l a
ve

ra
ge

)
gr

ou
nd

tru

th
Fl

ex
IS

P
(B

M
3D

 p
rio

r)
[H

ei
de

 e
t a

l.
20

14
]

Figure 7: Raw burst fusion results, for a 0.8 Mpix crop of a very dark static indoor scene, captured with a 15 Mpix dSLR at ISO 12800. This
cropped portion of the scene is nearly planar. Readers are encouraged to zoom in. FlexISP recovers fine detail not visible in other methods
(small text on paint cans, not visible with other methods). Replacing our robust temporal merge with a simple temporal average increases the
strength of denoising at the expense of slight loss of detail. While our method recovers less detail, it is several orders of magnitude faster than
FlexISP.

B
M

3D
 (f

irs
t f

ra
m

e)
[D

ab
ov

 e
t a

l.
20

07
]

in
pu

t
fr

am
e

(1
 o

f 8
)

ou
r

m
et

ho
d

(r
ob

us
t m

er
ge

)
ou

r m
et

ho
d

(te
m

po
ra

l a
ve

ra
ge

)
Fl

ex
IS

P
(B

M
3D

 p
rio

r)
[H

ei
de

 e
t a

l.
20

14
]

Figure 8: Raw burst fusion results, for a 1.8 Mpix crop of a dark indoor portrait, captured with a 3 Mpix machine vision camera, with mild
natural scene motion. Readers are encouraged to zoom in. In this example, our method recovers a similar amount of fine detail as FlexISP. The
improvements in fine contrast demonstrated by our method are due in part to the sharpening in our finishing pipeline. Replacing our robust
temporal merge with a simple temporal average increases the strength of denoising and reduces chroma aliasing (resolution chart, middle
crop) at the expense of slight loss of detail. In the FlexISP result, the green pixel artifacts on the forehead (leftmost crop) are due to a hot pixel
in the input. Aliasing artifacts due to demosaicking are visible in all methods, with our method showing mild chroma aliasing, and BM3D and
FlexISP showing a cross-hatching pattern (right area of resolution chart, middle crop).

iterations and an approximation to accelerate BM3D, they report
0.82 sec on a 250W desktop GPU and 16.7 sec for a 11W tablet.
Assuming linear scaling with number of input pixels, to match
the 133 Mpix bursts handled by our system (table 1), the adjusted
performance of FlexISP is 14.5 sec on desktop and 295 sec on tablet.
By comparison, our system takes 1.8 sec for a corresponding amount
of work (1.7 sec for align and merge, from table 1, plus 0.1 sec for
demosaicking). In summary, our method on a 2W mobile CPU is
8.0x and 164x faster than FlexISP on desktop and tablet respectively.
On a performance per watt basis, our method is about 1000x and
900x more efficient than FlexISP on desktop and tablet respectively.

References

ADOBE INC., 2016. Photoshop CC 2015.1.2, http://www.adobe.
com/creativecloud.html.

COFFIN, D., 2016. dcraw 9.26, http://www.cybercom.net/∼dcoffin/
dcraw.

COHEN, S., AND GUIBAS, L. J. 1997. The earth mover’s distance:
lower bounds and invariance under translation. Tech. Rep. STAN-
CS-TR-97-1597, Stanford University.

DABOV, K., FOI, A., AND EGIAZARIAN, K. 2007. Video denoising
by sparse 3D transform-domain collaborative filtering. EUSIPCO.

FARNEBÄCK, G. 2002. Polynomial Expansion for Orientation and
Motion Estimation. PhD thesis, Linköping University, Sweden.

FARSIU, S., ELAD, M., AND MILANFAR, P. 2006. Multi-frame
demosaicing and super-resolution of color images. TIP.

HEIDE, F., AND KAUTZ, J., 2016. Personal communication.

HEIDE, F., STEINBERGER, M., TSAI, Y.-T., ROUF, M., PAJK, D.,
REDDY, D., GALLO, O., LIU, J., HEIDRICH, W., EGIAZARIAN,
K., KAUTZ, J., AND PULLI, K. 2014. FlexISP: A flexible
camera image processing framework. SIGGRAPH Asia.

HIRAKAWA, K., AND PARKS, T. W. 2005. Adaptive homogeneity-
directed demosaicing algorithm. TIP.

KUGLIN, AND HINES. 1975. The phase correlation image align-
ment method. The International Conference on Cybernetics and
Society.

LIU, Z., YUAN, L., TANG, X., UYTTENDAELE, M., AND SUN, J.
2014. Fast burst images denoising. SIGGRAPH Asia.

MAGGIONI, M., BORACCHI, G., FOI, A., AND EGIAZARIAN, K.
2012. Video denoising, deblocking, and enhancement through
separable 4-D nonlocal spatiotemporal transforms. TIP.

MERTENS, T., KAUTZ, J., AND REETH, F. V. 2007. Exposure
fusion. Pacific Graphics.

OLIVA, A., AND TORRALBA, A. 2001. Modeling the shape of the
scene: A holistic representation of the spatial envelope. IJCV 42,
3, 145–175.

STONE, H. S., ORCHARD, M. T., CHANG, E.-C., AND MAR-
TUCCI, S. 2001. A fast direct Fourier-based algorithm for sub-
pixel registration of images. TGRS.

http://www.adobe.com/creativecloud.html
http://www.adobe.com/creativecloud.html
http://www.cybercom.net/~dcoffin/dcraw
http://www.cybercom.net/~dcoffin/dcraw

