
SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Document Revision 7.1-A
 Page 1 of 171

SageTV Studio

Version 7.1

User’s Guide

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 2 of 171

Table of Contents
1) Getting Started.. 7

Introduction... 7
Installation... 7
License Key Requirement... 7
Starting Studio .. 7
Additional Documentation.. 8
Safe STV Editing .. 8
What’s New in Version 7.1... 8
What’s New in Version 7.0... 9

2) The SageTV Studio Language... 12

The STV File in Relation to SageTV.. 12
The Widget.. 12

What is a Widget?... 12
Widget Relationships .. 12
Displaying Widget Relationships as a Tree .. 14
Widget Types .. 15
Widget Chain Types ... 16

Expressions ... 17
General Expression Information ... 17
Variable Assignment... 18
Creating Code Comments ... 18

3) Widget Details ... 19

General Widget Properties.. 19
Properties Common to Many Widgets.. 19

Properties Dialog Buttons ... 22
Menu Widget .. 23

Special Menu Widget Names.. 23
Menu Widget Properties ... 23

OptionsMenu Widget.. 25
OptionsMenu Widget Properties... 25

Panel Widget... 26
Panel Widget Properties.. 26

Theme Widget... 28
Special Theme Widget Names.. 28
Theme Widget Properties ... 28

Action Widget... 31
Action Widget Properties.. 31

Conditional Widget... 32
Conditional Widget Properties.. 32

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 3 of 171

Branch Widget .. 33
Special Branch Widget Names ... 33
Branch Widget Properties ... 33

Listener Widget... 34
Dual-Use Command Listeners .. 34
Mouse Event Listeners.. 35
Listener Widget Properties ... 35

Item Widget .. 36
Item Widget Properties ... 36

Table Widget... 37
Table Widget Properties ... 37

TableComponent Widget .. 39
1-Dimensional Tables ... 39
2-Dimensional Tables ... 39
TableComponent Widget Properties... 39

Text Widget .. 41
Text Widget Properties ... 41

Image Widget.. 43
Image Widget Properties... 43

TextInput Widget .. 46
TextInput Widget Properties... 46

Video Widget .. 48
Video Widget Properties... 48

Shape Widget .. 49
Shape Widget Properties... 49

Attribute Widget ... 51
Attribute Widget Properties .. 51

Hook Widget... 52
Hook Widget Properties.. 53

Effect Widget .. 54
Effect Widget Properties... 54

Valid Widget Parent-Child Relationships... 57

4) Attributes / Variables ... 58

Variable Context (Scope).. 58
How to Access Variables for the UI Element Currently in Focus................................ 59
SageTV’s Built-In Variables... 59

Predefined Local Variables... 59
Listeners That Set Local Variables ... 61
Special Widget Names.. 63

5) Hooks – The Complete List ... 64

FilePlaybackFinished(MediaFile)... 64
MediaPlayerFileLoadComplete(MediaFile, boolean FullyLoaded)............................. 64
MediaPlayerError(String ErrorCategory, String ErrorDetails)..................................... 64

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 4 of 171

RequestToExceedParentalRestrictions(AiringOrPlaylist, String LimitsExceeded) 65
RecordRequestScheduleConflict(Airing RequestedRecord, java.util.Collection
ConflictingRecords).. 65
RecordRequestLiveConflict(Airing RequestedRecord, Airing ConflictingRecord) 66
WatchRequestConflict(Airing RequestedWatch, Airing ConflictingRecord).............. 66
DenyChannelChangeToRecord(Airing AiringToRecord).. 66
InactivityTimeout() ... 67
NewUnresolvedSchedulingConflicts() ... 67
MediaPlayerPlayStateChanged() .. 67
MediaPlayerSeekCompleted() .. 67
BeforeMenuLoad(boolean Reloaded)... 67
AfterMenuLoad(boolean Reloaded) ... 67
BeforeMenuUnload() .. 68
MenuNeedsDefaultFocus(boolean Reloaded) .. 68
RecordingScheduleChanged() .. 68
RenderingStarted() .. 68
FocusGained()... 68
FocusLost() ... 69
STVImported(Widget[] ExistingWidgets, Widget[] ImportedWidgets) 69
MediaFilesImported(MediaFile[] NewMediaFiles)... 69
StorageDeviceAdded(java.io.File DevicePath) .. 69
ApplicationStarted().. 69
ApplicationExiting() ... 70
LayoutStarted() ... 70
SystemStatusChanged() .. 70

6) The Studio Interface... 71

User Interaction... 71
Using a Mouse .. 71
Using a Keyboard ... 71

The Menus and Status Indicator ... 72
The Studio Menu Bar.. 72
The Pop-up Options Menu.. 74
The Widget Bar... 75
The “Running” Indicator... 77

Basic STV Editing .. 77
Widget Manipulation .. 78

Adding Widgets .. 78
Removing Widgets.. 78
Moving and Copying Widgets .. 79
Editing Widgets .. 79

Using Studio – A Beginning Tutorial ... 80

7) Using The Debugger... 84

Breakpoints ... 84

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 5 of 171

Code Tracer... 84
UI Components ... 84
Stepping Through Code .. 84

8) Studio Tutorials and Examples ... 86

Tutorial Set 1 – Basic Widget Manipulation .. 87
Tutorial Set 2 – Text Display.. 92
Tutorial Set 3 – Shape Drawing.. 94
Tutorial Set 4 – Image Display ... 96
Tutorial Set 5 – Item Widgets (Buttons)... 98
Tutorial Set 6 – Panel Widgets ... 101
Tutorial Set 7 – Action Widgets ... 104
Tutorial Set 8 – Variable Usage.. 107
Tutorial Set 9 – Conditionals and Branches ... 110
Tutorial Set 10 – Loops... 113
Tutorial Set 11 – Pop-up Options Menus ... 116
Tutorial Set 12 – Tables.. 118
Tutorial Set 13 – Listeners.. 122
Tutorial Set 14 – Hooks .. 124
Tutorial Set 15 – Themes.. 126
Tutorial Set 16 – Property-Based Animations .. 130
Tutorial Set 17 – Core Layer-Based Animations.. 132

Core Layer Animation System.. 132
Core Layer Animation Tutorials... 134

Tutorial Set 18 – Scaled Diffused Images .. 138
Tutorial Set 19 – Effect Widget Animations .. 140
Example Set 1 – Customizing Menus... 144
Example Set 2 – Creating Pop-up Dialogs ... 149
Example Set 3 – Adding a Customizable Option ... 153
Example Set 4 – Adding a Basic Menu Animation .. 155

9) Miscellaneous Studio Tips ... 157

Highlighting the Current UI Element ... 157
Finding the Currently-Used STV Menu ... 157
Finding a UI element’s Widget in Studio ... 157
Action Chain Color Coding .. 157
Run Multiple Instances or Multiple Windows in a Single Instance 158
Run Multiple Placeshifter Clients on a Single PC.. 158
Copy Widgets from One STV to Another .. 158
Edit Multiple Widgets’ Properties at Once... 159
Automatically Updating Clock Display.. 159
Animation property vs. Refresh() API call ... 160
What Text in the STV is Evaluated?... 162
Difference Between Watch and WatchLive for Live TV ... 162
Use true as Conditional & Expressions as Branches .. 162

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 6 of 171

Consequences of Conditional Expression Evaluation .. 163
Using java Code.. 163
Calling SageTV API methods from Java.. 163
Translation Files.. 164

STV translations.. 164
Core Translations .. 165
Translations Involving Double Byte Character Sets... 166

Local vs. Server File Access... 166
Using Long Numbers.. 167
Finding Syntax Errors ... 168
Calling the Default STV from Custom STVs... 168
Creating an STVI Import to Patch Other STVs .. 169
Finding the Mouse Cursor Screen Coordinates .. 169
Creating Version 6 compatible STVs using Version 7... 170
Converting XBMC Skins for use with SageTV.. 170
Updating an Area When Focus Changes .. 170
Developing and Sharing Plugins... 171
Using SageTV When Plugin Imports are Active.. 171

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 7 of 171

1) Getting Started

Introduction

SageTV’s user interface is defined inside an Application Package file, in either STV or
XML format. The interface and file are both created using a special-purpose application
called SageTV Studio. The basics of installing and getting started with this application
are the focus of this document.

Note: Prior to version 4.1, Studio saved the Application Packages as .stv files. Versions
4.1 and later save STV files using .xml format. This document refers to Application
Package files as STV files, regardless of the file extension or format.

Installation

SageTV Studio is installed as part of a normal SageTV or SageTV Client installation, so
no special steps need to be taken to install Studio.

Note: Since Studio operates the same in SageTV or SageTV client, further the use of the
term “SageTV” in this document also refers to “SageTV Client”, unless otherwise stated.

License Key Requirement

Note that while Studio is part of a SageTV installation, Studio is not available during the
trial period. A valid SageTV license key must be entered before Studio may be launched.

Starting Studio

Once SageTV is registered, Studio may be started from within SageTV by using the
Customize command. The default keystroke for that command is Ctrl+Shift+F12, and it
may be changed in SageTV by going to: Setup -> Detailed Setup -> Commands. Issuing
the Customize command will cause two things to occur:

1. If Studio is not already open, it will be opened in a new window.
2. The Widget that corresponds to the currently showing Menu or OptionsMenu in

the SageTV UI will be highlighted in the Studio window.

Note: The Linux version of SageTV is not automatically configured to open Studio. This
post in the SageTV forum’s Linux FAQ contains information regarding using Studio on
Linux:
http://forums.sagetv.com/forums/showthread.php?p=201739&postcount=10

http://forums.sagetv.com/forums/showthread.php?p=201739&postcount=10

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 8 of 171

Additional Documentation

In addition to this user guide, you may wish to consult other documentation regarding
customizing SageTV:

SageTV API – See http://download.sage.tv/api/index.html
EPG Data Plugin, Tuner Plugin, and other customization documentation –
See http://www.sagetv.com/configuration.html
Developing SageTV Plugins for SageTV version 7 and newer – See
http://download.sagetv.com/DevelopingSageTVPlugins.doc

Safe STV Editing

When using Studio, it is recommended that you edit a copy of the STV that you wish to
modify so that the original STV remains unchanged and available for reference, in case
you make editing mistakes and are not sure how to return the edited STV back to its
original condition.

In order to prevent interfering with recordings currently in progress, it is also
recommended that you use Studio from a client instance of SageTV. That way, if you
have to end the SageTV process (perhaps due to accidentally creating an infinite loop),
no recordings will be affected. Editing in a client instance can be done by:

1. Run SageTV in Service Mode. When you do this, the UI portion is run as a client,
so exiting the UI instance will not affect recordings that may be in progress.

2. Install SageTV Client and use Studio from an instance of that client.

What’s New in Version 7.1

The Animation widget property can now use a dynamic value to specify the
delay, period, and duration settings instead of only being allowed to evaluate to a
Boolean value. See Properties Common to Many Widgets.

Added the Focusable and Cursor property to the TextInput Widget, used to
control whether the TextInput widget can have focus, draws its own cursor, and
its text is editable.

Listener widgets can now be children of TextInput widgets, since TextInput
widgets can now have focus. See Valid Widget Parent-Child Relationships.

The Crop to Fill Entire Area property for Image widgets can now be set
dynamically.

http://download.sagetv.com/DevelopingSageTVPlugins.doc
http://www.sagetv.com/configuration.html
http://download.sage.tv/api/index.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 9 of 171

Added support for doing automatic argument conversion from Airing to
java.io.File objects in the Studio API, if the Airing has an associated MediaFile
object.

What’s New in Version 7.0

Added a new widget type for animations, the Effect Widget. This new Effect
widget is used for all animations and effects. See: Tutorial Set 19 – Effect Widget
Animations.

Note: Due to changes in the core and in STV files, STV files created using
SageTV version 7.0 are not normally backward compatible with version 6.
However, STV files created in earlier versions should work with version 7.0. To
create STVs files that can be used with version 6, see the tip regarding Creating
Version 6 compatible STVs using Version 7.

The older layer based animation system is now deprecated and support for it is
likely to be removed completely from a future version of SageTV. All layer based
animations should be converted to the new effect widget system.

Added tips about creating plugins for the new plugin system and how the use of
plugins affects Studio. See Developing and Sharing Plugins and Using SageTV
When Plugin Imports are Active.

Added Diffuse Image Source File and Scale Diffused Image properties to the
Image widget. Instead of using the Image widget’s Corner Arc property, use a
diffuse image to affect the shape of an image. See: Tutorial Set 18 – Scaled
Diffused Images.

The RenderXform(ScaleX) and RenderXform(ScaleY) widget properties have
been removed. Use Effect widgets instead.

Added the Diffuse Color property to the Image, Menu, Panel, Item, Text,
TextInput, OptionsMenu, Table and TableComponent widgets.

Added the Scroll Duration property to the Panel and Table widgets.

Added the Focusable Condition property to the Item widget.

Added the Cross Fade Duration property to Text and Image widgets.

The ApplicationStarted and ApplicationExiting hooks are now called when the
STV is being loaded and unloaded instead of when the SageTV application is
being started and exited.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 10 of 171

The RequestToExceedParentalRestrictions hook now sends an airing or a
playlist as the first parameter, using the variable named ‘AiringOrPlaylist’.

The Display Attribute Values and Dynamic Boolean Property Editing options
have been added to Studio’s Tools menu.

The UI Components window uses an orange marker to indicate UI components
whose widget properties are controlled by a theme.

The Theme widget Font Name property can now evaluate to a .ttf file using an
absolute path to the file or a path relative to the directory where sagetv.exe is
located, in addition to being a selection from its drop-down list.

If the Tools -> Display Widget UIDs option is enabled, then the Edit -> Find All
option will also match UID values in addition to text values.

Added a tip explaining how to Run Multiple Placeshifter Clients on a Single PC.

It is now possible to drag and drop widgets from one STV to another by running
multiple SageTV windows in the same SageTV instance, using the SageTV server
and Placeshifter clients. See these tips: Run Multiple Instances or Multiple
Windows in a Single Instance, Copy Widgets from One STV to Another, and Run
Multiple Placeshifter Clients on a Single PC.

Studio now lists the top level of widgets grouped by widget type, with each
widget type grouping sorted by name, ignoring upper/lower case when sorting.

OptionsMenu widgets can now use the Background Component widget
property.

If a Table widget has its Background Component property checked, then it will
not be focusable.

A themed Item or Image widget can now have a default child Process widget
chain which is executed when an Item or Image widget is selected in the SageTV
UI.

In addition to NumPages and NumPagesF, Table widgets now also predefine the
NumHPages, NumVPages, NumHPagesF, and NumVPagesF local variables.
See the list of Predefined Local Variables.

Added the MouseEnter, MouseExit, and MouseMove listeners. The
MouseMove listener sets local variables. For details, see Listeners That Set Local
Variables.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 11 of 171

Added a note that variables defined as attributes under a UI element widget are
also available in that UI element’s parent UI chain. See Variable Context (Scope).

Updated the Automatically Updating Clock Display tip to include information
about using the $Clock style Text widget to automatically update customized text
every minute by feeding the contents of an Action widget into the $Clock Text
widget.

Added the gReloadCustomSTVOnPlayback optional variable for Custom STV
mode. See the Calling the Default STV from Custom STVs tip.

Added a tip for Converting XBMC Skins for use with SageTV.

Added a tip for Updating an Area When Focus Changes.

Added additional Predefined Local Variables: LinearScrolling,
AllowHiddenFocus, DisableParentClip, EnforceBounds, FreeformCellSize,
and SingularMouseTransparency.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 12 of 171

2) The SageTV Studio Language

The STV File in Relation to SageTV

SageTV consists of two parts: a core program that defines how SageTV runs and what
its basic capabilities are, and an STV file that defines the User Interface (UI).

The core program does not directly interact with a user; it provides all the “behind the
scenes” functionality such as controlling capture devices, creating the recording schedule,
recording the scheduled shows, deleting recordings to make room for new ones, and
many other responsibilities. In order for the core program to display an interface that a
user can interact with, it needs an STV file, which defines the entire UI. Without an STV
file, the user will see a blank screen in the SageTV window or display area and will have
no way to make use of SageTV’s features. To make the capabilities of SageTV available
to an STV file, there is a set of API functions that the STV code can call to access the
core’s data and functionality.

The STV file uses basic screen display elements and the core’s API calls to create and
display the entire UI that a user interacts with. When using SageTV, every visible UI
feature is defined in the STV that is in use. Any of the options that the core can support
must be presented in the STV in order for a user to have access to those options. So, an
STV can provide access to as much of SageTV’s core capabilities as a developer wishes
to make use of.

Studio is the application used to develop and maintain these STV files, in XML format.

The Widget

What is a Widget?

An STV consists of widgets, which are the basic building blocks of the Studio language.
There are 18 types of widgets that provide UI display and code execution functionality.
These widgets are not like lines of code in the traditional sense of a programming
language such as C++ or java; rather, they define what the SageTV core will do when a
widget is encountered/executed: the type of the widget defines what SageTV could do at
that point, while the details of the widget (its properties; more on that later) tell SageTV
exactly how that widget is to be implemented.

Widget Relationships

While a text-based programming language has lines of code that follow one after another
and are executed in that order, widgets have parent ↔ child relationships, or references.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 13 of 171

A series of widgets is executed from parent → child → next child, and so on, so that
execution flows from a parent widget down through all of its children. A parent widget
can have multiple children, and each of those children may have one or more children.
There is a defined order to children, so child 1 comes before child 2. This sequence will
be referred to as a widget chain.

Each child widget is also capable of having multiple parents. There is no execution order
regarding the parental connections. The consequences of having multiple parents will be
discussed later.

Consider a set of abstract widgets: A, B, C, D, E, and F. For this example, it doesn’t
matter what kind of widgets these are; just consider them to be generic widgets, Studio’s
basic building block.

Widget Chain for A

Widget A is a parent of widget C. Widget A is also a parent of widget D, which is a
parent of widget E, which happens to be the parent of widget F. Note that A has two
children, C and D, and that child C is A’s first child, since it branches off first. In this
case, the widget order is A → C→ D→ E→ F.

Widget Chain for B

Widget B is a parent of widget E, which is a parent of widget F. For this widget chain, the
widget order is B → E → F.

Note that E has two parents: D and B. There is no first or second parent in terms of
execution priority, since execution flows from parent to child; E simply has two parents.
(However, as explained in the next section, there is a distinction regarding the primary
parent only for display purposes in Studio.)

What Studio does is to take these abstract internal widget relationships and display them
in a visual manner that shows hierarchy and relationship in an understandable visual

Widget A

Widget E

Widget D

Widget B

Widget C

Widget F

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 14 of 171

manner: an expandable tree, which branches from parent to children as sections of the
tree are expanded.

Displaying Widget Relationships as a Tree

In Studio, the widget relationships are visually displayed as an expandable tree, similar to
how a directory tree structure is displayed in an application such as Windows Explorer.
When a parent widget is expanded, its child widgets are displayed indented and below the
parent in the order of their relationship to the parent: the first child is shown first, second
child shown second, etc. If any of those child widgets have children, the display can be
expanded to show them indented below the child also. In this way, the widgets appear to
have an order, similar to a text programming language having its lines shown in order in
a text editor.

When a widget has multiple parents, one of that widget’s occurrences will be chosen as
the Primary Reference and its display will be bolded in Studio. Every other reference to
that widget will be shown in italics. The bolded widget may be expanded to see its
children in a tree display, as described above; the italicized widget cannot be expanded,
even though it has the same exact children. (One reason that its children cannot be
displayed is that code loops are possible via references, and an expanded loop could run
on indefinitely.) There is no other difference: all connections to child widgets are done
via references internally to SageTV; it is just that multiple references are displayed in this
way to distinguish the fact that there are multiple references to that widget. Tip: To see
the children for an italicized widget, double click on it with the mouse to jump to its
primary reference.

Now let’s consider the series of abstract widgets mentioned previously:

The same series of generic widgets is now shown as they would appear in Studio.

Widget A

Widget E

Widget D

Widget B

Widget C

Widget F

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 15 of 171

Widget Chain for A

In the Studio image, notice that the widget chain for parent A shows both the order (A →
C → D → E → F) via the display order, and the parent ↔ child relationships via the
expanded & indented tree display format.

Widget E is bolded below widget D, because that reference was chosen as the primary
reference. The primary reference is where all of that widget’s children are shown, so
widget F can be seen directly below E.

Widget Chain for B

Again, notice that the widget chain for parent B shows both the order (B → E → F) via
the display order, and the parent ↔ child relationships via the expanded & indented tree
display format.

Widget E is italicized below widget B, because that reference is not the primary
reference. Note that the entire tree has been completely expanded and that widget F is
only displayed as a child of widget E below E’s primary reference. It is still a child of E
for widget B’s child widget chain, even though it isn’t displayed there – remember: it is
connected via the italicized link. The bolded and italicized versions of widget E are
actually the exact same widget; it is just that for display purposes, one has been chosen to
be the one where its children can be shown.

Note: The Top level of an STV, as displayed in Studio, is a special situation: the top level
does not indicate code execution order; it simply groups the root items by widget type,
with each widget type grouping sorted by name, ignoring upper/lower case when sorting.
In the example above, only the Menu widget is at the top level.

Widget Types

The different types of widgets are more thoroughly discussed later in this document (see
3) Widget Details), but to introduce the terms, the basic widget types available are:

Menu – The top-level UI Widget. (see Menu Widget)
OptionsMenu – Provides ‘pop-up’ menus for SageTV. (see OptionsMenu
Widget)
Panel – A rectangular UI element container. (see Panel Widget)
Theme – Used to apply a general appearance to a UI Widget hierarchy. (see
Theme Widget)
Action – Actions are expressions that are executed as SageTV runs. (see Action
Widget)
Conditional – Used to conditionally execute an action chain or conditionally
show a UI component. (see Conditional Widget)
Branch – Used for multiple-option Conditional branching – similar to
switch/case in C/C++. (see Branch Widget)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 16 of 171

Listener – Used to respond when the user issues a command. (see Listener
Widget)
Item – A UI element that can have ‘Focus’ and can be selected by the user. (see
Item Widget)
Table – Used to create dynamic, scrollable UI components. (see Table Widget)
TableComponent – Used inside a Table to specify the elements of the Table.
(see TableComponent Widget)
Text – Used to display text. (see Text Widget)
Image – Used to display an image. (see Image Widget)
TextInput – Used for text entry. (see TextInput Widget)
Video – Used to display video. (see Video Widget)
Shape – Used to draw basic geometric shapes. (see Shape Widget)
Attribute – Declares a variable to store data for later reference. (see Attribute
Widget)
Hook – Used like a callback system where the UI can respond to certain events
that happen in the core. (see Hook Widget)
Effect – Used to perform animation and other effect transitions from one UI state
to another. (see Effect Widget)

Widget Chain Types

As mentioned previously, each parent widget is capable of having multiple child widgets.
The multiple child widgets have a defined order in their relationship to the parent: there is
a first child, second child, third child, etc. A series of widgets from parent → child →
next child, etc., is a widget chain, and widget chains are executed in the order of parent,
then first child and all of its children, then the next child and all of its children, and so on,
until all of the parent’s child widgets have been processed. Thus, in programming terms:
execution follows depth then breadth.

Widget chains can be one of four types, depending on the purpose of the widgets in the
chain. Tip: certain types of widgets, such as Actions, Conditionals, and Branches, have a
color coded indicator displayed to the left of the widget in Studio.

Process (green indicator) – Process action chains consist of widgets used only for
code execution purposes; they do not lead directly to widgets that display a UI
element, except for Shapes, Menus, and OptionsMenus. A Process action chain
may be executed as a result of a hook, listener or a user selection of a UI element.

UI (blue indicator) – UI action chains consist of a series of action widgets that
lead directly to a child UI element widget. If a widget chain in this situation does
not have a UI widget in its child tree, and is not in a process chain that gets
executed as a result of user interaction (Process chain), then that action will not
get executed and will not be marked with a blue indicator. Note: if there is a line
of code not being executed as part of the data manipulation when creating a
display, check for any widgets marked yellow (see next action chain type.)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 17 of 171

Effect (magenta indicator) – Effect action chains consist of a series of widgets
that lead directly to a child Effect widget. If a widget chain in this situation does
not have an Effect widget in its child tree, then that action will not get executed as
part of the effect chain and will not be marked with a magenta indicator. An effect
chain is a child of the UI element widget which is affected by the effect widget.

None (yellow indicator) – If a widget chain is not part of a Process or UI chain,
then it widgets will not be executed. This usually happens in a UI action chain,
where some action widget is not a parent of a child chain of widgets containing a
UI element. As mentioned above: in a UI widget chain, SageTV will only execute
those actions that are in the UI element’s sequence of parent widgets.

Advanced Note: In certain situations, it is possible to have widget chains that are part of
both a Process and UI chain. Example: If there is UI chain code that is referenced
elsewhere as part of a Process chain, some of the UI chain’s code can still be executed as
part of that referenced code. However, any code under a UI element widget will not get
executed as part of the Process chain in that referenced code. This is used in the default
STV in order to allow the use of the same code to display the System Information on the
screen when the menu is drawn, and to have the same data creation widgets used when
writing the system configuration information to a data file as a result of the Info
command listener. (See the System Information menu in the standard V4 STV.) Note: In
such shared code, a Process chain will not continue executing code below a UI
element widget (such as a Panel) that is in its tree. Any widgets below the UI element
will only be part of the UI chain.

Expressions

General Expression Information

Code that is displayed on widgets such as Actions, Conditionals, and Branches are
expressions that SageTV will evaluate (execute) at run time. Such expressions may be
part of either Process or UI action chains. To easily see which widgets will be evaluated,
simply look at how a widget’s name is displayed in Studio: if it is displayed using a fixed
width font, then it is an expression that will be evaluated. Note: In addition to these
widget names, most widget properties that have an entry field can use an expression to
dynamically control that property. See General Widget Properties.

Expressions can be simple math or string manipulation or may contain more complex
code that calls one or more SageTV API or java functions (see next section). The
expressions follow the standard rules of operator precedence.

SageTV will automatically convert most variable types as needed, if possible.
Conversions between primitives and Strings will be done as needed. Strings and File
objects will also be converted between as needed based on the file path.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 18 of 171

Certain SageTV variable types will automatically convert also. Example: Since the
MediaFile variable type has a 1-to-1 correspondence to the Airing variable type, a
MediaFile can only be associated to a single Airing, and vice-versa. Therefore, SageTV
will be able to automatically convert between these two types as needed. A Show,
however, could have several Airings, while an Airing always refers to a single Show. So,
an API call that expects an Airing as a parameter would not be able to accept a Show
variable in its place, since there is no way to guarantee that a Show refers to one specific
Airing. More details on automatic conversion of SageTV object types can be found in the
API documentation for the different object types.

Variable Assignment

The general format for variable assignment on an Action widget is:

{<variable name=}<expression>

A variable name followed by an equal sign is optional, but if it exists, then the results of
the expression will be stored in the named variable. Regardless of whether an assignment
is part of the statement, the results of the expression will be placed in the ‘this’ variable,
which can be accessed only by the very next expression. Note: there can be only one
assignment (equal sign) in a statement.

For more details about variable usage, see 4) Attributes / Variables.

Creating Code Comments

Currently, there is no “Remark” type widget. An easy way to add a comment line to STV
code is to add an Action widget and place your comment inside a pair of double quotes.
To help clarify that the Action is a comment, rather than functional code that is creating a
string for use by the Action’s child widgets, add “REM” to the beginning of the comment
to indicate its purpose. Example: “REM This is a comment”. Note: “REM” action
widgets are not ignored by the SageTV core; they are processed as strings and affect the
‘this’ variable assigned to the value of the widget’s string.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 19 of 171

3) Widget Details

An STV file consists of a hierarchy of Widgets. The various types of widgets and their
properties are described below.

General Widget Properties

Each widget has properties that may be set. In many cases, a property value can be
dynamic: instead of simply listing a value, use an expression instead, such as
“=SomeVariable” or “=If(SomeExpression, value-if-true, value-if-false)”.

Most of the sliders will adjust a property value from 0.0 to 1.0. Those decimal (float)
values indicate a percent amount relative to the size of space allocated to that UI element,
where 1.0 is 100%. Sometimes, negative or positive decimal values may be entered to
extend an UI element beyond its allocated space, but its display will be cut off at its
border.

When a property is given an integer value instead of a decimal, it is taken as an absolute
value: specifying a height of “1” means 1 pixel; a value of “1.0” means 100% of the
display space allocated for that element.

When values are left blank, SageTV will use its default value for that property,
automatically calculating locations and sizes. The preferred size of a component is the
size defined by the properties; or if the sizing properties are not defined then SageTV will
calculate a preferential size for display (i.e. for a Text Widget it'll be the size of the text).

Properties Common to Many Widgets

Ignore Theme Properties – Check this option to have a widget ignore the properties
defined for that widget type in a Theme and to use its own properties instead. (This will
be explained more in the Theme Widget section later).

AutoArrange – This setting affects the layout of any child UI elements. If nothing is
selected, the child elements must all specify their own locations. SquareGrid will cause
the child UI elements to be placed in a square layout grid, with all elements given the
same size. Horizontal will place all child UI elements in a horizontal row, but the
elements will not all be given the same size; they will be sized according to their
preferred size. Similarly, the Vertical layout will place all items in a vertical column, and
size each of them according to their preferred size. A HorizontalGrid or VerticalGrid
layout will place all child UI elements in a horizontal row or vertical column, with all
elements given the same size based on the number of children – the available space will

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 20 of 171

be evenly divided between all children. Passive will cause the widget to passively obtain
its preferred size after its parent’s actual size has been determined.

Anchor X, Anchor Y – For a widget that can control its own placement, these values
determines the horizontal and vertical locations within its display area where the UI
element will be placed. At times, a parent widget will automatically control the
placement of its children, so this value will be ignored in those conditions. Example: a
panel could AutoArrange its children in a HorizontalGrid, in which case, that grid layout
will determine where the children are placed.

Fixed Width, Fixed Height – Use these properties to set the width and height that a
widget will occupy, relative to the display space allotted by its parent.

Anchor Point X, Anchor Point Y – These properties control the point within the widget
that will be placed at Anchor X and Anchor Y, if values have been provided for the
anchor locations. By default, there is no anchor point and the Anchor values are relative
to the overall component.

Pad X, Pad Y – These values control the spacing between child components in the X/Y
dimension; it only applies if they are automatically laid out using Horizontal, Vertical,
etc., for AutoArrange. Floats are relative to the size of the entire UI, instead of the parent
(position/sizes are relative to the parent). Integers are absolute.

Insets – This is the border inside a component for where the children can be placed.
Floats are relative to the size of the entire UI, instead of the parent (position/sizes are
relative to the parent). Integers are absolute. If it is one value, it applies to all four sides;
if it is 4 values (ex: 0.1,0.2,0.1,0.2) then it applies to top, left, bottom, right respectively.
This can be a dynamic value, using a variable initialized via a call to CreateArray(), such
as CreateArray(0.1,0.2,0.1,0.2).

Vertical Alignment, Horizontal Alignment – These values determine where children
will be placed inside this widget’s UI area when that area is larger than the size of the
children. When using Horizontal arrangement, use Vertical Alignment to control the
vertical placement of the children when there is extra vertical space. Similarly, when
using Vertical arrangement, use Horizontal Alignment to control the horizontal
placement of the children when there is extra horizontal space. Note: For an Image
Widget, these properties can be used to control the placement of the image widget itself.

Animation – The Animation property can be used for one of two purposes: 1) to define
which animation layer a widget and its children belong to, or 2) to provide a UI element
with a way to automatically update the display of itself and all of its children. Important
Note: The Effect Widget should be used for animations for SageTV version 7 and newer,
instead of the layer animation system. The layer animation system and API calls are still
available for use by older STVs but it is likely that it will be removed from a future
version of SageTV. All new STV development should use effect widgets. Layer based
animations can be used when the animations are enabled in the STV if either: 1) The STV

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 21 of 171

has no effect Widgets, or 2) The currently loaded Menu Widget has a Theme Widget
child and that Theme Widget child has a child Attribute Widget named
"ForceLayerAnimations" which evaluates to true.

When the Animation widget property is used to define a widget’s animation layer, simply
set the property to LayerName, or CacheName, where Name is the name of the layer to be
used for that widget. This puts that UI widget and all of its children on the Name layer.
The "Layer" and "Cache" prefixes are interchangeable for the widget Animation
property, so in the default STV you will see some called "CacheFocus", while others
might be "LayerBG" or "LayerForeground". No equal sign is used for this setting. If a UI
widget does not have a value for its Animation property, then it will inherit its layer
setting from its UI widget parent.

When used to automatically update the display of itself and all of its children, there are
two ways to specify an animation property:

1. The first is using a Start,Period,Duration value for the property. This is just 3 non-
negative integers separated by commas. The first value indicates the delay after
initial display of the menu to begin animation. The second value is the time
between animation updates. And the third value is the time the animation should
last for after it has begun; 0 implies forever. All 3 values are in milliseconds. An
example is 0,1000,0 which means animate that component every second.

2. The second way to do Animation properties is with dynamic properties (dynamic

properties are indicated by starting with the equals sign). The dynamic property
can evaluate to either a boolean value or a string with 3 comma- or space-
delimited items. If the dynamic property is a Boolean, then the animation will
occur whenever that Boolean value is true. If the dynamic property is string with
3 comma- or space-delimited items, then the 3 items are used as the timing
information mentioned in #1, above: delay, period, and duration.

Transparency – Unless a widget type specifies differently (below), this value ranges
from 0 to 255 and is used to set the transparency level of the UI widget and all the UI
elements it contains. A value of 0 is fully transparent, while a value of 255 is fully
opaque. Note: If a child UI element widget also sets its own transparency, the child’s
maximum opaqueness depends on the parent’s transparency setting.

Diffuse Color – The diffuse color property for a widget will use the specified color and
diffuse it against any pixels rendered for that widget or children of that widget. For
example: If you use white, the rendering will be unchanged. If you use black, then it will
render black for everything. If you use red, then only the red component of the pixels will
be rendered. If you use gray, then a darkened shade of the pixels will be rendered.

Background Component – Checking this property option causes the UI element to
ignore its parent widget’s insets or other settings that limit where the child widget may be
drawn, so this widget can fill the entire area of its parent. Thus, a Background

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 22 of 171

Component widget can become the entire background of its parent. Also, when checked,
this widget won’t affect layouts of widgets other than its own children, nor will it affect
the size of its parent.

Z Offset – The value of this property for UI widgets affects the Z order for rendering the
display and for receiving events. The default value is 0, with higher values rendered on
top of widgets with lower values; values can be positive or negative. This property is
available for the Panel, Item, Table, Text, TextInput, and Image Widgets.

Mouse Transparency – Checking this property option causes a widget and all of its
children UI elements to ignore mouse events. This allows placing UI elements visibly on
top of other UI elements without blocking mouse events for those underlying UI
elements. This property is available for the Panel, Item, Text, and Image Widgets.

Properties Dialog Buttons

While the properties dialog is open, make any desired changes, then select OK to accept
the changes and close the properties dialog.

Select Apply to apply the current changes.

Select Cancel to close the properties dialog, discarding any changes that have not been
applied.

To discard all changes since the properties dialog was opened, select Revert; if any
previous changes had been applied, select Apply after reverting.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 23 of 171

Menu Widget

Menus are top level widgets and may only occur as top level items; all other occurrences
are references to menus and function as menu transitions.

Each screen in the SageTV UI is based on a single Menu widget and only a single Menu
widget may be active at any time. All child widgets for a Menu widget are part of that
menu.

References to Menu widgets in Process Chains cause a menu transition to occur from the
current menu to the one referenced. During that menu transition, all elements of the
current menu are cleared, including any active Options Menus and local variables, before
loading the new menu. Local variables may be transferred to the next menu by first
calling AddStaticContext before the menu transition.

Note: Menu contents are cached and reused when the Back and Forward commands are
used. In addition, the last few states of a menu are cached for a few sets of the static
context settings used when the menu is called, enabling a faster loading of the menu the
next time it is referenced. This means cached Menus will 'remember' where you were on
them last the next time they are loaded.

Special Menu Widget Names

Main Menu – The Main Menu is the initial menu that SageTV loads at startup or when
awoken from sleeping.

Screen Saver – This Menu is the one loaded when the SageTV screen saver is activated.

Server Connection Lost – When the client loses the connection to the SageTV server, it
loads and displays this menu.

Menu Widget Properties

The properties dialog for a Menu is fairly simple and consists of the widget’s name and a
check box to enable a Video Background for the menu.

The name can be any descriptive text,
keeping in mind the special function
menu names listed above.

If Video Background is checked, then
the menu will show full screen video
as the menu’s background. This full
screen video will completely fill the

SageTV window and will ignore any UI overscan setting. (The Detailed Setup ->

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 24 of 171

Multimedia -> Overscan Settings can be used to resize the UI so that it fits on a TV
screen, while the video background will ignore that setting and continue to fill the entire
size of the SageTV window.)

For a description of the Transparency and Diffuse Color properties, see Properties
Common to Many Widgets.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 25 of 171

OptionsMenu Widget

An OptionsMenu is used to pop up a dialog that is active on top of the current Menu.
Multiple OptionsMenus may be layered on top of each other. A call to the
CloseOptionsMenu() function will close the most recently created OptionsMenu; if there
are multiple OptionsMenus active, then each will require a call to CloseOptionsMenu() in
order to close them all. Alternatively, all active OptionsMenus will be cleared when
transitioning to another Menu.

When an OptionsMenu is closed, the Widget Action chain that caused the OptionsMenu
to open will continue execution at the point after where the OptionsMenu was created.
This allows OptionsMenus to be used to interactively ask the user questions while
processing an Action chain.

Note: When an OptionsMenu ends, continuing execution will not recurse further up the
tree than the OptionMenu’s direct parent, so execution will only resume for actions that
are children of the OptionMenu’s direct parent. This is currently logged as a bug in
SageTV and will be fixed in a future release. This issue should have minimal impact on
the user.

OptionsMenu Widget Properties

Note: OptionsMenu sizes are relative to the entire Menu, not the OptionsMenu’s parent

widget. The sizes of other widgets are
relative to the size of their parent UI
elements.

The properties dialog for an
OptionsMenu is shown to the right.
The first entry is the name of the
widget. This name is only useful for
keeping track of the various
OptionsMenus that are used; the names
have no special meaning for SageTV.

The Background Component
property allows the dialog to be sized
outside of the overscan area of the full
UI display area.

The remaining properties were already
covered above; see Properties Common
to Many Widgets.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 26 of 171

Panel Widget

A Panel is used as an organizational component for UI elements. It is displayed within a
portion of its parent’s display area and all of its child UI elements are contained within its
own borders. Panels are only used in UI portions of the STV tree; they are never part of
the Process chain.

Panel Widget Properties

The name of the panel is for use by the
Studio developer to keep track of the
various panels in use and for use with
various API calls which use a widget
name as a parameter.

Most of the Panel’s properties were
already covered above; see Properties
Common to Many Widgets, but there
are a few additional properties:

Scrolling – Determines whether the
panel can be scrolled to see additional
UI elements that don’t fit within the
panel’s allotted space. If no scrolling
type is selected, then the panel’s
contents may not be scrolled. Choose
Vertical or Horizontal to allow
scrolling the panel in one of those
directions. Choose Both to allow
scrolling in both directions.

Scroll Duration – This setting can be
used to override the default time period
used to scroll an individual UI element.

Wrap Horizontal Navigation, Wrap Vertical Navigation – These choices determine
which items SageTV will change focus to when an item at an edge of the panel is
highlighted and the user uses the directional arrow keys to navigate to another on-screen
item.

If these options are checked, then SageTV will wrap navigation back to the other side of
the panel and highlight the next item from that direction. Focus stays within the current
panel. Ex: Let’s say there is a series of buttons in the panel shown in a vertical column,
with the top button highlighted. If the user presses the Up arrow, navigation will wrap to

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 27 of 171

the bottom button in the panel and highlight it. If there happened to be another panel
above the current one and it also had buttons, navigation would still wrap back to the
bottom button of the current panel rather than going to a button in the upper panel.

If these options are not checked, then SageTV will not wrap navigation only in the
current panel. Focus can switch to an item in another panel. In the above example, if
there is a button in another panel above the top button in the current panel, SageTV
would navigate to it when the Up arrow is pressed.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 28 of 171

Theme Widget

A Theme is used to define default UI properties for other widgets; instead of having to
define the properties for every single widget, themes may be used to automatically apply
properties to any widget which that theme applies to. In addition to the properties of a
theme widget itself, themes can have child widgets. Those child widgets become themes
for those widget types, so that the properties applied to them are automatically used for
any widget of that type within the scope of the theme.

Theme scope: When a UI element widget looks for a theme, it searches for a theme as its
immediate child, then searches up through its parent tree until it reaches the Menu widget
it belongs to. The first themed widget of its type found in that bottom to top search is
used as the theme for its properties. If no theme for its widget type is found it will simply
use default values for its properties. Note: Panel themes do not recurse in this way;
panels only get their theme properties from the theme that is its immediate child.

A themed Item or Image widget can have a default child Process widget chain which is
executed when an Item or Image widget is selected in the SageTV UI. The themed
Process widget chain will be overridden if a Process chain is specified below the actual
Item or Image widget affected by the theme.

Remember: Widgets where the Ignore Theme Properties property option is checked do
not get their property values from any theme.

Special Theme Widget Names

Global – The theme named “Global” is the global theme that applies to the entire STV.
It can be placed anywhere in the STV tree. If there is more than one theme named
“Global”, then the first one found will be used as the global theme. (The “first one found”
may not be the one you expect, so it is best to only have one.)

Theme Widget Properties

The properties for a Theme widget is shown below:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 29 of 171

The Theme can be given any name, with only the name “Global” acting as a special
global theme, as previously mentioned.

Background Image, Background Selected Image
These entries define the background images only for the widget that is the theme widget’s
direct parent. The ‘selected’ image is displayed only if the widget is selectable and has
focus.

Tile Background, Stretch Background
Choose whether the background image(s) should be tiled or stretched to cover the entire
widget’s area. If both items are checked, then the background will be stretched; if neither
option is checked, then the image will be simple displayed as-is in the center of the
widget’s display area.

Background Color, Background Alpha
Background Selected Color, Background Selected Alpha
These are the normal and selected colors used as the background fill for an entire
widget’s area and the alpha-blend value, from 0 – 255. At alpha 0, the background color
is fully transparent; at 255 it is fully opaque. If no alpha is specified, the default setting is
fully opaque (255). As with the background images, the background colors only apply to
the theme’s direct parent widget. Select the color preview box to open a color selection
dialog. You may also use a hex value or a dynamic expression to specify the color.

Note: It is best to have the Menu’s theme have a fully opaque background – either an
image that covers the entire SageTV Window, or a color that fills the area with an alpha
setting of 255. If the Menu has a transparent background, or one that does not cover the
entire display area, portions of the previous display may remain visible when the menu
gets redrawn.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 30 of 171

Property Inheritance Note: The above background-related properties are not inherited
for themes further down in the widget chain, but the properties listed below are inherited
by other theme widgets which are in the widget tree affected by a theme widget
specifying those values. Thus, if any themes in the child tree do not specify the values
below, they will use any values specified by the next applicable theme higher in the tree.

Focus Change Sound, Item Select Sound, Menu Change Sound, User Action Sound
These are the sounds to be played when the described events occur. Note that the sounds
only function when they are in a theme that is the direct child of a Menu widget.

Foreground Color, Foreground Alpha
Foreground Selected Color, Foreground Selected Alpha
These properties define the normal and selected colors for text and their alpha-blend
values, from 0 – 255. Select the color preview box to open a color selection dialog. You
may also use a hex value or a dynamic expression to specify the color.

Foreground Shadow Color, Foreground Shadow Alpha
Foreground Shadow Selected Color, Foreground Shadow Selected Alpha
These properties define the normal and selected colors for text shadows and their alpha-
blend values, from 0 – 255. Select the color preview box to open a color selection dialog.
You may also use a hex value or a dynamic expression to specify the color.

Font Size, Font Style, Font Name
These three properties specify the font that is to be used for any text the theme applies to.
For the Size, you may specify a numeric value or use an expression. For the Style and
Name, either select an entry in the drop-down list or use an expression that evaluates to
one of those entries. The Font Name entry can also be an absolute path to a .ttf file or a
path to a .ttf file relative to the directory where sagetv.exe is located.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 31 of 171

Action Widget

Action widgets contain executable code and may be part of a Process or UI chain.
Actions may contain expressions, as discussed in a previous section of this document.

Note: To create a simple comment line, place your comment on an action widget, inside
quotes, such as: “REM This is a comment”. Just remember that this string will still be
evaluated and affect the ‘this’ variable for the widget, so it is not a true comment since it
does affect the code.

Action Widget Properties

The properties dialog for an Action widget displays the entire text of the action as its
‘name’, then attempts to parse the expression for the SageTV API it may contain.
(Consult the SageTV API documentation for full details on the SageTV API; See
http://download.sage.tv/api/index.html) When such an API call is found, it lists all text
before the API as the Prefix, shows the function’s Category, displays the function name
as the Method, then lists all the parameters for that function, followed by all text that is
found after the function, placed in the Suffix property.

If you wish to simply type in the entire expression yourself, simply highlight the action
widget, press F2 to enter edit mode, and type your desired expression. However, the API
parsing in this properties dialog provides some assistance in making sure all parameters
have been entered and the function name is correct.

http://download.sage.tv/api/index.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 32 of 171

Conditional Widget

Conditional widgets are displayed as “if” lines in the STV code tree. They function
similar to Action widgets, in the sense that they contain executable code and may be part
of a Process or UI chain.

The expression contained in a Conditional widget is evaluated, then execution continues
depending on the results of that expression and on the type(s) of the Conditional’s child
widgets.

If the Conditional has Branch Widgets as children, then the result of the Conditional’s
expression is compared to the results of all of the Branches’ expressions. All Branches
whose results match will have their children executed. i.e.: multiple branches are allowed
to be executed as a result of this comparison. If none of the Branches’ expression results
match, then the Branch named “else”, if there is one, will be executed.

In this example using Branch widgets, “Next Expression
1” and/or “Next Expression 2” could be executed,
depending on whether the results of
“BranchExpression1” and/or “BranchExpression2”
match the results of the Conditional’s “Expression”. The
“else” branch’s children will only execute if neither of
the other two branches’ results match.

Note: this means that all of the Branches’ expressions are evaluated, so don’t plan on the
second one not being evaluated if the first one’s result matches the Conditional.

If the Conditional has no Branch widget children, then its children will be executed only
if the Conditional’s expression evaluates to “true”. Thus:

� is the same as �

Conditional Widget Properties

The properties dialog for a Conditional widget is the same as that for an Action widget.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 33 of 171

Branch Widget

Branch widgets are discussed along with the Conditional widgets, above. Essentially,
Branches control where execution continues after a Conditional widget is evaluated. See
above for more details.

Special Branch Widget Names

A branch that is titled else will pass code execution to its children if no other Branch
expression results match the Conditional expression result.

Branch Widget Properties

The properties dialog for a Branch widget simply consists of the widget’s name, which is
an expression to be evaluated.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 34 of 171

Listener Widget

Listener widgets are activated by user (or command) input, either SageTV commands or
one of the special case events such as mouse, raw keyboard, or raw infrared input.

When an event occurs, SageTV checks for UI components that can receive focus, then
sends the event to the focused component. The tree hierarchy is searched for a listener for
the type of event, starting at the focused component and continuing up the tree through its
parents. If that listener type is found, its child widgets are executed. If no listener is
found, then the default functionality for that command, if any, is executed in the core
program instead. Remember: some commands have default functionality, but not all do.

Once a listener is done executing its code, processing for that event stops, unless the
listener includes an action that calls PassiveListen(). When PassiveListen() is called, the
event continues processing up the tree hierarchy; successive Listeners for that event could
continue passing along the event through the PassiveListen() function, until the event’s
default functionality is processed in the core.

Listeners that are to be active for the entire STV may be placed in the Global theme.

Dual-Use Command Listeners

A dual-use command is one where two commands are listed as part of a single command
name, such as “Right/Volume Up”. When SageTV receives a dual-use command, it
checks to see which command listener is available. For such a command, at a single level
in the STV, SageTV checks for the existence of the following listeners, in this order:

1. If the dual-use command’s listener is found, that listener is used. In this example,
the listener would be for “Right/Volume Up”.

2. If the dual-use command’s listener is not found, then SageTV looks for a listener
for the command listed first. For this example, that listener would be for the
“Right” command.

3. If the first command’s listener is not found, then SageTV looks for a listener for
the command listed second. For this example, that listener would be for the
“Volume Up” command.

4. If none of those three listeners are found, then SageTV continues searching up the
tree hierarchy or checks for default functionality in the core.

Note that the above applies only when issuing a dual-use command. If a single command
is issued instead, the dual-use command’s listener is not used. Thus, if the “Right”
command is received, SageTV will only check for the “Right” listener; it will not use the
“Right/Volume Up” listener.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 35 of 171

Mouse Event Listeners

Because a mouse pointer may be moved anywhere on the screen, Mouse events go to the
listener for any UI element, not just those that may have focus; i.e.: the mouse can click
on non-selectable UI elements and those elements’ listeners may respond to mouse input.
An example of this in the default STV is the volume bar in the media player, where the
volume can be set directly with a mouse click on the volume bar.

Listener Widget Properties

The properties dialog for a Listener widget consists of
the widget’s name and the Listener Type.

If the Listener’s name is blank, then the Type
becomes the displayed widget title.

If the Type is blank, then the Type list is searched for one that matches the given Name.
If no match is found, then the Listener will not be active.

For the non-command listeners (MouseClick, MouseDrag, RawKeyboard, RawInfrared,
Numbers, etc), the Name becomes the local variable for the information associated with
the event. The value is also stored in the ‘this’ variable. Example: A Listener named
Number with the Type Numbers will have the entered number stored in a local variable
called Number. For more details, see Listeners That Set Local Variables.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 36 of 171

Item Widget

Item widgets are similar to Panels, except that Items can have focus, so they can be
highlighted when moving focus via the arrow keys, and they may be clicked on or
selected. When an Item is selected, its child action Process chain is executed.

In general, the Item widgets are presented to the user with the appearance of ‘buttons’ in
the default STV (accomplished through the use of themes that apply to the Items).

Item Widget Properties

The properties dialog for an Item is
shown.

The first entry is the name of the
widget. If the Item has no UI widget
children, then as a convenience to the
developer, the name of the Item will be
displayed on the screen as the text for
that UI element.

Focusable Condition – If there is no
expression in this property or if the
expression evaluates to true, then the
item can gain focus. If the expression
evaluates to false, then the item will
not be focusable.

The remaining properties were already
covered above; see Properties
Common to Many Widgets.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 37 of 171

Table Widget

Table widgets are containers for TableComponent widgets, allowing the creation of
scrollable UI elements based off dynamic data, such as a list of items from the database
that a user can select. An example would be the list of recordings on the SageTV
Recordings menu. Since a Table is used in conjunction with TableComponents, details of
the combined use of these widgets is covered in the next section: TableComponent
Widget.

Table Widget Properties

The properties dialog for a Table is
shown.

The first entry is the name of the
widget. It is used solely as a way for
the developer to track Tables in the
STV code.

Many of the remaining properties were
already covered previously; see
Properties Common to Many Widgets.
However, there are some properties
that are specific to Table widgets.

NumRows and NumCols are used to
specify how many rows and/or
columns are displayed within the
widget’s portion of the screen. If a
value is 0, but the table is set to use
that dimension, then the number of
elements in the table will be used for
that dimension. The space allotted to
each row or column is the total space
available in that dimension divided by

the number of elements to display in that dimension. i.e.: the space is spread evenly so
that each item is the same size. These widget properties may be dynamically set via an
expression.

Dimensions is used to specify the direction the table will scroll: Vertical, Horizontal, or
Both. A Vertical or Horizontal table is a 1-dimensional table in the specified direction.
If Both is selected, the table will be 2-dimensional. The list of SageTV Recordings is a 1-
dimensional vertical table, while the Program Guide is a 2-dimensional table.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 38 of 171

Wrapping is used to determine whether the table elements will wrap to the beginning or
end after scrolling to last or first item. If nothing is selected, then the table will not wrap
between the first and last items; once you reach the limits of the list, scrolling will stop.
Choose Vertical, Horizontal, or Both to enable wrap-around scrolling in those
directions.

Note: The Dimensions and Wrapping widget properties may be dynamically set via an
expression instead of selecting from the pull-down options box. For both of those
properties, the allowed values are as follows: Vertical = 1; Horizontal = 2; Both = 3.

If a Table is a Background Component, then it will not be focusable, in addition to
ignoring its parent widget’s insets or other settings that limit where the child Table
widget may be drawn.

Scroll Duration – This setting can be used to override the default time period used to
scroll an individual UI element.

The Region for Autoscroll specifies the amount of area in the Cell table subcomponent
where mouse movement should cause autoscrolling in the appropriate direction. The max
value is 0.5 since that would cover the entire table for both scrolling directions. This
value can be determined from a dynamic expression.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 39 of 171

TableComponent Widget

TableComponent widgets are used with Table widgets as the table’s constituent parts.

1-Dimensional Tables

To create a 1-dimensional table, place an action chain as the parent of the Table widget,
with that action chain creating the data that populates the table. For the Table widget, set
its Dimension property to use either Vertical or Horizonatal. A TableComponent of type
Cell is placed as the direct child of the Table widget. The name of the TableComponent
will become the local variable that is used to access the data element in the array that
populates the Table.

2-Dimensional Tables

To create a 2-dimensional table, add a Table component with its Dimension property set
to Both. 2-D tables require three TableComponents, one each for Cell, RowHeader, and
ColHeader. Place action chains between the Table widget and its TableComponent
widgets, with each action chain creating the data array for its child TableComponent. As
for 1-D tables, the names of the TableComponent widgets are the local variables used to
access the data elements for each of the three arrays populating the cells, row header, and
column header.

TableComponent Widget Properties

The properties dialog for a TableComponent is
shown.

The first entry is the name of the widget. As
discussed above, the name of the
TableComponent is used as the local variable to
access the data element in the data array that
populates the table.

Most of the remaining properties were already
covered previously; see Properties Common to
Many Widgets. However, there is one more
property that is specific to TableComponent
widgets.

TableSubcompType is used to specify what
type of table component the widget is to be.
(Note that the Nook and EmptyTable choices
are not currently used.) Every table must have a

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 40 of 171

Cell component. These are the main data cells of any table, regardless of whether it is 1-
or 2-dimensional. RowHeader and ColHeader are only used for 2-dimensional tables.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 41 of 171

Text Widget

Text widgets simply display text inside its UI display area. There are two ways to specify
what text will be displayed by the Text widget:

1. Set the name of the widget to the text to be displayed and do not place the Text
widget under an action widget. (If there is no parent Action widget feeding data to
the Text widget, then the name of the Text widget is the text to be displayed.)

2. Place the Text widget as the child of an Action widget. The result of the parent

Action widget will be converted to a string before being displayed.

Tip: To create a blank line in some lines of text to be displayed, leave a space after the
newline character in the Action widget: “\n” (without a space) will not result in an added
blank line, since there is nothing to be displayed on the new line, but “\n “ (with a space
after the ‘n’) will add the blank line to the display.

Note that the font and colors used to display the text is set in the Theme that applies to
the Text widget.

Text Widget Properties

The properties dialog for a Text widget is
shown.

The first entry is the name of the widget. As
mentioned above, it is used as the text to be
displayed if there is no parent Action widget
feeding data to the Text widget.

Many of the remaining properties were
already covered previously; see Properties
Common to Many Widgets. Additional
properties are as follows:

Insets works similarly to what is described
in the above-referenced section, except that it
affects the space placed around the text
rather than child UI elements.

ShrinkToFit – Check this option to have
SageTV automatically shrink the text to fit
within the allotted display area.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 42 of 171

Wrap Text – This option controls whether text that is too wide to fit into the Text
widget’s display area’s width will wrap the text to the next line or simply cut off the
remaining text.

Text Shadow – Choose whether the text should be displayed with a shadow or not.

Disable Font Scaling – If checked, the text will be displayed using the font point size
specified in the applicable Theme widget instead of scaling the font size in relation to the
size of the SageTV window. (The point size will remain the same no matter how large or
small the SageTV window is.)

Horizontal Text Align, Vertical Text Align – These settings are the percent (0.0 – 1.0)
position within the Text widget’s total width or height where the text will be aligned. A
value of 0.5 centers the text within the horizontal or vertical space allocated to the
widget’s UI display area. Note: This differs in comparison to using Anchor X + Anchor
Point X in that those properties affect where the entire Text widget’s display area is
located within its parent’s display area, while Horizontal and Vertical Text Align only
affects the text’s position within its own display area.

Cross Fade Duration – A cross fade transition animation will occur if the text the
widget is displaying changes and the duration is greater than zero.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 43 of 171

Image Widget

Image widgets simply display an image and/or a pressed image inside its UI display area.
The image to be displayed may be specified by:

1. Set the Image Source File property for the widget to the filename of the image to
be displayed. (See below.) This property is used if there is no parent action chain
that passes an image to the Image widget.

2. Place the Image widget as the child of an Action chain that passes an image to the

Image widget. An image may be passed as the result of a call to LoadImage(path),
as a MediaFile if it is a Picture, as a string containing the path to the image, as a
java.awt.image.BufferedImage object, or as a local variable that contains an
image type. Note: the result of the parent action chain does not affect the pressed
or hover versions of the image.

The Image widget can display .PNG, .JPG, or .GIF images. Java 1.5 will be able to also
display .BMP files.

When an image is clicked with the left button of a mouse, it can either issue the SageTV
command specified in the Fire User Event property or, if that property is blank, it will
cause its child Action chain to be executed.

Image Widget Properties

The properties dialog for an Image widget is shown below.

The first entry is the name of the widget. The widget name is only for tracking the
various Image widgets.

Many of the remaining properties were already covered previously; see Properties
Common to Many Widgets. Additional properties are as follows:

Image Source File – This is the normally displayed image, when it is not pressed. The
image name specified here can be to resource paths (for images in the .jar file), partial file
paths, absolute file paths and URLs (http and ftp are both supported). A dynamic local
variable or attribute can be used to name the image to be loaded: set the variable equal to
the name of the image and its path, as a string, then use “=LocalVarName” as the
property value (without the quotes, of course).

Pressed Image Source File – This is the image displayed while a mouse button is
clicked on the Image widget and is held down. The image name is specified in the
properties dialog as above. (The pressed version of the image can only be specified
within the properties dialog.)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 44 of 171

Hover Image Source File – This is the
image displayed while a mouse is held above
the Image widget. The image name is
specified in the properties dialog as above.
(The hover version of the image can only be
specified within the properties dialog.)

Diffuse Image Source File – The diffuse
image is an image which will be diffused
against the image that is normally rendered
for that image widget. This is useful for
things like fading out an image with a
gradient. For example: If you create an
image that is only composed of transparent
pixels that go in a gradient from
0xFFFFFFFF to 0x00FFFFFF, then when it
is diffused against the target image, the target
image will have a transparent gradient effect
as well when rendered. (The diffuse image
can only be specified within the properties
dialog.)

Scale Diffused Image – If this is selected,
then the diffuse image will be scaled to
match the size of the rendered image. If it is
not selected, then the diffuse image will use
the entire size of the image component and
then be diffused using those coordinates
against whatever the target image ends up
rendering at. To see an example showing the
difference when this property is enabled or
not, see Tutorial Set 18 – Scaled Diffused
Images.

Fire User Event – If an event is selected
from the drop-down list, then clicking on the Image with a mouse will cause that SageTV
command to be issued, just as if the SageCommand(“CommandName”) API function was
called.

Vertical Alignment, Horizontal Alignment – When an image is set to Resize to Fit or
Preserve Aspect Ratio (see below), it may not fill the entire area allotted for its display.
When this happens, there may be blank space around the image. These alignment
properties are used to determine where the image is placed within its display area. Use
Vertical Alignment to control the vertical placement of the image when there is extra

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 45 of 171

vertical space. Similarly, use Horizontal Alignment to control the horizontal placement
of the image when there is extra horizontal space.

Transparency – Adjust the slider to determine the transparency level of the image,
where 0.0 is fully transparent and 1.0 is fully opaque.

Insets works similarly to what is described in the above-referenced section, except that,
as with Text widgets, it affects the space placed around the image rather than child UI
elements.

Resize to Fit – Check this option to have SageTV resize the image to fit with the
widget’s display area.

Preserve Aspect Ratio – Choose this option to display the image at its original aspect
ratio as it gets resized, so that the image does not appear to stretch in one dimension or
the other.

Crop to Fill Entire Area – If used in conjunction with Resize to Fit and Preserve
Aspect Ratio will cause the image to be scaled to fill the entire area with cropping used
to remove edges of the image in order to fill the allocated display area while preserving
the image’s aspect ratio. This property can be changed dynamically and the change will
be reflected immediately in the UI.

Corner Arc – (Obsolete) Use this setting to display the image cropped inside a rectangle
with rounded corners. Use an integer value to specify the radius of the circle used to
mask the corner of the image. Important: The Corner Arc property is deprecated and
should no longer be used; instead, use a diffuse image to affect the shape of the drawn
image.

Repeat During Mouse Press – Checking this property causes the image to automatically
repeat its event when clicked on with a mouse and the mouse button is held down.

Scaling Insets – These insets define the area of the image to be scaled or resized to fit its
allotted space. The portion of the image covered by the inset is not scaled (at the image’s
edge), while the central portion of the image would be. The inset value represents an
integer count of the number of pixels at each edge of the image not to be scaled. If it is
one value (ex: 10), it applies to all four sides; if it is 4 values (ex: 10,20,10,10) then it
applies to top, left, bottom, right respectively. This can be a dynamic value, using a
variable initialized via a call to CreateArray(), such as CreateArray(10,20,10,10).

Cross Fade Duration – A cross fade transition animation will occur if the source of the
image the widget is displaying changes and the duration is greater than zero.

Background Loading – When checked, the image resource should be loaded in the
background and does not need to be preloaded prior to rendering. This will prevent the
loading process for this image from interfering with the responsiveness of the UI.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 46 of 171

TextInput Widget

TextInput widgets are used to accept alphanumeric input, where the input gets stored as a
string in a variable with the name of the TextInput widget. To access the input string, use
an Attribute with the same name as the TextInput widget.

TextInput widgets are not focusable, so a Select Listener will need to be used to handle
using Enter to accept input.

Note that the font and colors used to display the text is set in the Theme that applies to
the TextInput widget. To prevent the input string from being displayed, use the Hide
Text property, below.

TextInput Widget Properties

The properties dialog for a Text widget is
shown.

The first entry is the name of the widget. As
mentioned above, it is the name of the variable
used to hold the input string.

Many of the remaining properties were
already covered previously; see Properties
Common to Many Widgets. Additional
properties are as follows:

Insets – Like the Text widget, this works
similarly to what is described in the above-
referenced “common” section, except that it
affects the space placed around the text rather
than child UI elements.

Hide Text – Check this option to replace each entered character with an asterisk (*)
instead of showing the entered character. This may be useful when entering passwords.

Horizontal Text Align, Vertical Text Align – These settings are the percent (0.0 – 1.0)
position within the TextInput widget’s total width or height where the text will be
aligned. A value of 0.5 centers the text within the horizontal or vertical space allocated to
the widget’s UI display area. Note: This differs in comparison to using Anchor X +
Anchor Point X in that those properties affect where the entire TextInput widget’s
display area is located within its parent’s display area, while Horizontal and Vertical
Text Align only affects the text’s position within its own display area.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 47 of 171

Focusable and Cursor – When checked, the TextInput widget will draw its own text
input cursor in the SageTV UI and the text will be editable. In addition, the SageTV
UI’stext input element will be able to gain focus. When focused, the Left and Right
arrows can be used to position the cursor, while Backspace and Delete can be used to
delete the previous or next character, respectively. The mouse pointer can also be used to
position the cursor. If the text is wider than what can be displayed in the TextInput’s UI
area, then the text will be offset and rendered according to the cursor position.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 48 of 171

Video Widget

A Video widget is used to display video within a portion or all of the entire UI display
area. Note: if a menu should always have video as its background, you may wish to
simply check the Video Background option of the Menu widget.

The currently playing video is shown within the widget’s display area.

If no video is playing when a Video widget newly shows up by either enabling the
widget’s visibility or by transitioning to a menu that has a visible Video widget, then
SageTV will begin playback of a default video. The video shown could be a currently
recording show or live TV on the last channel viewed.

Video Widget Properties

The Video widget properties dialog, shown,
simply consists of the widget’s name, which has
no special meaning, and some basic
layout/positioning controls. See Properties
Common to Many Widgets for a description of
the layout properties.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 49 of 171

Shape Widget

A Shape widget is used to display basic shapes, either filled or outlined, with some level
of alpha transparency. SageTV currently supports these shapes: Square, Rectangle (with
rounded or square corners), Circle, and Oval. The shapes will be drawn within the
allotted display area. See the widget’s properties, below, for the settings that affect shape
drawing.

Tip: Beyond the fact that Shapes are drawn on the screen, they are not UI elements that a
user can interact with. Unlike most other UI elements, Shapes may be included in loops
to have multiple shapes drawn, depending on the details of each loop iteration. The
playback OSD uses such loops for parts of the time progress bar, for example.

Note: Shapes are not drawn as efficiently as images, so it is suggested that images be
used rather than shapes, when possible.

Shape Widget Properties

The properties dialog for a Shape
widget is shown.

The first entry is the name of the
widget; it has no meaning other than a
way to track the various Shape widgets
in use.

Many of the remaining layout and
sizing properties were already covered
previously; see Properties Common to
Many Widgets. Additional properties
are as follows:

Shape Type – Choose what type of
shape is to be drawn: Square,
Rectangle, Circle, or Oval. Note: Line

shapes are not fully supported at this time. For rounded squares or rectangles, select
Square or Rectangle and also use the Corner Arc property.

Color – This property sets the shape’s color. Select the color preview box to open a color
selection dialog, or you may use a hex value or a dynamic expression to specify the color.

Alpha – This is the alpha blend value, used to determine the opacity level of the shape.
Use the slider to set the alpha value from 0 (fully transparent) to 255 (fully opaque).

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 50 of 171

Color Fill – If checked, the shape will be drawn as a filled shape rather than only as an
outline.

Thickness – If the shape is outlined rather than filled, this option determines how wide a
line is drawn around the border of the shape. This value must be an integer specifying the
width of the border in terms of the number of pixels wide the outline will be.

GradientAngle(deg) – If drawing the shape with a gradient color (see the next property),
this is the angle (0 – 360) at which the gradient is drawn. Note: when using 3D
Acceleration, angles that are multiples of 90 work the best, so it is recommended to
always use values that are multiples of 90.

GradientAmount – This is the percent of the color to remove along the gradient angle.
The value can range from 0.0 (remove no color; there will be no color gradient displayed)
to 1.0 (remove all color along the gradient angle). The color along the gradient will
progressively change from the selected color to a percent of black, so that if the
GradientAmount is 1.0, then the shape will change from full color to complete black
along the gradient. Tip 1: Enter negative decimal point values to change the gradient
from a shift to black to a shift to white; however, you will need to enter larger negative
numbers to see the color gradient. Try values in the range of -3.0 or -10.0. Such values
are used when drawing the time progress bar in the playback OSD in the default version 3
STV. Tip 2: Draw multiple partially transparent different colored shapes on top of each
other with varying gradient angles and amounts for more complex looking multi-hued
shapes.

Corner Arc – Use this setting to display a Square or Rectangle cropped with rounded
corners. Use an integer value to specify the radius of the circle used to mask the corner of
the shape.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 51 of 171

Attribute Widget

An Attribute widget is used to declare a variable in the local context for the parent
Widget of the specified name. Its initial value is determined by evaluating the value
property as an expression. The Value of the Attribute can be accessed through its name as
a local variable in the tree extending below the Attribute widget’s parent.

Attribute Widget Properties

The properties dialog for an Attribute widget is shown.

The first entry is the name of the widget. The name is
used as a variable name in the context of the widget’s
parent. (i.e.: in the tree under the parent.)

The Value property is used to initialize the Attribute.

The expression entered here is evaluated and its result is used as the attribute’s initial
value. If nothing is entered, then Studio will report an error if Notify On Errors is
enabled in the Tools menu.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 52 of 171

Hook Widget

Hook widgets are executed whenever an event occurs in the SageTV core which creates a
possibility that the UI may want to respond to that event. For example: before a menu is
loaded and displayed, the core looks for a BeforeMenuLoad hook in the loading menu to
see if that menu wishes to perform some function before the menu load continues.

When a hook is to be executed, SageTV checks the STV for the existence of most hooks
in the following manner:

1. Check the active OptionsMenu or Menu.
a. If an OptionsMenu is active and the hook is one of its child widgets, use

that hook.
b. If no OptionsMenu is active, see if the hook is a direct child of the active

Menu. If so, use that hook.

2. If the hook is not found for either 1a or 1b, then:
a. If an OptionsMenu is active, check its theme for the hook. Execute the

hook if it is found in the OptionsMenu’s theme.
b. If no OptionsMenu is active, check the theme for the active Menu to see if

it contains the hook. Execute the hook if it is found in the Menu’s theme.

3. If the hook is not found as the direct child of (1) the active OptionsMenu or
Menu, or (2) their themes, then look for the hook in the root of the STV – a hook
that has no parent and which is listed at the same level as Menu widgets. If found,
execute the hook.

4. If the hook is not found for 1, 2, or 3, then the STV will take no action for the

hook.

Some hooks, such as the FocusGained() or FocusLost() hooks, are only used if they are
found as the direct children of the UI component (or its theme) that the hook would
affect.

Only the first hook found via the above search is executed. If a hook exists as a child of a
Menu widget, its theme, and in the root of the STV, only the hook that is the direct child
of the Menu widget would be executed. Unlike a Listener Widget, which can use the
PassiveListen() API call to pass the event to the next listener in the hierarchy, once a
hook finishes execution, that event is complete.

Some hooks pass an argument as a local variable that the STV code can use. The above-
mentioned BeforeMenuLoad hook passes a variable called Reloaded to tell whether the
menu is being reloaded due to the use of the Back or Forward command. Also, some
hooks allow a ReturnValue to be set before the hook’s action chain completes to let the

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 53 of 171

core know what action to take. The list of hooks, their arguments, and return values are
listed later in this document; see 5) Hooks – The Complete List.

Hook Widget Properties

The properties dialog for a Hook widget is shown above. It consists solely of a drop-
down list of available hooks to choose from.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 54 of 171

Effect Widget

Effect widgets are used to affect how UI components are displayed in the SageTV UI and
to animate the transition from one display state to another. Effect widgets and the widget
chains that lead up to them are considered to be Effect chains. They are placed as
children of UI component widgets and are indicated as being part of an Effect chain by
use of a magenta indicator on the widget icons. An Effect chain affects its parent UI
component.

Note: Prior to version 7, animations were performed by defining the layers used by UI
components using the Animation widget property and using animation API calls to
trigger an animated transition. Layer based animation is now considered obsolete and
support for that system may be removed in a future version of SageTV. Effect widgets
should be used for animations instead.

Effect Widget Properties

The effect widget property dialog is shown below:

The effect widget name is special for the SmoothTracker type of Trigger property,
explained below, but other than that, the widget name is used solely for the developer to
keep track of various effect widgets.

Most effect widget properties are specific to this one widget type. The effect or animation
the widget performs is controlled by these properties:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 55 of 171

Trigger – This property determines when the effect gets used. The possible settings are:

Static – Effect is in general use as the affected area's end state.
Conditional – Similar to Static, but if the conditional leading to this widget
changes state and this effect widget is reversible, it reverses the effect.
FocusGained – The effect is fired when focus is gained.
FocusLost – The effect is fired when focus is lost.
MenuLoaded – The effect is fired when the menu or options menu is loaded.
MenuUnloaded – The effect is fired when the menu or options menu is unloaded.
Shown – The effect is fired when the affected area becomes visible.
Hidden – The effect is fired when the affected area becomes hidden.
VisibleChange – The effect is fired when the affected area's visible state changes.
Note: The term “visible change” means that the UI component change from
hidden to shown, or vice-versa, not that the contents of the UI component visibly
changes to the user. It is essentially a combination of the Shown and Hidden
triggers.
SmoothTracker – Links effects using the same widget name or SmoothTracker
Key; used to essentially morph the affected areas from one state to another when
visibility changes from one to the other. Note: 1
FocusTracker – The effect is used to move the affected area as focus changes.
(i.e.: It moves the focus highlight.) Notes: 1, 2

Notes:
1) None of the size/position/alpha values matter for the Smooth & Focus

Trackers; those are all calculated automatically.
2) To keep the focus highlight below other items, use "=If(Focused, 0, 1)" as

the Z Offset property setting for the Item Widgets.

Timescale and Easing – These properties together affect how an animation proceeds
from start to finish, such as using the same speed all the way through; faster at the start,
then slowing down as it finishes; slower at the start, then speeding up as it finishes; etc.
The Timescale setting affects the speed at various stages of the animation; the options
include: Linear, Quadratic, Cubic, Bounce, Rebound, Sine, Circle, and Curl. The
Easing setting affects the stage(s) when the speed changes occur; the choices include:
None, In, Out, and InOut.

Some examples of Timescale and Easing usage can be found here:
http://wiki.xbmc.org/?title=Tweeners

SmoothTracker Key – This property can be used to link effect widgets using the
SmoothTracker trigger. If this property is blank, then the effect name will be used to link
SmoothTracker triggered effect widgets.

Delay – This is the milliseconds to delay before starting the effect or to delay between
loops. If there are two comma separated values, then they are used as the pre & post
delay for looped animation effects.

http://wiki.xbmc.org/?title=Tweeners

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 56 of 171

Duration – This is the time period to run the effect, in milliseconds.

Reversible – Check this box if the effect should be reversible, such as while looping or
when the conditional leading to the effect becomes false.

Loop – Check this box if the effect should loop.

Clipped (2D Only) – Check this box if the effect should be clipped to remain within its
parent's region borders.

Menu Relative Offsets – Check this box if the location values should be relative to the
entire menu/screen instead of only the area for the UI component affected by the effect.

Center X/Y – These are values of the center point of the affected area; 0.5 is the center
and is the default. Values can be floating point or integers.

Camera X/Y – This setting only works with actual 3D renderers (currently only DirectX
either in the application, client, or placeshifter). The values are relative to the screen with
0.5 being the center and the default.

Start/End Offset X/Y – These are the starting and ending points for the X & Y offset of
the affected area. 0.0 is the normal position and is the default. Values can be floating
point or integers.

Start/End Scale X/Y – These are the starting and ending scaling values for the affected
area. 1.0 is normal size and is the default.

Start/End Rotate X/Y/Z – These are the starting and ending rotation angles in degrees
for each dimension. 0.0 is unrotated and is the default. The values can be positive or
negative and can be larger than 360. Note: Rotations are emulated on 2D systems.

Start/End Transparency – These are the starting and ending transparency levels for the
affected area. The range is 0.0 to greater than 1.0, where 1.0 is fully visible and is the
default. Note: Multiple effects may be combined for the same UI component, where
some effects have a low transparency setting while others have a transparency greater
than 1.0. After combining the effects, the final transparency level will be clipped at a
maximum of 1.0.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 57 of 171

Valid Widget Parent-Child Relationships

Not every type of widget can be a parent or child of every other type of widget. The valid
relationships are as follows:

Parent Widget

Valid child widget
types for each

parent widget type
are marked with an

X.

M
en

u

O
pt

io
ns

M
en

u

Pa
ne

l

Th
em

e

A
ct

io
n

C
on

di
tio

na
l

B
ra

nc
h

Li
st

en
er

Ite
m

Ta
bl

e

Ta
bl

e
C

om
po

ne
nt

Te
xt

Im
ag

e

Te
xt

In
pu

t

V
id

eo

Sh
ap

e

A
ttr

ib
ut

e

H
oo

k

Ef
fe

ct

Menu X X X X X X X X

OptionsMenu X X X X X X X X

Panel X X X X X X X X X X

Theme X X X X X X X X X

Action X X X X X X X X X X X X

Conditional X X X X X X X X X X X X

Branch X

Listener X X X X X X X X X X X

Item X X X X X X X X X X

Table X X X X X X X X

TableComponent X X X

Text X X X X X X X X X X

Image X X X X X X X X X X

TextInput X X X X X X X X X X

Video X X X X X X X X

Shape X X X X X X X X X X X X

Attribute X X X X X X X X X X

Hook X X X X X X X X X X

C
hi

ld
W

id
ge

t

Effect X X X X X X X X X X X X

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 58 of 171

4) Attributes / Variables

Variable Context (Scope)

The variable context is a hierarchical context that goes down the UI tree for a given
menu. Standard scoping rules apply in terms of which variable gets used (think of the {}
brackets in C/C++). Basically: a variable is accessible at the point it is initially defined
and in all subsequent action chains that are children of the variable’s creation point: an
Attribute widget creates a variable that lives in its parent widget’s context, while a
variable created via an assignment expression on an Action widget lives in the context
that Action is executing in (which usually corresponds to a UI Widget).

Note: One difference of variable scope in Studio is that the parent UI chain of a UI
element widget is executed in the context of that UI element widget itself, so the
variables defined via attributes under a UI element widget are also available in its parent
UI chain, up to the next higher UI element widget, but not including that higher UI
widget.

Variables may be set when defined in an Attribute widget, with a simple assignment
action (example: var = 3), or via two API function calls:

AddGlobalContext – The global context is the highest context which is never
cleared or reset. A variable defined in the global context may be accessed at any
point in an STV’s tree.

AddStaticContext – The static context gets copied into the new Menu's variable
context (at the menu level) when a menu transition occurs, and then the static
context is cleared. Use this as a way to pass a variable to the next menu without
keeping it in the global variable context. If the same variable is to be transferred
to a third menu, it would have to be added to the static context again before that
menu transition occurs. (i.e. to show the Detailed Info for an Airing, you pass an
Airing in the static context to the Detailed Info menu.)

When variables are accessed; if they don't appear in any context, then SageTV will create
a new variable with that name in the current context and initialize that value to null.

The Attribute widget is used for initializing the variable AND for establishing it's
scoping. Otherwise, the variable is auto-declared in the context where it is used....which
means they might not be the same variable if it is used in multiple parts of a menu....but
this problem is solved by having an attribute in a higher level context that is common
between the different widgets that access the variable. So, if two separate sections of a
tree are to have access to the same variable, make sure that it is initialized at a point
which is a parent common to both places the variable is accessed. Again: it may be

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 59 of 171

initialized either as a simple assignment on an Action widget, or as an Attribute widget.
Note: It is often best to declare a variable via an Attribute widget, since this is clearer to
others looking at the code than when auto-declaration is used.

How to Access Variables for the UI Element Currently in Focus

At times, it may be useful to know what variables are in use for the currently focused UI
element while in some other section of the STV that does not share the UI element’s
variable context. Example: when displaying the show information for an airing
highlighted in the Program Guide, there has to be a way to know what show is
highlighted, since the code displaying the show information is actually under a
completely different menu, accessed via a theme. In such a case, use the
GetFocusContext() API call to gain access to the variables in the context of the UI
element in focus. This API call will copy all variables from the focus context into the
current context except for variables that are shared between the two contexts at a higher
level.

Alternatively, instead of using the GetFocusContext() API call, consider using the
GetVariableFromContext() and GetVariableFromUIComponent() calls, along with
the related calls to find UI components. This method will work when using “Focused” in
an expression to refresh an area of the UI after focus changes.

SageTV’s Built-In Variables

In addition to creating and using your own variables, SageTV sets certain variables which
you may access. These variables only exist in certain circumstances, as described below:

Predefined Local Variables

Certain variables are either set by SageTV for use in the STV code, or set in the STV
code for use by SageTV:

this – The results of an expression on any Action widget is stored in a variable
named ‘this’. The ‘this’ variable is only accessible in an expression on the very
next widget, and its contents will be replaced by the results of that next
expression.

DefaultFocus – Declare an Attribute named DefaultFocus as a child of a
focusable UI element to tell SageTV which focusable UI element is to receive the
default focus for a Menu or OptionsMenu. The element to receive the default
focus should be set to true, or should have its value set to an expression that can
be evaluated to true. For example: an OptionsMenu that contains 3 options could

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 60 of 171

default to the currently selected option when that menu appears. Note: This
variable is used if the menu currently has no focused item and one now needs to
be found. In contrast, the MenuNeedsDefaultFocus() hook is called any time the
menu needs to determine which item should receive focus.

MouseMovementControlsWindow – Declare an Attribute with this name as a
child of a UI element and set its value to true to allow moving the SageTV
window by using the mouse to click & drag within that UI element’s portion of
the display.

Focused – Access this variable in a child action of a focusable UI element to
determine if that element, or any recursive UI parent of that element, currently has
focus. Example: The theme for Item widgets will often have a Conditional widget
to check for Focused being true, and will draw that item in a highlighted manner
to visually indicate focus.

SAGEEXCEPTION – This local variable is not null and is set to the exception
that occurred if an internal exception has been generated after an API call. The
STV should reset this variable to null if it uses the variable so that the exception
value is cleared before checking it again later – i.e.: if the exception handled by
the STV code occurs, reset the variable so that the next check for the exception
will not see the previous exception again.

TableRow, TableCol – For tables, these are the index numbers of the current row
or column. The values use a 1-based index, so there is no row or column zero.
Example: TableRow is used to display a number next to each entry in the SageTV
Recordings list in the default STV.

IsFirstPage, IsFirstHPage, IsFirstVPage – These variables are true when at the
first horizontal or vertical page in a table or scrollable UI element. Note: for a 2-
dimensional table, IsFirstPage is true if both IsFirstHPage and IsFirstVPage
are true.

IsLastPage, IsLastHPage, IsLastVPage – These variables are true when at the
last horizontal or vertical page in a table or scrollable UI element. Note: for a 2-
dimensional table, IsLastPage is true if both IsLastHPage and IsLastVPage are
true.

NumPages, NumPagesF, NumHPages, NumHPagesF, NumVPages,
NumVPagesF – For a table or other scrollable UI elements, NumHPages is the
number of horizontally scrollable pages, NumVPages is the number of vertically
scrollable pages, and NumPages is the max value of either NumHPages or
NumVPages. Note: The variables names ending in F are the floating point
versions; the other values are integers.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 61 of 171

NumRows, NumCols – For tables only, these are the overall number of rows and
columns in the table; i.e.: the number of items in the row or column, not the
number of rows or columns displayed.

NumRowsPerPage, NumColsPerPage – For tables only, these are the number of
rows and columns in the table shown on a single page on the screen.

HScrollIndex, VScrollIndex – For tables or scrollable UI elements, these floats
are the current scrolling position in a scrollable list, between 0 and NumPages.

LinearScrolling – Declare an attribute with this name under a Table or scrollable
Panel and set it to true to cause SageTV to scroll that UI element using a linear
timescale instead of the default quadratic timescale.

AllowHiddenFocus – Define an attribute of this name under the Global theme
and under a UI component to be affected and set it to true in order to allow focus
to be set to items under the UI component when it is currently not visible.

DisableParentClip, EnforceBounds – Define an attribute named
DisableParentClip either under the Global theme or under a menu’s theme and
set it to true in order to allow child UI widgets to ignore parent bounds. When this
attribute is set, define an attribute named EnforceBounds and set it to true under
child UI elements that should be clipped to their parent bounds.

FreeformCellSize – Define an attribute of this name under a Table widget and set
it to true in order to create a table that allows its components to specify their sizes
rather than automatically sizing each one to be the same size.

SingularMouseTransparency – Define an attribute of this name under the
Global theme and set it to true in order to have the Mouse Transparency widget
property apply only to that widget instead of the entire hierarchy under the
widget.

Listeners That Set Local Variables

The non-command listeners use the name of the Listener widget as the local variable
holding details about the data input or event. If no name has been given to the listener,
that data normally accessed via the listener’s name can be accessed by using the ‘this’
variable. Some of these listeners also set additional local variables. The listeners and their
variables are:

MouseClick – This listener is called whenever a mouse click event occurs. The
local variables available are:

1) The name of the listener, or ‘this’ – The number of the mouse button that
was clicked. A value of 1 indicates the left button, while a value of 2

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 62 of 171

indicates the middle mouse button. (The right button is normally
associated with the Options command, by default; however, that can be
overridden in the properties file.)

2) ClickCount – The number of times the button was pressed. This can be
used to distinguish between single and double clicks.

3) X, Y – These two variables are integers representing the (x,y) coordinates
of the mouse click, in pixels, relative to the upper left corner of the UI
component the listener is under.

4) RelativeX, RelativeY – The values range from 0.0 to 1.0 and represent
the relative point where the mouse was clicked. These values are relative
to the size of the UI component in which the mouse click occurred.

MouseDrag – This listener is called whenever a mouse click-and-drag event
occurs. While dragging the mouse with the button held down, the MouseMove,
MouseEnter, and MouseExit listeners will not be fired. The local variables
available for this listener are:

1) The name of the listener, or ‘this’ – The number of the mouse button that
was held while dragging. A value of 1 indicates the left button, while a
value of 2 indicates the middle mouse button. (The right button is
normally associated with the Options command, by default; however, that
can be overridden in the properties file.)

2) X, Y – These two variables are integers representing the (x,y) coordinates
of the mouse pointer’s position during the mouse drag, in pixels, relative
to the upper left corner of the UI component the listener is under.

3) RelativeX, RelativeY – The values range from 0.0 to 1.0 and represent
the mouse pointer’s relative position during the mouse drag. These values
are relative to the size of the UI component in which the mouse drag
occurred.

MouseMove – This listener is called whenever a mouse moves within the UI
element affected by the listener. The local variables available are:

1) X, Y – These two variables are integers representing the (x,y) coordinates
of the mouse pointer’s position during the mouse move, in pixels, relative
to the upper left corner of the UI component the listener is under.

2) RelativeX, RelativeY – The values range from 0.0 to 1.0 and represent
the mouse pointer’s relative position during the mouse move. These values
are relative to the size of the UI component in which the mouse move
occurred.

MouseEnter – This listener is called whenever a mouse enters the area covered
by the UI element affected by the listener. (This listener does not set useful local
variables; it is included here only to complete the mouse related listener list.)

MouseExit – This listener is called whenever a mouse exits the area covered by
the UI element affected by the listener. (This listener does not set useful local
variables; it is included here only to complete the mouse related listener list.)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 63 of 171

RawKeyboard – Any time keyboard input is encountered, this listener is called,
before the input is translated to any possible SageTV command it may be
associated with. The local variables available are:

1) The name of the listener, or ‘this’ – The key entered.
2) KeyCode – The key code of the key pressed, as defined in

java.awt.event.KeyEvent.
3) KeyModifiers – The codes for any modifiers that were pressed along with

the key, such as Ctrl, Alt & Shift as defined in java.awt.event.InputEvent.
4) KeyChar – The character entered, translating the key entered plus any

modifiers, or a blank string if there is no corresponding character.

RawInfrared – Any time infrared input is received, this listener is called, before
the input is translated to any possible SageTV command it may be associated
with. The local variables available are:

1) The name of the listener, or ‘this’ – The infrared code received.

NOTE: If you're using a RawKeyboard or RawInfrared listener then they will
intercept all respective events. In order to continue propagation of an event, you
must use the PassiveListen() API call.

Numbers – Any time a number key is pressed, this listener is called, before the
input is translated to any possible SageTV command it may be associated with.
The local variables available are:

1) The name of the listener, or ‘this’ – The number entered, 0 – 9.

Special Widget Names

SageTV looks for and uses special widget names in certain circumstances:

Menus – SageTV expects to find these Menu widget available for certain uses:
1) Main Menu – The Main Menu is the initial menu that SageTV loads at

startup or when awoken from sleeping.
2) Screen Saver – This Menu is the one loaded when the SageTV screen

saver is activated.
3) Server Connection Lost – When the client loses the connection to the

SageTV server, it loads and displays this menu.

Themes – SageTV recognizes one specially named Theme widget:
1) Global – The theme named “Global” is the global theme that applies to

the entire STV. It can be placed anywhere in the STV tree. If there is more
than one theme named “Global”, then the first one found will be used as
the global theme. (The “first one found” may not be the one you expect, so
it is best to only have one.)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 64 of 171

5) Hooks – The Complete List

The available hooks, when they are called, their arguments, and any expected return
values are all listed below. Any names listed in parentheses after the hook’s name are
arguments that the hook passes to the hook’s action chain. The arguments are accessed as
local variables using the name shown in the parentheses. For more information on the
argument types, consult the SageTV API documentation at:
http://download.sage.tv/api/index.html

For information about the hook widget, see Hook Widget.

FilePlaybackFinished(MediaFile)

Called upon the first completion of a file being played; it is not called again if the user
returns to the playback screen while the file is still loaded, rewinds a bit, and continues
playing through to the end again. This hook will also not be called when SageTV is
capable of automatically switching to the next file for playback (i.e. during playlists,
music, and live TV); that behavior can be overridden in a custom STV only for playlists
and music with a property setting of ‘videoframe/always_call_fileplaybackfinished=true’.
Parameters:

1. MediaFile is the media currently being played/watched.

MediaPlayerFileLoadComplete(MediaFile, boolean FullyLoaded)

Called at two different times as the media player finishes its stages of loading a file.
Parameters:

1. MediaFile is the file being loaded.
2. FullyLoaded will be one of two values, depending on what part of the load has

been completed:
a. false – The file is not yet fully loaded and ready to play yet, but the media’s

info is available.
b. true – The file has completely finished loading and is now playing.

MediaPlayerError(String ErrorCategory, String ErrorDetails)

Called when an error occurs in the system that the user should be notified of. Parameters:

1. ErrorCategory is the category of the error.

http://download.sage.tv/api/index.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 65 of 171

2. ErrorDetails is a string describing the error.

RequestToExceedParentalRestrictions(AiringOrPlaylist, String
LimitsExceeded)

Called when an attempt is made to watch a video or playlist that is restricted by the
Parental Controls settings. Parameters:

1. AiringOrPlaylist is the airing or playlist to be watched. Use the IsAiringObject()
and IsPlaylistObject() API calls to determine what kind of object was passed as
AiringOrPlaylist.

2. LimitsExceeded is a string listing the restrictions that have been exceeded.

When processing this hook, you will need to let SageTV know whether viewing the
airing is allowed, which is done by setting this local variable:

ReturnValue – Set to true if the specified airing or playlist may be watched.

RecordRequestScheduleConflict(Airing RequestedRecord,
java.util.Collection ConflictingRecords)

Called when a user is attempting to add a manual recording to the recording schedule
which conflicts with an existing scheduled recording. Parameters:

1. RequestedRecord is the airing being added to the recording schedule.
2. ConflictingRecords is an array of airings that the newly scheduled airing

conflicts with.

When processing this hook, you will need to let SageTV know whether to override the
conflict and add the requested airing to the schedule, which is done by setting this local
variable:

ReturnValue – Set to true if the requested recording is to be added to the
schedule. In addition, you will need to cancel one of the scheduled recordings in
the ConflictingRecords array in order to make room for the new recording. Note:
this hook may be called multiple times in succession if the conflict cannot be
resolved by only removing a single scheduled recording. After one conflict is
removed, if there are still conflicts, this hook will be called again.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 66 of 171

RecordRequestLiveConflict(Airing RequestedRecord, Airing
ConflictingRecord)

Called when a user is attempting to add a manual recording that is currently airing to the
recording schedule which conflicts with another recording. Parameters:

1. RequestedRecord is the airing being added to the recording schedule.
2. ConflictingRecord is the airing that the newly scheduled airing conflicts with.

When processing this hook, you will need to let SageTV know whether to override the
conflict and add the requested airing to the schedule, which is done by setting this local
variable:

ReturnValue – Set to true if the requested recording is to be added to the
schedule and to cancel the conflicting recording.

WatchRequestConflict(Airing RequestedWatch, Airing
ConflictingRecord)

Called when an attempt to watch live TV conflicts with a recording that is already in
progress. Parameters:

1. RequestedWatch is the airing the user is asking to watch.
2. ConflictingRecord is the airing that the airing to be watched conflicts with.

When processing this hook, you will need to let SageTV know whether to override the
conflicting recording and watch the requested airing instead, which is done by setting this
local variable:

ReturnValue – Set to true if the requested airing is to be watched and to cancel
the conflicting recording.

DenyChannelChangeToRecord(Airing AiringToRecord)

Called when watching live TV and SageTV is about to start a scheduled recording. The
user can choose to deny the channel change and cancel the scheduled recording.
Parameters:

1. AiringToRecord is the airing about to be recorded.

When processing this hook, you will need to let SageTV know whether to deny the
channel change, which is done by setting this local variable:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 67 of 171

ReturnValue – Set to true to instruct SageTV to NOT change the channel. Live
TV will continue and the scheduled recording will be cancelled.

InactivityTimeout()

Called after a period of no user activity.

NewUnresolvedSchedulingConflicts()

Called when SageTV discovers new unresolved conflicts in the recording schedule.

MediaPlayerPlayStateChanged()

Called whenever the media player’s play state has changed.

MediaPlayerSeekCompleted()

Called after SageTV has finished changing to a new playback point after a seek request.

BeforeMenuLoad(boolean Reloaded)

Called during a menu transition, before the new menu has been loaded and displayed.
You can initialize some variables here or even decide whether to jump to another menu
instead. Note that the menu loading process stops while this hook is in progress; the menu
load (or a new menu transition) will continue when the hook’s action chain completes.
Parameters:

1. Reloaded is true is the menu was reloaded due to the use of the Back or
Forward command.

AfterMenuLoad(boolean Reloaded)

Called during a menu transition, after the new menu has been loaded and displayed. Note
that the menu continues functioning while this hook is in progress. Parameters:

1. Reloaded is true is the menu was reloaded, as mentioned for the previous hook.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 68 of 171

BeforeMenuUnload()

Called during a menu transition, before the current menu has been unloaded. Note that
the menu does not exit until this hook’s action chain completes.

MenuNeedsDefaultFocus(boolean Reloaded)

Called whenever SageTV needs to determine which item is about to receive the default
focus. The default focus can then be overridden, such as with a call to the
SetFocusForVariable API function. Parameters:

1. Reloaded is true is the menu was reloaded due to the use of the Back or
Forward command.

RecordingScheduleChanged()

Called after SageTV has updated its recording schedule.

RenderingStarted()

Called when a UI component is about to start rendering. You can update variables in the
action chain of this hook, but you should not include UI widgets in the tree or call UI-
affecting API functions such as Refresh(). Since SageTV is in the process of updating the
display of its UI, any processing done in this hook should be completed quickly.

Note: Previously, this was mainly used for dealing with animations and incrementing
associated counters or timers; however, the LayoutStarted() hook is a better fit for that
use now.

FocusGained()

Called when a focusable UI component (items, panels, tables) has gained focus.

When a focus change occurs, the following sequence of events happens: the FocusLost
hook is called, then FocusGained hook is called, then components that are focus
dependent are re-evaluated.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 69 of 171

FocusLost()

Called when a focusable UI component (items, panels, tables) has lost focus.

When a focus change occurs, the following sequence of events happens: the FocusLost
hook is called, then FocusGained hook is called, then components that are focus
dependent are re-evaluated.

STVImported(Widget[] ExistingWidgets, Widget[]
ImportedWidgets)

Called when another STV file has been imported via the ImportSTVFile API function.
Parameters:

1. ExistingWidgets – An array of the current STV’s widgets.
2. ImportedWidgets – An array of the widgets imported from the new STV file.

MediaFilesImported(MediaFile[] NewMediaFiles)

Called when SageTV has found that media files have been added to or removed from its
import directories. Parameters:

1. NewMediaFiles – An array of the newly discovered media files. (Removed files
are not listed.)

StorageDeviceAdded(java.io.File DevicePath)

Called when SageTV has discovered that a new storage device has been added to the
system. This can be used to have SageTV automatically respond when a user inserts a
memory card from a camera, for example, or even connects a removable hard drive.
Parameters:

1. DevicePath – The path to the root directory of the new storage device.

ApplicationStarted()

Called when the STV is being loaded, just before the first menu is shown, after SageTV
has been initialized.

Important Notes:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 70 of 171

Do not use any code that attempts to show any UI elements. This hook is
intended for data manipulation only.

It is recommended that you do not use this hook unless you have a very good
reason to do so and you fully understand why/how you are about to use this
hook.

ApplicationExiting()

Called when the current STV is being unloaded; it is the first thing SageTV does when
starting the shutdown process.

Important Notes:

Do not use any code that attempts to show any UI elements. This hook is
intended for data manipulation only.

It is recommended that you do not use this hook unless you have a very good
reason to do so and you fully understand why/how you are about to use this
hook.

LayoutStarted()

Called when the layout of a UI component is about to start. You can update variables in
the action chain of this hook, but you should not include UI widgets in the tree or call UI-
affecting API functions such as Refresh(). This is mainly used for dealing with
animations and incrementing associated counters or timers.

SystemStatusChanged()

Called when the SageTV system status has changed. Call Refresh() as a result of this
hook being fired in order to reflect any system status changes in the UI.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 71 of 171

6) The Studio Interface

User Interaction

Interaction with the Studio, like most applications, is done via mouse and keyboard input:

Using a Mouse

The mouse may be used to easily create, select, move, or copy Widgets and may be used
as follows:

Left click – Select a single widget
Shift+Left click – Select all widgets between currently selected widget & newly
selected widget
Ctrl+Left click – Add an additional single widget to the current selection
Right click – Show pop-up options menu
Double Left click – Either:

A) Show/hide children widgets, or
B) Jump to the primary reference of a reference widget

Drag & drop a widget from the left-hand toolbar – Add a new widget as a
child of the destination widget
Drag & drop an existing widget – Add a reference to the selected widget as a
child of the destination widget
Ctrl+drag & drop an existing widget – Copy the selected widget to be a child of
the destination widget
Ctrl+Shift+drag & drop an existing widget – Move the selected widget to be a
child of the destination widget

Using a Keyboard

The keyboard also offers full control:

Up arrow – Highlight widget directly above the current widget
Down arrow – Highlight widget directly below the current widget
letter key – Jump to the next widget that starts with that letter
Right arrow – Show the widget's children
Left arrow – Hide the widget's children
Ctrl+E – Expand children
Ctrl+Shift+E - Collapse all nodes
Ctrl+F – Display the Find dialog, where you can enter text to search for; text
searching is case sensitive, so “WidgetName” is not the same as “widgetname”
Ctrl+P – Show the right-click pop-up options menu

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 72 of 171

F2 – Rename selected widget
F6 – Reload the menu that is currently displayed in SageTV
F5 – Load the selected menu widget in SageTV
Ctrl+A – Select all
Delete – Delete selected widgets
Ctrl+B – Break selected widgets from parent
Ctrl+U – Move selected widgets Up
Ctrl+D – Move selected widgets Down
Ctrl+C – Copy selected widgets to clipboard
Ctrl+X – Cut selected widgets to clipboard
Ctrl+V – Paste from clipboard
Ctrl+Shift+V – Paste reference from clipboard
Ctrl+Z – Undo
Escape – Clear clipboard
Ctrl+L – Show property editor for selected widgets
Ctrl+Return – If editing a widget's properties, close the properties dialog and
accept the changes
Ctrl+R – Sets the currently selected italicized reference to be the bolded primary
reference

The Menus and Status Indicator

The Studio Menu Bar

The File menu contains these options:

New… – Create a blank new STV.
Open… – Open and load an existing STV, replacing the currently loaded STV.
The filename of the loaded STV will switch to the file that is opened.
Save – Save the current STV in XML format.
Save As… – Save the current STV to the XML filename specified. Studio will
then load the newly-named STV. Note: This option is disabled when dynamically
loaded imports are active, since the imports would be saved with the STV and
reloaded, applying the imports a second time; use Save A Copy As… instead.
Save A Copy As… – Save a copy of the current STV to the filename specified.
Studio will continue to use the current STV, not the new filename.
Import… – Import an STV file into the current STV.
Export Selected Menus… – Exports the selected menus to an STV file, which
can then be imported into another STV.
Recent Files – Displays a submenu of the most recently loaded STV files.
Close… – Close the Studio window. Studio itself will still be loaded in memory
and will open again if you use the Customize command from within SageTV.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 73 of 171

The Edit menu contains:

Undo – Undoes the last operation EXCEPT for changes made within the Widget
property editors.
Cut – Cut selected widgets to clipboard.
Copy – Copy selected widgets to clipboard.
Paste – Paste from clipboard.
Paste Reference – Paste reference from clipboard.
Delete – Delete selected widgets.
Select All – Select all visible widgets.
Find All… – Searches for the specified text and selects all widgets where the text
is found. The search is case sensitive, so searching for “WidgetName” is not the
same as searching for “widgetname”. Note: If the Tools -> Display Widget UIDs
option is enabled, then the search can match UID values also.

The Debug menu choices are:

Breakpoints… – Opens the Breakpoints window, where all the current
breakpoints are listed.
Tracer… – Opens the Tracer window, where the enabled tracing items are listed.
UI Components... – Opens the UI Components window, where all the active UI
widgets for the current menu are displayed.
Pause – Causes SageTV to enter Pause mode. SageTV will continue running, but
will pause on the next Trace.
Resume – Causes SageTV to resume normal execution mode.
Step – Causes SageTV to step one level of execution.
Scroll on Trace – If checked, Studio will scroll to each widget as execution
continues.
Enable All Tracing – Turns on tracing for all available trace types.
Disable All Tracing – Turns off tracing for all trace types.
Trace <trace type> – If checked, enables tracing for the named trace type.

The Tools menu choices are:

STV Lexical File Difference… – Compares a selected STV file to the currently
loaded STV and displays the differences in a comparison window.
STV UID File Difference… – Performs a more complete comparison of another
STV file to the currently loaded STV and displays the differences in a comparison
window, with an option to generate an STVI import to patch one STV to match
another.
Expression Evaluator… – Evaluates the entered expression and displays the
results. When in Debug mode, local variables may be used in the expression to be
evaluated. (i.e. the expression is evaluated in the suspended context.)
Generate Translation Source… – Generates the translation file to allow
translating text to another language. For more information, see the online

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 74 of 171

document: Language Translation/Localization of SageTV at
http://sage.tv/2_papers/i18n.txt.
Consolidate Menus & “SYM:” Actions – SageTV will consolidate the menus,
replacing existing menus and references to those menus with links to larger menus
that have the same names. This could be used to import a replacement menu that
has more functionality than an existing version of that menu, then consolidate the
menus to have the new, larger, menu replace the older one that had fewer
children.
Notify On Errors – Selecting this option toggles it on or off. If it is On
(checked), there will be a checkmark next to it in the menu and Studio will
display a dialog box showing errors that are encountered as the UI is processed in
real time.
Launch Another Frame – Opens another Studio frame, allowing viewing and
editing of the same STV in a second window. Do not open multiple files in the
secondary frame; only the same TV file is loaded and editable in both the main
and secondary Studio frames. You can drag and drop between these frames. If the
frames get out of sync, use the Refresh option, below.
Refresh – Refreshes the current frame to make sure it is up to date. Use this
option if you edit the STV in another frame and the changes are not yet reflected
in the current frame.
Edit Widget UID Prefix... – Edit the prefix added to the UID for all new
widgets. This may be used to add a custom string to widget UIDs to help identify
the author of widgets.
Display Widget UIDs – Selecting this option toggles it on or off. If it is On
(checked), then UIDs will be displayed after the name of each widget. Note:
When widget UIDs are shown, the Edit -> Find All option will also match UID
values in addition to text values.
Display Attribute Values – When checked, Attribute widgets will display their
initial values in the Studio window. The attribute name and value can then be
more easily edited using the F2 key.
Dynamic Boolean Property Editing – When checked, widget properties that are
normally checkboxes can be edited as text properties instead of checkboxes,
allowing the use of dynamic property values for boolean items. Note: Changing
this option affects new widget property windows that are opened, not currently
open windows.

The Pop-up Options Menu

When a mouse right-click or Ctrl+p is issued, a pop-up options menu will appear for the
selected widget. Available choices in the menu are shown in regular text, while
unavailable options are grayed out. The menu items are:

New Child – Adds a new child widget to the current widget. A roll-out menu is
displayed, where the allowable child widgets for the current widget may be
selected.

http://sage.tv/2_papers/i18n.txt

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 75 of 171

Expand All Nodes – Displays the expanded tree of all children widgets for the
entire STV.
Collapse All Nodes – Collapses the entire tree display so that only the top-level
widgets are visible.
Expand Children – Displays the expanded tree of all children widgets for the
currently selected widget.
Refresh Menu – Reloads and refreshes the current menu shown in the SageTV
window.
Break From Parent – Breaks the Parent <-> Child relationship for the currently
selected widget. If the selected child widget is a reference widget, the reference
will simply be removed. If the selected child widget is not a reference, it will be
moved to the top level of the STV tree.
Move Up – If the selected widget is not the only child of its parent and not
already at the top of the list, it will be moved up one position.
Move Down – If the selected widget is not the only child of its parent and not
already at the bottom of the list, it will be moved down one position.
Highlight References – Highlights and selects all references for the currently
selected widget.
Set as Primary Reference – Makes the currently selected italicized reference to
be the bolded primary reference. Only the primary reference widget can have its
children expanded for viewing.
Add Breakpoint – Adds a breakpoint for the currently highlighted widget.
Remove Breakpoint – Removes the breakpoint for the currently highlighted
widget, if there is a breakpoint at that widget.
Paste Properties – Pastes the property values from the copied widget to the
destination widget. Useful for when you want to copy a widget onto something
that's already there without having to delete it.
Launch Menu – Launches the currently highlighted menu in the SageTV
window.
Evaluate Widget – Evaluates the currently selected widget and shows the results
in a pop-up dialog
Execute Widget Chain – Executes the widget chain, starting at the selected
widget.
Rename – Enters edit mode for the name of the selected widget.
Delete – Deletes the currently selected widget(s). If the widget’s children were
not yet deleted, they will be moved to the top level of the STV tree. Children that
were references will simply have that reference removed.
Properties – Opens the properties editing dialog for the currently selected
widget(s).

The Widget Bar

In addition to the pop-up option menu’s New Child item, widgets may be added to the
STV code by dragging the desired widget from the Widget Bar, located on the left side of
the Studio display. Simply click on the desired widget type, drag it to the code area, and

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 76 of 171

drop it onto the widget where you want the new widget added as a child. The new widget
will be added as the last child under the widget it was dragged onto.

The items on the Widget Bar are:

Menu – The top-level UI Widget. (see Menu Widget)

OptionsMenu – Provides ‘pop-up’ menus for SageTV. (see OptionsMenu Widget)

Panel – A rectangular UI element container. (see Panel Widget)

Theme – Used to apply a general appearance to a UI Widget hierarchy. (see Theme
Widget)

Action – Actions are expressions that are executed as SageTV runs. (see Action
Widget)

Conditional – Used to conditionally execute an action chain. (see Conditional
Widget)

Branch – Used for multiple-option Conditional branching. (see Branch Widget)

Listener – Used to respond when the user issues a command. (see Listener Widget)

Item – A UI element that can have ‘Focus’ and can be selected by the user. (see Item
Widget)

Table – Used to create dynamic, scrollable UI components. (see Table Widget)

TableComponent – Used inside a Table to specify the elements of the Table. (see
TableComponent Widget)

Text – Used to display text. (see Text Widget)

Image – Used to display an image. (see Image Widget)

TextInput – Used for text entry. (see TextInput Widget)

Video – Used to display video. (see Video Widget)

Shape – Used to draw basic geometric shapes. (see Shape Widget)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 77 of 171

Attribute – Creates a variable to store data for later reference. (see Attribute Widget)

Hook – Used like a callback system where the UI can respond to certain events that
happen in the core. (see Hook Widget)

Effect – Used to perform animation and other effect transitions from one UI state to
another. (see Effect Widget)

Duplicate – Drag a widget from the code display to this icon to duplicate it.

Delete – Drag a widget from the code display to this icon to delete it.

The “Running” Indicator

There is a status bar below the Studio menu bar. At the far right of the status bar is a
colored dot indicating the running status of SageTV. Its color can be one of the
following:

Green – SageTV is running.

Yellow – SageTV is currently running, but it will stop on the next operation
encountered.

Red – SageTV has stopped on a breakpoint.

Basic STV Editing

As shown by the menu bar items above, STV files can be loaded and saved with the
Studio like you would any other file in an application. You can also import the contents
of an STV file into the currently loaded one, as well as export a set of Widgets from a
loaded STV file into a new STV file on disk.

Edits are not saved until the Save or Save As commands are used. If you make changes to
an STV file that you would like to cancel, simply reload the original file. There is also an
individual Undo command which undoes the last operation EXCEPT for changes made
within the Widget property editors.

Note: For more detailed examples of Studio usage, see 8) Studio Tutorials and Examples.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 78 of 171

Widget Manipulation

Widget relationships and properties can be modified by using various drag & drop, copy
& paste or other right-click menu options and keystrokes.

Adding Widgets

Keyboard: Highlight an existing widget where you wish to add a new child widget. Use
Ctrl+P to show the Pop-up Options Menu, select New Child, then select the desired new
widget. The new widget will become the last child of the existing widget. Note that only
widgets that can be added as children of the highlighted widget will available.

Mouse: Left-click on the desired widget on the Widget Bar, drag it to the editing window,
and drop it onto an existing widget, where the new widget will become the last child of
the existing widget. Note that if the widget is not allowed to be a child of an existing
widget, a red slashed-circle will be shown on top of the widget as it is dragged over that
existing widget.

Removing Widgets

To remove widget(s), simply highlight the widget(s) to be removed and use the Delete
key or the Delete command from the Pop-up Options Menu.

Care must be taken when deleting widgets, especially when those widgets have children.
If a deleted widget had children, those child widgets may become orphan widgets in the
top level of the Studio-displayed tree, serving no purpose. It is often best to delete
widgets from the bottom of a tree branch towards the top. An exception is when deleting
bolded widgets…

If a bolded widget is deleted, one of the other references to that widget will become the
new Primary Reference. The child widgets will not become orphans, but will remain in-
place under the new primary reference. Caution: Be careful when deleting child
widgets of one that is shown in bold, since such code changes will affect all
references to that bolded widget.

If an italicized widget is deleted, just that reference is removed. The Primary Reference
widget and its children are not affected.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 79 of 171

Moving and Copying Widgets

Child order: To change the order of the children of a parent widget, highlight a widget
and use either Ctrl+U to move the child Up in the list of children, or Ctrl+D to move it
Down. (Those commands are also available in the Pop-up Options Menu.)

Copying a widget: Select a widget using Ctrl+C. It will become outlined. Highlight the
widget where you wish to copy it to. Use Ctrl+V to paste the widget as a copy. Using a
mouse, drag the chosen widget and press the Ctrl key while dropping it to make a copy.

Create a reference to a widget: Select a widget using Ctrl+C. It will become outlined.
Highlight the widget where you wish to create a reference to the selected widget. Use
Shift+Ctrl+V to paste a reference to the selected widget. Using a mouse, drag the chosen
widget and drop it to create a reference.

Moving a widget: Select a widget using Ctrl+X, to cut the widget. It will become
outlined and will remain at its current position for now. Highlight the widget where you
wish to move the selected widget. Use Ctrl+V to move the selected widget – it will be
removed from its old location and become a child at the new location. Using a mouse,
drag the chosen widget and press the Shift+Ctrl keys while dropping it to move the
widget.

Undo: To undo an edit, use Ctrl+Z.

Editing Widgets

To quickly change the text shown next to a widget icon in the Studio tree, highlight the
widget and press F2. The widget’s title will become editable. Press return when done.
Press Escape to cancel any changes.

To change any of a widget’s properties, highlight the widget and press Ctrl+L to open
that widget’s properties dialog or just right click on the widget and select Properties.
Note: The properties for multiple widgets of the same type may be edited all at once by
selecting multiple widgets before launching the property editor.

See 3) Widget Details for details regarding all widget properties.

When done editing the widget properties, select the OK button, or see Properties Dialog
Buttons for information regarding other choices.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 80 of 171

Using Studio – A Beginning Tutorial

Note: This section is a very simple introduction to some basic Studio widget
manipulation. For more detailed examples of Studio usage, see 8) Studio Tutorials and
Examples.

1. Create a new STV file using the File->New command.
2. To create new Widgets, click on their icon in the Widget Toolbar and drag it into

the tree area of the Studio and drop it. Create a Menu and an Image.
3. You should now have 3 Widgets. A “Main Menu” Menu, an “Untitled” Menu and

an “Untitled” Image. Note that top level widgets
are grouped by widget type and sorted by name within a grouping of the same
type. Unnamed widgets are placed before named widgets.

4. Right-click on the “Untitled’ Menu and select Rename (or type F2). Type in:
“TestMenu” and hit Enter.

5. Right-click on the “Untitled’ Image and select Rename. Type in: “TestImage” and

hit Enter. Select Tools -> Refresh.
6. Drag and drop the TestImage onto the TestMenu. TestImage is now a child of

TestMenu (likewise TestMenu is a parent of TestImage)

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 81 of 171

7. Drag TestImage and drop it onto Main Menu.
TestImage is now a child of BOTH Main Menu and TestMenu. IMPORTANT:
When you do normal drag & drop in the Studio it CREATES a new parent-child
relationship.

8. Whenever a name is italicized in the Studio, it indicates that it is a “Reference” to
the actual Widget. If a name is bolded, then that Widget is a Primary Reference
and has one or more references to it. (This will become more clear in a minute)

9. Right-click on the non-italicized bolded TestImage and select Rename. Type in:

“TestImage2” and hit Enter.
10. Right-click on the italicized TestImage2 and select Rename. Type in:

“TestImage3” and hit Enter.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 82 of 171

11. Right-click on the italicized TestImage3 and select “Break From Parent”.

“Break From Parent” will destroy the parent-
child relationship between the selected object and the graphical parent in the tree
of what was selected.

12. Click and drag TestImage3, hold down the Ctrl and the Shift key on the keyboard
and then drop it onto Main Menu. When you press Ctrl+Shift, an ‘arrow’ sign
should appear next to the cursor to indicate a move.

13. Click and drag TestImage3, hold down the Ctrl key on the keyboard and then
drop it onto TestMenu. When you press the Ctrl key, a ‘plus’ sign should appear

next to the mouse cursor to indicate a copy.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 83 of 171

14. Right click on the TestImage that is a child of TestMenu and select Rename. Type

in: “TestImage4” and hit Enter. Note that only
the copy was changed this time: the copied widget is not a reference to the one it
was copied from; it is a separate widget now.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 84 of 171

7) Using The Debugger

As briefly mentioned in The Studio Menu Bar, Studio has debugging capability, allowing
the user to set breakpoints, step through individual lines of code, watch the Tracer
information for certain events, and view the UI Component tree to see all the interface
components for the current menu.

Breakpoints

To set or remove a breakpoint for a widget, simply select the widget and use the Add
Breakpoint or Remove Breakpoint options available on the pop-up options menu,
accessed with a right mouse click or Ctrl+P.

To see a list of current breakpoints, use the Debug menu’s Breakpoints… item.
Selecting that item will show the Breakpoints window, where all breakpoints will be
listed. Click on any breakpoint to jump to that widget in Studio.

Code Tracer

Select Tracer… from the Debug menu to see the Tracer output window. As SageTV
runs, any tracers selected in the Debug menu will display their results in this window.
While tracing is active, the current widget will be highlighted in Studio if the Scroll on
Trace option is checked in the Debug menu.

UI Components

Select UI Components… from the Debug menu to see the UI Component window. This
window displays all of the UI widgets that are in use for the current menu. The UI
components that are not actually displayed in the SageTV window have a yellow marker
in the upper left corner of the widget’s icon. UI components whose widget properties are
controlled by a theme have an orange indicator in the lower right corner of the widget’s
icon. Right click in this window for some options for expanding the displayed widget tree
and for highlighting the widget or its theme in the main Studio window.

Stepping Through Code

SageTV will halt execution when it encounters a widget where a breakpoint has been set.
In addition, Studio can be set to halt execution by choosing the Pause item on the Debug
menu – SageTV will continue running, but will break execution on the next operation.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 85 of 171

Once execution has been halted, you may continue execution via these Debug menu
options: Resume (resume execution until the next break), or Step (step one level of
execution).

See The “Running” Indicator for information about the current running status of SageTV.

Tip: While paused, you may wish to use the Tools menu’s Expression Evaluator… to
evaluate expressions using the current local variables (the current context).

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 86 of 171

8) Studio Tutorials and Examples

Several tutorials and examples are provided in this chapter as a way to help you become
more familiar with Studio usage. An STV file containing the tutorials has been provided:
Studio_Tutorials7.xml. That STV can be loaded and experimented with while reading
the tutorials in order to gain first hand experience. The tutorial STV’s zip file includes the
.xml STV and some images, which should all be placed in the same directory as the
existing SageTV7.xml file.

The tutorials cover some of the basic Studio features, providing a base of knowledge
about how the manipulation of widgets affects the SageTV user interface. The tutorial
STV is a very basic file that does not provide a complete interface for SageTV. For more
complex examples, check out the default SageTV STV (SageTV7.XML) or other custom
STV files available online. Check our forums at http://forums.sagetv.com/forums/ for
customizations that other users have created.

The examples are walk-throughs of sample edits to SageTV3.xml to change the
functionality of that STV, such as adding or moving menu items and so on. Note: The
default STV for SageTV version 7 is SageTV7.xml, found in the STVs\SageTV7
subdirectory, below the path where sagetv.exe is located. The examples use
SageTV3.xml, found in the STVs\SageTV3 subdirectory.

Important: Because the XML format of the STV files did not always retain the same
primary reference to a widget chain every time the file is saved and reloaded in the past,
some of the comments about bolded primary references and italicized secondary
references may be slightly different in Studio_Tutorials7.xml than what is described in
this document. However, as of SageTV v6.4, .xml STV files will retain their primary
reference locations after the STV is saved.

Note: While following these tutorials in Studio, be sure to create a copy of
Studio_Tutorials7.xml and load that copy in Studio. That way, you can experiment
with the copy without affecting the original, so that the original will always be
available for reference if the experimental changes adversely affect the STV and the
changes get saved.

Similarly, when following the examples in Studio, make a copy of the
SageTV3.XML STV and edit that copy instead of the original.

If you do make a mistake and need the original files, they may be downloaded at:

http://download.sage.tv/Studio_Tutorials7.zip

http://download.sage.tv/SageTV7.xml

http://download.sage.tv/SageTV7.xml
http://download.sage.tv/Studio_Tutorials7.zip
http://forums.sagetv.com/forums/

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 87 of 171

Tutorial Set 1 – Basic Widget Manipulation

The first steps for this first tutorial will be to open Studio (see Starting Studio) and load
the tutorial by using File -> Open menu option, where you can select the STV file to be
loaded: Studio_Tutorials7.xml. The Main Menu will now be active, but it is has no
feature other than a short message announcing itself.

Find the menu used for this tutorial by typing Ctrl+F to open the Find dialog, then type
Tutorial 01 (use the exact case for each letter in the word Tutorial, since the search
function is case-sensitive, and follow it with a space and the number one). Press Return.
Studio will highlight the Tutorial 01 – Basics menu – if it isn’t visible, scroll down until
you see it.

After the menu widget titled Tutorial 01 – Basics is selected, press the Right arrow three
times to expand that menu’s tree a couple levels. (Or: instead of the Right arrow, click on
the tree expansion indicator to the left of the menu widget icon, and then expand the “If
false” line also.) You will see a series of panel widgets below the If statement.

Note: This menu just contains widgets for sample manipulation; it will not display
anything useful in the SageTV window if it were to be loaded as the active menu. The “If
false” statement prevents SageTV from trying to execute any code used for the tutorial in
this menu – these sample widgets are not syntactically correct for code execution
purposes.

Important: Currently, the XML format of the STV files does not always retain the same
primary reference to a widget chain every time the file is saved and reloaded. Therefore,
some of the comments about bolded primary references and italicized secondary
references may be slightly different in Studio_Tutorials7.xml than what is described in
this document.

Adding New Widgets

Highlight the “Add New Widgets” panel and notice that there is no expandable-tree
indicator next to this panel, unlike the panels below it. If you use the Right arrow, the
highlight will simply move to the panel below this one – if the panel had child widgets,
the tree would have expanded further instead.

You can add new widgets to the “Add New Widgets” panel by dragging widgets from the
widget bar to the left of the edit window. Drag an Action widget () to the panel and
release the mouse – a new Action widget called “Untitled” will be added as a child of the
panel. Continue adding a few more widgets as children of the panel or any of the new
widgets. Note that some widgets may not be added as children of certain other widgets;
when that is the case, you will not be able to drop the widget on top of the one where it is
not allowed. See Valid Widget Parent-Child Relationships for a reference of which
widget types may be children of other widget types.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 88 of 171

When done, click on the down-pointing indicator to the left of the “Add New Widgets”
panel icon to collapse the entire tree below that panel.

Rearranging Widget Order

Highlight the “Rearrange Widget Order” panel and press Ctrl+E to completely expand
the tree containing its child widgets. You will see a “Parent Action” widget and a series
of four numbered Action widgets below that parent. If the numbered child widgets were
valid code, they would be executed in the order shown: 1, 2, 3, then 4. (Remember: these
Action widget titles are for tutorial purposes only; they do not actually do anything.)

If you wish to change the order that widgets are executed when all the widgets are at the
same tree level, simply highlight a widget among the ones to be re-ordered and use the
Move Up (Ctrl+U) or Move Down (Ctrl+D) commands. The widget will move up or
down once each time the command is issued. Move some of the numbered widgets up or
down. Note that they cannot be moved above the top position or below the bottom
position.

When done, collapse the “Rearrange Widget Order” panel.

Moving Widgets

Highlight the “Move Widgets” panel and press Ctrl+E to completely expand the tree
containing its child widgets. You will see that “Child Action A” has a child widget with
further children below that, while “Child Action B” has no children. Let’s say that we
wish to move A’s children to be children of B.

Highlight “Action widget 1” and press Ctrl+X. (It should now be outlined when you
highlight a different widget.) Highlight “Child Action B” and press Ctrl+V. The selected
widget will be cut from its original location and added as a child of B. Note that all of the
additional children were moved also, since they are children of the widget that was
moved.

To undo this move, use Ctrl+Z.

To move a widget with the mouse, press and hold the Shift+Ctrl keys while dragging the
widget to be moved, and drop it at its new location. Notice the small arrow next to the
mouse cursor while pressing the Shift+Ctrl keys – that indicates that the drag & drop
process will move the widget(s) being dragged.

When done experimenting with moving widgets, collapse the “Move Widgets” panel.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 89 of 171

Copying Widgets

Highlight the “Copy Widgets” panel and press Ctrl+E to completely expand the tree
containing its child widgets. You will see that “Child Action A” has a child widget with
further children below that, while “Child Action B” and “Child Action C” have no
children. Let’s say that we wish to copy one or more of A’s children to be children of B
or C.

To copy a single widget: Highlight “Action widget 1” below “Child Action A” and press
Ctrl+C. (It should now be outlined when you highlight a different widget.) Highlight
“Child Action B” and press Ctrl+V. The selected widget will be copied from its original
location and added as a child of B. Note that all of the additional children were NOT also
copied; only a copy of the single selected widget was made. You could now edit that
copied widget without affecting the original below A.

To copy multiple widgets: First, select multiple widgets to be copied. This can be done
with the keyboard by highlighting “Action widget 1” below “Child Action A” and
pressing the Shift key while pressing the Down arrow twice. (Or: press the Ctrl key while
left-clicking on the widgets to be selected.) “Action widget 1”, “-2”, and “-3” should now
all be highlighted. Press Ctrl+C to copy them to the clipboard. Highlight “Child Action
C” and press Ctrl+V. The selected widgets will be copied from their original location and
added as children of C, maintaining the original tree structure for widgets 1, 2, and 3.
You could now edit those copied widgets without affecting the originals below A.

To undo a copy, use Ctrl+Z.

To copy widgets with the mouse, press and hold the Ctrl key while dragging the
widget(s) to be copied, and drop them at the new location. Notice the small plus-sign next
to the mouse cursor while pressing the Ctrl key – that indicates that the drag & drop
process will copy the widget(s) being dragged.

When done experimenting with copying widgets, collapse the “Copy Widgets” panel.

Copy Widget Reference

Remember from Widget Relationships that all widget links are actually references, but
that a single widget may have reference links to it from multiple parent widgets. As a
reminder: when a widget has multiple references to it, the Primary Reference is shown
bolded, while all other references are shown italicized.

Highlight the “Copy Widget Reference” panel and press Ctrl+E to completely expand the
tree containing its child widgets. You will see that “Child Action A” has a child widget
with further children below that, while “Child Action B” has no children. Let’s say that
we wish to create a reference to A’s children below B.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 90 of 171

Highlight “Action widget 1” and press Ctrl+C. (It should now be outlined when you
highlight a different widget.) Highlight “Child Action B” and press Shift+Ctrl+V. The
selected widget will be cut from its original location and added as a child of B. Note that
the original widget is now bolded, while the widget placed below B is italicized. Editing
“Action widget 1” will now change it in both places and its children still apply to both
locations, even though they are shown only below the bolded primary reference. (Again,
see Widget Relationships for more details.)

To undo a reference copy, use Ctrl+Z.

To copy a widget reference with the mouse, simply drag the widget to be copied and drop
it at its new location. The default drag-and-drop action is to create a reference copy.

When done experimenting with copying widget references, collapse the “Copy Widget
Reference” panel.

Deleting Widgets

As preparation for this tutorial, see Removing Widgets for an overview of widget
removal. Note that parent widgets should not normally be removed before the child
widgets have been removed, or they should at least be removed at the same time;
otherwise, orphan widgets may be left in the top level of the tree displayed in Studio.

For this tutorial, completely expand the “Delete Widgets” panel. Note that the sample
widget tree is similar to the previous tutorials, except that there is already a widget with
multiple references (“Action widget 1”). We will be deleting widget(s), noting the results,
then undoing the deletion to show what happens in various situations.

Highlight “Action widget 3” and press the Delete key. Note that the widget has
been completely removed. That widget had no children and was safely removed
without causing any side effects. The other widget at the same level, “Action
widget 4”, became the only child widget at that level. Press Ctrl+Z to undo the
deletion before continuing.

Highlight “Action widget 2” and press the Delete key. That widget had two
children that had not yet been deleted. In addition, those children were not
referenced by any other widgets, so they no longer have any parent widgets. If
you scroll the Studio window so that you can see the top level widgets starting
with “A”, you will see “Action widget 3” and “Action widget 4” as orphans in the
top level of the tree. Press Ctrl+Z to undo the deletion of “Action widget 2”.
(You may need to expand the tree below “Action widget 1” again.) Note that the
widgets are back in their original locations.

Delete the italicized reference to “Action widget 1” that is below “Child Action
B”. All this has done is to delete a secondary reference to “Action widget 1”. No
widget was actually deleted; only a reference to a widget was removed. However,

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 91 of 171

note that the “Action widget 1” widget below “Child Action A” is no longer
bolded, because there are no longer multiple references to that widget. Undo the
deletion of “Action widget 1”. Note that the italicized reference has been restored
and the primary reference is bolded again.

Finally, delete the bolded reference to “Action widget 1” that is below “Child
Action A”. You have now removed the primary reference to “Action widget 1”.
As in the previous step, no widget was actually deleted; only a reference to a
widget was removed. When a primary reference to a widget is deleted, some other
secondary reference becomes the new primary reference. In this case there was
only one other reference. (You may now need to expand the tree below “Child
Action B”.) Note that the “Action widget 1” widget below “Child Action B” is no
longer italicized, because it is no longer a secondary reference to that widget. It is
not bolded either, since there are no longer multiple references to that widget.
That widget and its children are simply fully accessible in that widget tree’s only
remaining location. Undo the deletion of “Action widget 1”. Note that the
deleted reference to “Action widget 1” has been restored, but it is now an
italicized secondary reference to that widget. Tip: You can change which widget
is the primary reference: right click on the italicized reference to “Action widget
1” and select Set as Primary Reference.

When done experimenting with deleting widgets, collapse the “Delete Widgets” panel.

Conclusion

This ends the Basic Widget Manipulation tutorial, where you learned how to add
widgets, rearrange their order, move them, copy them, create references to widgets, and
delete them, along with how to undo your previous commands. When done
experimenting with any widgets in this menu, collapse the “Tutorial 01 - Basics” menu
widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 92 of 171

Tutorial Set 2 – Text Display

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 02 – Text Display”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window (from the theme, to be discussed in a
later tutorial) and two sections with text. Note: The use of F5 shifted focus to the SageTV
window when the menu loaded, so be sure to switch back to Studio to continue using it.
You can use F6 to refresh the current menu once it has been loaded.

Before continuing, you may wish to review the Text Widget reference.

Static Text Display

The text in the top half of the SageTV window is displayed via the first text widget – the
one w/o an action widget as its parent. Since this text widget has no parent action widget,
the title of the widget is the text displayed in SageTV. Highlight the widget. Note that the
widget’s area in the SageTV window (the entire top half of the screen) is outlined in
yellow.

While the widget is highlighted, press F2. The widget’s display will change to a text
editing box. You can change the text to say whatever you want and then press Return.
Press F6 to update the SageTV window, but note that it shifts Windows focus to the
SageTV window, so switch back to Studio to continue editing. (Ctrl+Z will undo the edit,
but make sure Studio has focus or SageTV will be put into sleep mode, since Ctrl+Z
defaults to the Power command in SageTV.)

Dynamic Text Display

The text in the bottom half of the SageTV window is displayed via the second text widget
– the one with an action widget as its parent. Since this text widget has a parent action
widget, the data passed to the text widget via the results of executing the parent action
widget is the text displayed in SageTV. (The ‘\n’ characters create a newline character in
the text to be displayed.) Note that the action widget’s results (a text string, in quotes)
override the title of the text widget.

Highlight the text widget. Note that the widget’s area in the SageTV window (the entire
bottom half of the screen) is outlined in yellow.

While the text widget is highlighted, press F2. You can change or even remove all the
text in the widget’s title. When done, press Return and then F6 to update the menu
display. Note that the text in the SageTV window did not change – remember: the text
widget’s contents are overridden by its parent action widget.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 93 of 171

Now, edit the title of the parent action widget (make sure that any text you enter is
contained within the pair of quotes) and update the menu display. The display will
change to match the text you entered.

Advanced Text Widget Properties

For extra credit, review the Text Widget Properties details and then experiment with the
properties of either of the text widgets to see the results for any changes. To activate the
properties editor dialog, highlight a widget, then press Ctrl+L.

Many properties changes will be seen in the SageTV window in “real time”, as the
changes are made, but a few changes may not become visible until you press Apply
and/or use F6 while Studio is in focus to refresh the menu.

Tip: You can edit the properties for multiple widgets at the same time. Highlight both of
the text widgets, then press Ctrl+L. Any properties that differ between the selected
widgets will be grayed out; those that are the same for all selected widgets will show their
values. Changing any of the values affects all selected widgets, while the values that
differ will be left as-is.

Conclusion

This ends the Text Display tutorial, where you learned how to display text in the SageTV
window. When done experimenting with any widgets in this menu, collapse the “Tutorial
02 – Text Display” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 94 of 171

Tutorial Set 3 – Shape Drawing

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 03 – Shapes”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and
various shapes drawn on the screen. Reminder: The use of F5 shifted focus to the
SageTV window when the menu loaded, so be sure to switch back to Studio to continue
using it. You can use F6 to refresh the current menu once it has been loaded.

Before continuing, you may wish to review the Shape Widget reference.

This tutorial really simply consists of noting the various types of basic shapes that can be
drawn on the SageTV display. The “Tutorial 03 – Shapes” menu contains five shape
widgets, each one drawing a differently styles shape. It is suggested that you experiment
with the various shape widgets and their properties to see what happens. Among the
details you may wish to note:

Remember that, in the previous tutorial set, when a text widget was highlighted in
Studio, its display area was outlined in yellow in the SageTV window. When a
shape widget is highlighted, however, its display are is not outlined in yellow.
Shapes are the only UI elements that are not outlined in this way.

The name of the shape widget does not affect its display.

Shapes are drawn in the order they are shown in the Studio tree, from top to
bottom. If you change the color of a shape widget (via its properties) and make it
overlap with another one, the shape widget lower in the tree will be on top of the
one higher in the tree. A simple example: move the “Circle - filled” shape widget
up one and refresh the display. (Highlight the widget, press Ctrl+U, then press
F6.)

The upper right square appears shaded. This is accomplished by adjusting the
GradientAngle and GradientAmount property settings.

Shapes are not drawn outside their allowable display area. They can be moved
such that they overlap the edge of the allowable display area, leaving only a
portion of the shape visible. Most of these shapes are children of the menu widget,
but the large oval outline has been placed below a panel for experimentation
purposes here. (Panels will be discussed later; for now just note that it exists.) If
you experiment with position and/or size the “Oval - outlined” shape widget, you
will find that there is more to the shape than what is shown on the screen.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 95 of 171

Conclusion

This ends the Shape Drawing tutorial, where you learned how to display various filled or
outlined shapes in the SageTV window. When done experimenting with any widgets in
this menu, collapse the “Tutorial 03 – Shapes” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 96 of 171

Tutorial Set 4 – Image Display

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 04 – Images”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and
various shapes drawn on the screen.

Before continuing, you may wish to review the Image Widget reference.

Static Image Display

The two images on the left-hand side of the SageTV window are created by specifying
the image to display in the properties dialog for those two image widgets. In Studio, look
at the first two image widgets -- the ones without parent action widgets. If you highlight
each one, you will see its display area outlined in yellow. Use Ctrl+L to view each
widget’s property dialog to see the filename for the image being displayed.

Dynamic Image Display

Now look at the other two image widgets in this menu – notice that each one has a parent
action widget titled “SageIcon64.png”. When an image widget has a parent action, the
results of evaluating that action is sent to the image widget as the data for the image that
is to be displayed. (In this example, a simple text string is used to pass the filename, but it
could have been a more complex expression that dynamically built the name of the image
to be displayed.)

Open the properties dialog for these two image widgets. Notice that both widgets actually
list the filename of the image displayed in the Static Image Display example from above.
Why is that not the image you see displayed in the SageTV window? The image
determined from a parent action widget overrides the Image Source File property.

Pressed Image Display

Left-click on one of the two right-hand images in the SageTV window and hold the
mouse button down. You will see the image change to match the one shown to its left.
Open the properties dialog for the right-hand widgets. You will see that each one
specifies a Pressed Image Source File that matches the Image Source File used by the
left-hand image widgets. Note that the parent action widget does not override this image
widget property.

Clicking on Images

When am image is clicked with a mouse, it can do one of two things:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 97 of 171

Issue a SageTV Command – The widget properties dialog contains a Fire User
Event drop-box, where you can select an event to be issued. As an example, the
bottom-left image (2nd from top image widget in Studio) will issue the Full Screen
command, so if you click on that image in the SageTV window, it will cause the
window to enter or exit full screen mode.

Execute Child Process Widget Chain – When there is no Fire User Event
setting in the image widget’s properties dialog, clicking on an image will cause a
child process widget chain to be executed, if there is one. If you click on the
upper-left image in the SageTV window (top image widget in Studio), it will also
toggle full screen mode, just like above, but it accomplishes that task via its child
action widget. Note that the bottom-left image (2nd widget) has a child action also,
but since it has a Fire User Event setting, that child action is not executed. (The
child actions are very simple for purposes of these examples.)

Image Placement and Sizing

At this point, it would be a good idea to open the properties for the image widgets and
experiment with the various settings for the image placement and sizing properties.
Before moving the images around, notice that the top two images have the Preserve
Aspect Ratio settings checked – this forces the images to retain their original appearance.
In contrast, the bottom two widgets do not preserve their aspect ratios and have been
resized to fit their entire allowable display area. Highlight each image widget to note its
allowable display area in comparison to its actual display. Experiment with various
settings for each image’s Width and Height, and all the other settings to see how the
image is affected. Most settings will take affect as you make the changes, but some may
require selecting the Apply button and/or switching to Studio and pressing F6 to refresh
the menu.

Conclusion

This ends the Image Display tutorial, where you learned how to display graphic images
in the SageTV window and how they can cause events to occur when they are clicked
with a mouse. When done experimenting with any widgets in this menu, collapse the
“Tutorial 04 – Images” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 98 of 171

Tutorial Set 5 – Item Widgets (Buttons)

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 05 – Items (Buttons)”. While that
menu widget is highlighted, press F5 to load the menu and view it in the SageTV
window. You should see a blue background that fills the window, a brief description at
the top, and various items drawn on the screen.

Before continuing, you may wish to review the Item Widget reference. Essentially, item
widgets are UI elements that can have focus and can be selected. In the SageTV window,
these items usually appear as buttons; however, that button appearance is not their default
way of being displayed. By default, the name of an item widget is used as the text
displayed in the SageTV window for that UI element, and selecting the item performs no
function.

Basic Item Display

In this tutorial’s menu in Studio, look at the two item widgets titled “Thing 1” and “Thing
2”. The names of those two item widgets are displayed directly below the menu’s
information text at the top of the screen. You will see that they do not look like selectable
buttons, but if you use the arrow keys, focus will change from one item on the screen to
another. You can also simply point to an item with the mouse to switch focus to it, if that
mouse capability is turned on, or click on the item if focus does not automatically follow
mouse movement. (That mouse option is selectable in the SageTV V4 Detailed Setup
interface.) When focus changes from one item to another, the color of the text changes.
That text color is controlled by the menu’s theme widget, which will be covered in a later
tutorial.

While one of the “Things” is highlighted in the SageTV window, press the Enter key , or
left-click on a “Thing” with the mouse. Nothing happens because the item widgets do not
have child Process Widget Chains.

Finally, notice that when one of the item widgets is highlighted in Studio, that item’s
display area is outlined in yellow in the SageTV window.

Setting Item Names

When an item widget has a child UI Widget Chain, the results of that UI chain are used
as the displayed contents of the item instead of the name of the item widget. Look at the
item widget named “Original Name”. Notice that there is no such text displayed in the
SageTV window. The displayed text for that item widget has been overridden by the
child text widget titled “Renamed Item”.

Note that in the first example, a simple single-widget child UI Widget Chain consisting
of a single text widget has been used to show this principle; but, as described in the text

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 99 of 171

widget tutorial, action widget(s) could have been used to create the text to override the
name of the text widget. The item widget named “Original Name 2” has a child action
widget which overrides the name of the “Renamed Item 2” text widget.

These widgets do nothing if selected or clicked with the mouse.

Adding Functionality to Buttons

In Studio, look at the item widget titled “full-screen toggle”. Highlight it and you will
notice a yellow outline around the fairly simple-looking button called “Toggle Full-
Screen Mode” in the SageTV window. Let’s take a look at all of this item widget’s
children:

Button Background and Button Outline – These are the basic shapes used to
provide outline and background colors for the item, making it appear more like a
button.

SageCommand("Full Screen") – This single action widget is the entire Process
Widget Chain that will be executed when this item is selected or clicked with the
mouse – the SageTV window will enter or exit full screen mode if this button is
selected. Note that since this action widget is part of a process chain, it is color-
coded green.

"Toggle Full-Screen Mode" – This is the action widget that sets the text to be
displayed I the SageTV window for this button. Note that since this action widget
is part of a UI widget chain, it is color-coded blue. It is bolded because it is the
primary reference for this widget – if you right click on the widget and select
Highlight References, you will see where else this widget is referenced.

The appearance of this ‘button’ is still fairly basic, since more advanced button displays
would use widgets not yet covered, but it still functions as a basic selectable button.

Extra: Notice that the order of this item’s child UI element widgets are quite important
regarding its display in the SageTV window. To see the importance of widget order,
move the “Button Background” image down one widget at a time and then press F6 to
refresh the menu’s display after every downward move to see the effect on the button’s
appearance.

Using Images on Buttons

In this menu, there is an item widget named “Picture Item” which has a child image
widget (“Item's Picture”) that is used as that item’s display element. Normally, images do
not receive focus, so they cannot be selected without using a mouse. By placing the
image in an item widget, you can make the image selectable via the keyboard or remote.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 100 of 171

In this example, there is no on-screen indicator to show that this item has focus. For now,
simply note that this item has focus when no other text is colored red to indicate focus.

When this item is selected or clicked, the child “SageCommand("Full Screen")” action is
executed. That child action is italicized because it is a secondary reference to that widget.
Double click on it to jump to its primary reference.

Conclusion

This ends the Item Widgets (Buttons) tutorial, where you learned how to display and
modify simple button items in the SageTV window and how they can cause events to
occur when they are selected. When done experimenting with any widgets in this menu,
collapse the “Tutorial 05 – Items (Buttons)” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 101 of 171

Tutorial Set 6 – Panel Widgets

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 06 – Panels”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and
various items drawn on the screen.

Before continuing, you may wish to review the Panel Widget reference. A panel is
basically used as a holder for other UI elements. Those other UI elements are placed in
UI widget chains that are children of the panel, and their display is limited to the portion
of the SageTV window used by the panel – a panel defines the clipping rectangle for
drawing its children; in other words: a panel is the ‘pen’ where the child UI elements are
contained. Most of the child widget properties for position and sizing are in relation to the
size of the parent panel. (See Properties Common to Many Widgets.) Similarly, a panel is
placed/sized in relation to its parent UI element, which could be the entire screen if its
parent UI element is a menu widget. Panels may be children of other panels.

Unlike item widgets (buttons), panels do not normally gain focus. Scrollable panels are
the exception to this rule.

Defining a UI Display Area

The first panel in the “Tutorial 06 – Panels” menu is named “Title Area”. For this
tutorial, the text description of the menu is contained as a child of this panel. Highlight
the panel in Studio to see its area in the SageTV Window. Experiment with the panel
widget’s properties to see how the text display changes as the panel changes its size,
position, etc. Remember: most settings will take affect as you make the changes, but
some may require selecting the Apply button and/or switching to Studio and pressing F6
to refresh the menu.

Notice that as you reduce the Fixed Width property, the text display is repositioned to
continue to fit within the panel. Also, because the text widget’s Shrink To Fit property is
checked, the text will be resized to fit the panel size.

When done, click on the Revert button for the panel’s properties dialog and select OK.

The text widget’s properties no longer sets its position in relation to the entire screen, as
it did on previous tutorials when the description text was not a child of a panel; instead, it
is placed relative to its parent panel. Also experiment with the text widget’s properties to
see how its position and size settings are relative to the panel, and its display is limited to
the area within the panel.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 102 of 171

AutoArrange Child UI Elements

How a panel’s child UI elements are placed on the screen is determined by the panel’s
AutoArrange property. Depending on the setting, the child UI elements may be placed
only at the position and size specified by the child, automatically placed with a size
specified by the child, or automatically placed and sized.

Highlight the “AutoArrange Examples” panel. In the SageTV window, note that the
yellow outline encompasses three lines of text, where each line of text is shown
differently. Each line of text is contained in a panel with a different AutoArrange setting.
Note that those lines of text actually consist of the same three text widgets, placed as
references below the three AutoArrange panels. Their display differences are solely due
to the panels’ AutoArrange differences:

AutoArrange: None – The panel does not automatically arrange its children at
all. In this situation, the children are all responsible for their own placement and
sizing. Because the text widgets have no size or placement properties set, they are
all using the same default settings and end up overlapping each other.

AutoArrange: Horizontal – The panel automatically places the children such
that the next child begins where the previous child ends. Each child’s width is
determined by its own settings.

AutoArrange: HorizontalGrid – The panel divides the display area into
equivalently-sized areas and places the children into those grid locations.

Note: these are not all the possible AutoArrange settings for various widget types, but
they should show results that can be applied to the other settings.

To see how these AutoArrange settings interact with the child widget settings, highlight
one of the text widgets below any of the AutoArrange panels. Since each line references
the same text widgets, highlighting any of them will highlight that widget on all three
lines. Experiment with changing the widget’s properties to see how the changes affect the
same widget on all three lines.

Navigation Between Panels

Normally, navigation between focusable UI elements is handled by checking for the next
focusable element in the direction of the arrow pressed (Left, Right, Up, Down). So,
when buttons are on the screen and an arrow is pressed, SageTV looks for the next button
in that direction and sets focus to that button. This change in focus can extend to
focusable UI elements outside the panel where the currently focused element resides.
However, it is possible to override this such that focus stays within the current panel,
wrapping focus back to another element within that panel. To see this in action, refer to
the widgets below the panel titled “Navigation Examples”. On the SageTV screen, those

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 103 of 171

widgets result in two columns of very basic focusable items, with A, B, C, and D in the
left column, and 1, 2, 3, 4 in the right column.

With the mouse, make sure that “1” is highlighted in the SageTV window. Use the Up or
Down arrows repeatedly to rotate focus through all the items in that column. Notice how
focus wraps from the top to bottom, and vice versa. These items are contained in the
“Upper Right” and “Lower Right” panels in Studio. As you can see, focus can change
from an item in one panel to an item in the other.

Now, use the Left arrow to change focus to the left column. Use the Up and Down arrows
repeatedly again. Notice how focus stays within either the top two items or the bottom
two items, depending on which group has focus. This is because the “Upper Left” and
“Lower Left” panels have the Wrap Vertical Navigation property checked. When that
property is checked, focus will wrap within that panel in the vertical direction when the
last item is reached, instead of shifting focus to an item in another panel.

Conclusion

This ends the Panel Widgets tutorial, where you learned how to use panel widgets to
create sections in the SageTV window to limit where the panels’ child UI elements can
be drawn, how to arrange UI elements within those panels, and how panels can affect
focus navigation. When done experimenting with any widgets in this menu, collapse the
“Tutorial 06 – Panels” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 104 of 171

Tutorial Set 7 – Action Widgets

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 07 – Action Widgets”. While that
menu widget is highlighted, press F5 to load the menu and view it in the SageTV
window. You should see a blue background that fills the window, a brief description at
the top, and various items drawn on the screen.

Before continuing, you may wish to review the Action Widget and Widget Chain Types
references. In short: action widgets contains lines of code that SageTV is to execute while
preparing to build the data to be shown in the SageTV window (UI widget chain), or in
response to a program or user input event (process widget chain). UI widget chains get
executed every time SageTV needs to build the UI elements to be displayed. Process
widget chains only get executed when some event occurs to cause the code to be
executed; that event could be in response to user input (select a button on the screen or
pres a button on the remote) or as a result of an event internal to SageTV (such as a Hook
Widget).

Widget Chain Types

To see the various types of widget chains, take a look at the widget tree below the “REM
Widget Chain Types” action widget. The widgets in this tree do nothing useful, but they
do serve to show the various widget chain types.

UI widget chains (blue indicator) – Notice that all the action widgets that lead
directly to UI element widgets (the item and text widgets) have their icons color
coded blue. This means that those widgets will be executed as SageTV determines
how to display those UI elements. Only widgets that lead directly to a UI element
are executed during this process.

Process widget chains (green indicator) – Below the item widget, there is a child
widget tree where the actions are color coded green. Such actions are only
executed when the parent item (button) is selected. Note that these actions do not
have to be in a continuous parent-child linked tree; as you can see, the first green
coded action has two child branches.

Not executed (yellow indicator) – Yellow coded widgets are not executed. Such
widgets usually are seen in a UI widget chain, where some of the widgets do not
lead to a UI element widget. That is the case in the example seen here: some
action widgets are in a branch of a UI widget chain that does not lead to any type
of UI widget. Note: This is a common error when creating data to be displayed in
SageTV. If some data manipulations are not reflected in the SageTV window,
check for any yellow coded widgets in that section of code.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 105 of 171

Tips: There is currently no widget type for comments. One easy way to set aside widgets
to be used as comment lines is to use an action widget and place the comment inside
quotes, making it a string. Prefixing the string with something like REM (for ‘Remark’)
makes it easy to see which lines are intended as comments.

You may wish to use ‘comment’ actions as the widget to be used as the reference widget
for reusable sections of code. That way, the comment line could describe what that
referenced code will accomplish. And, if the referenced code expects any variables to be
set with certain values, you could list those variable names and how they should be set.

Widget Chain Execution Order

Note: This tutorial section uses a variable named “DisplayString”. Variables will be
discussed in more details in the next tutorial set.

The third line in the SageTV window when the “Tutorial 07 – Action Widgets” menu is
active contains “Testing … 1 2 3 4 5 6 7 8”. That text string is displayed below the “REM
Display execution order results” action, but the string is created under the
“BeforeMenuLoad” hook. (Note that the actions below that hook are color coded green,
so they are part of a process widget chain.) The widget chain below the hook contains
multiple branches; each line that adds more text to the “DisplayString” variable is
numbered according to the actual execution order, as you can see by the order the
numbers are displayed in the SageTV window.

You should experiment with the order of those actions by moving some of them Up or
Down. Don’t forget to use F6 to refresh the menu after each modification. As you change
the widget order and refresh the SageTV window, you will see the numbers change to
match the new execution order.

Extra: In addition to simple moving widgets up or down, try moving some of the widgets
or creating secondary references by dragging one of the “DisplayString = DisplayString +
"n "” action widgets to another of those action widgets. Caution: Be careful not to create
a reference to a parent widget below one of its children (do not reference #5 below #7, for
example), as that would create an infinite loop. Loops will be covered in a later tutorial.
A safe secondary reference would be to drag #2 to #8.

SageTV API Function Calls

Action widgets can contain calls to any of the SageTV API functions. Examine the
widgets below the “REM API Calls” action widget. The first action contains a call to the
API function for “Max(Value1,Value2)”. Look at that widget’s properties to see how the
API call is listed, along with the required list of parameters. The results of that function
call are added to the string listed in the Prefix filed of the properties dialog, and then
displayed in the SageTV window via a text widget.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 106 of 171

While the action widget properties dialog is limited to displaying a single API call and its
parameters, actions may actually contain multiple API calls. The second action widget
contains calls to the same “Max” function, but also calls “Min” with the same parameters.
Look at the properties of that widget to see how it compares to the properties of the first
action hat only called “Max”. Notice that the second API call is simply listed as part of
the Suffix property field.

Automatic Type Conversion

While executing code on action widget lines, SageTV will automatically convert data
types as needed, when possible. This was already seen earlier where some of the numbers
added to the DisplayString variable were text strings and some were numbers, and in the
examples for calling the Max and Min API functions. In both of these situations, numbers
were automatically converted to text as the text strings were built.

As mentioned in General Expression Information, some SageTV internal data types will
be automatically converted also, when there is a 1-to-1 correspondence between the two
variable types. As mentioned in that section, for example, the MediaFile and Airing types
can be automatically converted since they have that 1-to-1 correspondence.

Tip: When using number values returned from GetProperty(), it may be useful to
multiple the function return value by 1 or 1.0 to force the result to be a number. Look at
the widgets below the “REM Data Type Conversions” action widget. Those widgets
create the last line displayed in the SageTV window, which consists of three different
numbers:

1) GetProperty() – The result of this API call is simply displayed.

2) GetProperty() + 100 – The result of this call has 100 added to it. Notice
that the result of GetProperty was actually a string, so 100 was converted
to text and added to the string. In the SageTV window, this resulted in
“100” being displayed at the end of the GetProperty results shown in #1,
above.

3) GetProperty()*1 + 100 – The result of the GetProperty call was

multiplied by 1 to convert it to a number, then 100 was added. In the
SageTV window, this resulted in the display of a number that is 100
greater than the GetProperty results shown in #1, above.

Conclusion

This ends the Action Widgets tutorial, where you learned how action widgets can be part
of process or UI widget chains, in what order action widgets are executed, how to call
SageTV API functions, and the fact that some data types can automatically be converted
from one type to another. When done experimenting with any widgets in this menu,
collapse the “Tutorial 07 – Action Widgets” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 107 of 171

Tutorial Set 8 – Variable Usage

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 08 – Variables”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and
various items drawn on the screen.

Before continuing, you may wish to review the Attribute Widget and 4) Attributes /
Variables references. Like most programming languages, the Studio language uses
variables to track various pieces of data so that the information is available for use or
manipulation later. The attribute widget is used to declare and initialize a variable;
however, if a variable is not declared by using an attribute widget, it can be automatically
declared when it is first used to the left of an equal sign.

Using the “this” Variable

SageTV stores the results of any expression in the “this” variable, which can be accessed
by the next expression. Of course, the current contents of “this” will be overwritten by
the results of the next expression, and the next expression, and the next, and so on. To see
an example of this, look at the widgets below the action widget titled “REM using 'this'”.
Here is what happens:

The first child action widget adds 5 and 7, which gets stored in “this”.
The next action widget creates a string to show the value of the “this” variable.
The resultant string is stored in “this”, replacing the sum of 5 and 7.
The text widget uses the contents of the “this” variable as the text to be displayed;
that text can be seen in the SageTV window, directly below the menu’s title line.

Declaring and Accessing Variables

As mentioned previously, variables can be declared via an attribute widget or they may
be created automatically when they are first used. Simple examples of this can be seen
under the panel titled “Declaring and using variables”. Highlight the panel in Studio to
see it outlined in yellow in the SageTV window. That panel contains code that displays a
few lines of text and a button in the SageTV window; within that yellow outline you will
see:

The 1st line shows the value of the “DefinedVariable”. This variable was declared
and initialized in an attribute widget directly below the panel. To see the value an
attribute widget is initialized to, just view its properties. Note: the attribute widget
did not have to be the first child of the panel; in fact, if you move it down a few
positions and then refresh the menu, you will see the same results.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 108 of 171

The 2nd line shows that the variable declared in the attribute, “DefinedVariable”,
is still accessible below a panel. The new variable context created by the panel
does not interrupt the attribute-declared variable.

The 3rd line displays the results of automatically creating and setting the
“AutoVariable” variable.

The 4th line shows that the automatically declared variable, “AutoVariable”, is
NOT accessible below a panel. The new variable context created by the panel (or
other UI elements) does not retain automatically-declared variables. Note: As
shown by the example on line 2, if you wish to access local variables below
panels in later widgets, declare that variable via an attribute widget.

The 5th line accesses a variable called “NoSuchVariable”, which has not been
declared or initialized previously. Since this the first time it has been used,
SageTV will automatically declare the variable and set its value to “null”, which
is the value you will see displayed in the SageTV window.

The 6th line is actually a very basic button. A variable named “ButtonVariable” is
declared below the button’s item widget and its value is shown as part of the text
on the button.

The 7th line of text attempts to access the button’s “ButtonVariable” variable, but
as you can see, its value is shown as “null”. Why? Remember: variables exist
within a specific context, which is the tree extending as child widgets below the
point at which the variable is declared. Variables do not exist outside the scope of
their context. (See Variable Context (Scope).)

Accessing Out-of-Scope Variables

The easiest way to access a variable that isn’t within the context of the widget where you
wish to access it is often to simply declare the variable in an attribute widget at a point in
the tree that is a parent of all places where you wish to access that variable. At times,
however, this is not possible. But, there is a way to gain access to variables that exist in
the context of the UI element that currently has focus. Examples will now be shown to
access the variables declared via attribute widgets under the “Declaring and using
variables” panel and the “Button with a child attribute” item widget.

Highlight the “Variable not in scope” panel in Studio to see it outlined in yellow in the
SageTV window. That panel contains code that displays a few lines of text; within that
yellow outline you will see a header line followed by:

Line A attempts to access the “ButtonVariable” and “DefinedVariable” variables
directly, but as you can see, they are both displayed in the SageTV window as
“null”, showing that they do not exist in the current context.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 109 of 171

Line B uses the API function “GetFocusContext()” to gain access to the context
of the item that currently has focus. As you can see in the SageTV window, the
“ButtonVariable” and “DefinedVariable” variables are now accessible, since their
values are displayed.

Line C has been placed under a panel, which is under the call to the
“GetFocusContext()”API function. The “ButtonVariable” and “DefinedVariable”
variables are no longer accessible again. Why? The results of the call to
“GetFocusContext()” reside in a temporary context area that is not retained when
a new context is created for the new panel.

Conclusion

This ends the Variable Usage tutorial, where you learned the basics of declaring and
accessing variables. When done experimenting with any widgets in this menu, collapse
the “Tutorial 08 – Variables” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 110 of 171

Tutorial Set 9 – Conditionals and Branches

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 09 – Conditionals and Branches”.
While that menu widget is highlighted, press F5 to load the menu and view it in the
SageTV window. You should see a blue background that fills the window, a brief
description at the top, and various items drawn on the screen.

Before continuing, you may wish to review the Conditional Widget and Branch Widget
references. The conditional widget is used to test the result of an expression and then to
either 1) execute its child widget chain if the result is true, or 2) execute one or more
branches whose evaluation results match the conditional’s results. The conditionally
executed widget chains could be either UI or Process chains.

Basic Conditional Statement

The most basic usage of the conditional widget is to use it with an expression that could
evaluate to ‘true’, and then to add a child widget chain (with no branch widget) that you
wish to have executed only when that expression is true. In this tutorial’s menu, look at
the widget chain below the “REM Basic Conditional” action widget. The first conditional
tests the value of “TestVar” and has a text widget as its direct child; notice that this
conditional has no child branch widget. Since TestVar is currently set to true, that text
widget’s contents are displayed in the SageTV window.

Now look at the second conditional widget, which also tests the value of “TestVar”. It
has a branch widget as its child, and that branch simply contains ‘true’. This conditional
+ branch(true) pair of widgets results in the same functionality as just using a conditional
widget: the child widget chain is executed ONLY if the conditional’s expression
evaluates to ‘true’.

Edit the “TestVar = true” action widget so that the variable is set to something other than
true; perhaps use something like “TestVar = trueX”. After refreshing the menu display,
you will see that the two lines of text are no longer displayed since the conditional no
longer evaluates to ‘true’.

Note: Notice that the conditional and branch widgets in this example are color coded
blue, indicating they are part of a UI widget chain. Like action widgets, conditionals and
branches are color coded according to widget chain type.

Conditional + Branch(es) Usage

When using a conditional widget plus one or more child branch widgets, the conditions
tested can be more than simple checks for evaluating to ‘true’. Pretty much any
expression can be used on the conditional and all of the child branches. After all of those
expressions are evaluated, all branches whose results match the results of the

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 111 of 171

conditional’s results will have their child widget chains executed. This means that it is
possible for multiple branches to be executed; while that may not be something that is
purposely done often, it is possible.

Remember: When SageTV is checking multiple branches underneath a conditional, it
will check each branch one at a time, and if that branch's value matches the conditional
then the action chain underneath that branch will continue to be evaluated. SageTV does
not evaluate all of the branch expressions before deciding what to do; therefore, do not
use expressions which may result in changes that affect how the next branch evaluates.

Tip: An easy way to check which of several conditions is true is to set the conditional
widget to ‘true’ and then set each branch widget to one of the expressions to be
evaluated. If all those branches are mutually exclusive, then only one will be executed.
This is done in the tutorial menu, as described below.

The ‘else’ branch: If no branch results match the conditional’s results, then SageTV
checks for a branch titled ‘else’. If that branch exists, its child widget chain is executed. If
it does not exist, then no branch is executed. Note that if the ‘else’ branch executes, by
definition, no other branch will execute along with it.

IMPORTANT: A conditional widget should not have both a direct child widget chain
AND child branches. This syntax is not supported and has undefined results.

For an example of using a conditional widget with multiple branches, see the widget
chain below the “REM Conditional with Branches” action widget in this menu. That
widget chain has two conditional widgets: one for “If CurrentValue” and one for “If
true”. The buttons for the first If statement are shown in the upper box in the SageTV
window, while the buttons for the second If statement are shown in the lower box. In both
boxes, only certain buttons are displayed, depending on the value of “CurrentValue” and
the branch widget that is the parent of each button. Selecting one of the active buttons
modifies the “CurrentValue” variable as shown on the button, then refreshes the menu via
a call to the “Refresh()” API function.

Look at the first conditional (“If CurrentValue”) and the branches below it. Note that the
first branch, “true”, is never executed because the “CurrentValue” variable is never set to
‘true’, the “else” branch is only executed when no other branch executes, and the other
three branches are executed only when the variable matches the values shown in Studio.
For this conditional and its branches, only a single branch is ever active at one time;
therefore, only one of the four buttons are shown at any time.

Now look at the second conditions: “If true”. As mentioned in the tip, above, this
conditional and its branches are set up to handle whatever branch expressions evaluate to
true, instead of using an expression on the conditional with possible results on each
branch. Also note that because of the contents of each branch expression, it is possible for
multiple branches to be executed; in fact, regardless of the value of the “CurrentValue”

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 112 of 171

variable, the last branch will always be executed because its expression is simply the
value “true”. So, in this box there will be multiple active buttons.

Finally, note that the branch containing “CurrentValue > 10” is color coded yellow. That
is because the branch is part of a UI widget chain, yet it does not lead to any type of UI
widget element. Such parts of a UI widget chain are ignored and never executed, thus the
yellow widget chain type indicator.

Conditionals in Process Widget Chains

So far, all of the conditional widgets discussed in this menu have been part of a UI widget
chain, but they work the same way when they are part of a process widget chain. The
branch for the bottom button on the screen, “If true”, contains a conditional as part of the
process widget chain that is executed when the button is selected. It simply modifies the
“CurrentValue” variable a different way, depending on its current value.

Conclusion

This ends the Conditionals and Branches tutorial, where you learned the basics of using
conditional and branch widgets to conditionally execute code or show UI elements. When
done experimenting with any widgets in this menu, collapse the “Tutorial 09 –
Conditionals and Branches” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 113 of 171

Tutorial Set 10 – Loops

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 10 – Loops”. While that menu widget
is highlighted, press F5 to load the menu and view it in the SageTV window. You should
see a blue background that fills the window, a brief description at the top, and various
items drawn on the screen.

Creating a Basic Loop

At its most basic level, creating a loop in Studio simply involves adding a widget
reference to another widget higher in the same widget chain AND adding some way for
the loop to exit. Simply creating a widget chain like Action 1 → Action 2 → Action 3 →
Action 1 will create an infinite loop, since there is no way to exit that widget chain. At
some point in that widget chain, there should be a conditional widget that will eventually
evaluate to a condition that stops the loop.

Look at the pseudo-code widget chain below the “REM Basic loop construct” action
widget. The first thing to note is that this widget chain is color coded yellow, so you can
tell that it will not be executed. The second thing to notice is that it doesn’t contain valid
code anyway; it is just a sequence of text strings (widget titles in quotes) showing one
basic way to create a loop:

1. Initialize all the data to be used in the loop.
2. Test the loop condition(s) to see if the loop should continue. Should it continue?

a. YES – Manipulate the data, including any data used to determine whether
to continue the loop, then add a reference back to the widget at the start of
the loop.

b. NO – For a UI widget chain, continue the rest of the UI chain. For a
Process widget chain, either continue the rest of the chain, or end the
current one.

Of course, this is not the only widget sequence that can be used in a loop; it is just used as
an example. Like in most other programming languages, you can control where you
increment your loop control variables and whether to do the loop condition testing before
or after the first iteration of the loop. It all depends on where you place your reference
widget back to the start of the loop and where you place the loop condition test.

A Sample Loop

To see a sample basic loop in action, look at the widget chain below the “REM Basic
loop” action widget. This loop uses the basic construct described above to add the
number 1 through 10, then display the result on the second line in the SageTV window.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 114 of 171

Preventing Infinite Loops

If SageTV gets caught in an infinite loop because the loop condition never allows the
loop to exit, there is no way to break into the code to stop execution. If an infinite loop
does occur, you will have to stop the SageTV process, restart SageTV/Studio and edit the
code in the loop before it executes again. While loops like the sample shown above are
fairly simple in terms of its loop condition, there are times where the loop control
variables and/or the loop condition are much more complex. In these situations, it may be
a good idea to use a ‘safe’ loop construct that can prevent infinite loops – essentially a
loop limiting technique can be used.

The widget chain below the “REM Basic Safe loop” action widget shows such a loop.
Just like the previous sample loop, this loop is designed to add the numbers 1 through 10.
But, in this case, the loop control variable, “LoopIndex”, is never incremented in order to
simulate a faulty loop. A loop limiting control variable, “MaxLoopCount”, has been
added to the loop to make sure the loop executes no more than a specified number of
times, in this case: 50. If this limiter had not been added to this loop, it would be an
infinite loop.

While the loop limiting variable also has to be implemented correctly in order to prevent
an infinite loop, remember that the sample loop control variable, “LoopIndex”, is a fairly
simple way to control a loop. In a real-life loop where the loop condition may be
controlled by the return value of a function call, or by a list of data, it may be possible to
run into unexpected situations where the data prevents loop conclusion. Using a loop
limiter in such a situation is one way to prevent SageTV/Studio from no longer
responding. Once the code development and debugging phase is complete, the loop
limiter can be removed or left in place as a safety measure.

UI Elements in Loops

Simply put: UI widgets may not be used in loops to create nested UI elements, with a
single exception: shapes.

Look at the widget chain starting at the “REM Loop with shapes” action widget. The loop
itself is very similar to the previous sample loops, except that it draws 10 shapes inside a
panel widget rather than adding numbers. (A simple shapes-within-a-loop method is used
in the default SageTV STV when drawing the green segments on the playback OSD to
indicate which portions of a show have been recorded when the recording is made up of
multiple parts.) Adding other UI widgets to the loop with the shape widget, or replacing
the shape widget, will not cause those other UI elements to be shown repeatedly, if they
are shown at all.

Restoring “Hidden” Loop References

While looking at the “REM Loop with shapes” widget chain, notice that it draws a semi-
transparent shape, “Color Fill”, as the background color for the panel. What happens if

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 115 of 171

we wish to make it the semi-transparent foreground color instead? Highlight the bolded
“MaxLoopCount = MaxLoopCount - 1” action widget and use Ctrl+U to move that
widget above the “Color Fill” shape widget. Did you notice any interesting side effect of
that widget move? The loop where the shapes are drawn has completely disappeared!

When you move a primary reference, it becomes a secondary reference and shifts the
primary reference to one of the widgets that used to be a secondary reference. The way to
find the new primary reference is to double click on the italicized secondary reference.
So, do that. But, when you double click on the italicized “MaxLoopCount =
MaxLoopCount - 1” action widget, Studio does not jump to the primary reference. The
loop is just gone and is nowhere to be found. However, if you refresh the menu, the
shapes inside the loop are still drawn – they are now behind the semi-transparent “Color
Fill” shape, as you would expect based on the widget order. This must mean that the loop
still exists… somewhere! Remember: Studio is just displaying widget chains in a tree
format and italicized secondary references do not have their child widget chains
displayed. They still link to widgets, however. In this case, the only other reference that
could have been set as the new primary reference after the widget move is a child widget
of the one that was moved, so it is not displayed anywhere in the tree.

The solution: If the entire loop seems to disappear after moving some widgets around,
simply set the italicized widget as the primary reference. In this case, right-click on the
“MaxLoopCount = MaxLoopCount - 1” action widget, then select ‘Set as Primary
Reference’. You may need to expand the tree after doing that, but the entire loop has been
restored to visibility.

Conclusion

This ends the Loops tutorial, where you learned the basics of using widget references and
conditional widgets to create loops. When done experimenting with any widgets in this
menu, collapse the “Tutorial 10 – Loops” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 116 of 171

Tutorial Set 11 – Pop-up Options Menus

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 11 – Options Menus”. While that
menu widget is highlighted, press F5 to load the menu and view it in the SageTV
window. You should see a blue background that fills the window, a brief description at
the top, and various items drawn on the screen.

Before continuing, you may wish to review the OptionsMenu Widget reference. The
OptionsMenu widget is used to open a new interface dialog on top of the existing
SageTV display.

Creating and Closing Options Menu Dialogs

An options menu is created only as a part of a Process widget chain below such widgets
as a button, hook, image, or listener. It is not created while a UI widget chain is
executing, so it could not be a direct child of a Menu widget, for example. In other words,
an options menu is created in response to some event, whether it is user input or an event
that happens in the SageTV core.

Near the top of this menu is an OptionsMenu widget titled “Unseen Options Menu”.
Since this OptionsMenu is a child of the Menu widget, it will not be executed and
displayed on the SageTV window.

When an options menu is created and displayed, its UI child widget chains are shown
within the allowable borders for that OptionsMenu widget, similar to the display of a the
UI elements under a Menu widget, except that a Menu widget encompasses the entire
screen while an OptionsMenu widget could cover all or only a portion of the screen.

Look at the widget chain below the panel titled “Displaying Options Menus”. This panel
contains a single button that is displayed in the SageTV window: “Click me to pop up an
Options Menu”. If you select this button, a basic pop-up options menu will be displayed
via the “Sample Options Menu” widget below the “Options Menu 1 button”. Notice that
the dialog does not cover the entire SageTV window, so you can still see the rest of the
display, but you cannot interact with any part of the display except for the options menu.
While an options menu is active, it receives all input events. You can try clicking on the
buttons visible in the background, but they will not do anything. Therefore,
OptionsMenus in SageTV are like modal dialogs.

In the pop-up dialog, you will see two button choices. The first one simply closes the
current dialog by calling the “CloseOptionsMenu()” API function. The second button
opens another dialog on top of the first dialog, with the same situation as before: you can
only interact with the top-most options menu.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 117 of 171

The second pop-up dialog also has two buttons. The first one simply closes the current
options menu, while the second one closes both options menus via two calls to the
“CloseOptionsMenu()” API function. Note: each call to “CloseOptionsMenu()” closes
only the most recently created options menu. Don’t forget to call that function once for
each options menu that you create.

Widget Chain Execution After Closing an Options Menu

When using options menus, you should be aware of one very important side effect that an
options menu has on the continuing execution of the Process widget chain that it is a part
of: when an options menu closes, execution of the chain where the option menu was
launched will continue, and then execution will continue after the location of the call to
CloseOptionsMenu(). The next section of the tutorial STV uses the widget chain below
the “Options Menu closing effects” panel to show this effect.

Select the “Execute widget chain” button in the SageTV window. Notice how the text
displayed after “Last setting:” changes – it will contain all the numbers from 1 through 9.
This text is created by the Process widget chain below the button titled “Normal widget
chain execution” in Studio. That chain contains several action widgets to create the
string, along with a single call to “Refresh()” to update the display. Every one of those
actions gets executed.

Now, select the next button, “Use Options Menu in chain”, in the SageTV window. An
options menu will appear, asking you to click on the “Continue” button. Note that the
“Last Setting” line now lists numbers 1 through 4, since those widgets were executed and
the screen was refreshed before reaching the OptionsMenu in the widget chain. Now
click on the “Continue” button. Notice that the “Last setting:” display changes to include
all the numbers 1 through 10. In Studio, look at the Process widget chain below the
“Options Menu widget chain execution” button. That widget chain is similar to the one
below the other button, except that an OptionsMenu widget was inserted below line 4 and
extra calls to “Refresh()” were added in order to make sure the SageTV window gets
updated after each action widget executes. In addition, the number 10 was added to the
“Last Setting” line directly below the call to CloseOptionsMenu(). From the results
shown in the SageTV window, you can see that the numbers 5 through 9 were added to
the “LastText” variable when the CloseOptionsMenu() call was executed, before the
number 10 was added. As explained at the start of this section, widget execution
continued where the OptionsMenu was launched before continuing after the call to
CloseOptionsMenu().

Conclusion

This ends the Pop-up Options Menus tutorial, where you learned the basics of using
OptionsMenu widgets to display pop-up dialogs – how to create them, close them, and
how they affect the continuing execution of the current widget chain. When done
experimenting with any widgets in this menu, collapse the “Tutorial 11 – Options
Menus” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 118 of 171

Tutorial Set 12 – Tables

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 12 – Tables”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and a
couple buttons for selecting which table to view.

Before continuing, you may wish to review the Table Widget and TableComponent
Widget references. From those references, you will see that both of those widgets types
must be used together in order to create scrollable lists of items, or tables, in SageTV.
SageTV can create tables with a vertical OR horizontal dimension, a one dimensional
table, or with both vertical AND horizontal dimensions, a two dimensional table.

One Dimensional Tables

Select the “Show a 1-D Table” button to see an example 1-D table displayed in the
SageTV window. Such tables are used in many places in the default SageTV STV,
usually whenever a list of selectable items is shown on the screen. To see the Studio code
for this table, look at the “1-D” branch below the “Table Area” panel.

Notice how this table is constructed:

The list of available recording qualities is retrieved via the
“GetRecordingQualities()” API call. For a one dimensional table, the data for the
table’s list is ‘fed’ to the Table widget via its parent Action widget. In this case,
the “GetRecordingQualities()” call returns a list of all the available recording
qualities, which then get sent to the Table in the following widget.
The “QualityListTable” Table widget sets up the table’s display area, dimension,
and other settings.
The “CurQuality” TableComponent widget is used as a Cell that represents each
element in the list. The name of this widget is the local variable used to access the
current list element. While there is only a single cell TableComponent widget,
that one widget is used to represent every list element, and its child UI widget
chain determines how that table/list element gets displayed on the screen.
Below the “CurQuality” cell widget, an Item widget was used to display the each
cell as a button. Note: The table elements to not have to be shown as buttons; they
could have been displayed as non-selectable simple text, or anything else you
want them to appear as.
Below the Item widget is a widget chain that determines the appearance and
behavior of the button. (Selecting a recording quality button shows some info
about that setting in a pop-up dialog.)
Extra: Also below the “QualityListTable” Table widget, there is a panel titled
“VPagination”, where the page up/down icons are displayed as needed, using the
“IsFirstPage” and “IsLastPage” automatic local variables. (See Predefined Local

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 119 of 171

Variables.) In addition, the “TableRow” was used to show the list number on each
button.

Things to do: Try highlighting some of the widgets below the “1-D” Branch widget to
view their yellow-outlined display areas on the screen and how they relate to each other.
You may also want to try changing various widget property settings to see what effect
each change has. Remember: while many settings will show their changes in the SageTV
window in real-time as the changes are made, some other settings may require that the
menu be refreshed (press F6 in Studio) or to be reloaded (highlight the Menu widget and
press F5). You may wish to experiment with the “QualityListTable” Table widget to
change its NumRows and/or NumCols settings.

Two Dimensional Tables

Select the “Show a 2-D Table” button to see an example 2-D table displayed in the
SageTV window. To see the Studio code for this table, look at the “2-D” branch below
the “Table Area” panel. Note: This two dimensional table uses buttons in what you might
consider to be non-standard places in a table. This was done on purpose to show that
there is no single place in a table where buttons have to be used.

This two dimensional table is constructed quite a bit differently from the one dimensional
table shown previously:

The first widget for this table is the “QualityList2DTable” Table widget, not an
action to retrieve any list of data. As before, this widget sets the table’s display
area and dimensions. Unlike one dimensional tables, 2D tables do not have the
table data fed directly to the Table widget; instead, the table’s contents are fed to
the TableComponent widgets in the child widget chains. Below this Table widget
can be found four additional widget chains:

1) The widget chain starting at the “Recording Quality Title Panel” panel is
just an optional item placed to use the area not filled by the row header,
column header, or table body. Such an open, unused space is dependent on
how the two dimensional table is laid out. The Program Guide grid in the
default SageTV STV, for example, uses this leftover space differently.

2) The column header widget chain uses a ColHeader TableComponent type
to list the titles for the two columns used for this table: the Format and
GB/hr columns. The “QualityInfo” title of the TableComponent widget is
used later in the table as the column for the current Cell. These elements
are displayed as text in the SageTV window. In this example, the column
headers receive their data from the “DataUnion()” API call right before
the TableComponent widget.

3) The row header widget chain uses a RowHeader TableComponent type to
list the titles for the rows of recording qualities used for this table,
retrieved from the “GetRecordingQualities()” API call which has been fed
to the TableComponent widget. The “CurQuality” title of the
TableComponent widget is used later in the table as the row for the current

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 120 of 171

Cell. Note that most of the items in the row list are displayed as selectable
buttons, but for a change of pace, one list element is shown only as a non-
selectable text entry. (As in the one dimensional table, select a button to
show some info about that setting in a pop-up dialog.)

4) Finally, the “QualitySettings” Cell TableComponent is used to fill in the
body of the two dimensional table. Note that in this example, no data has
been fed to the TableComponent; instead, it retrieves the data to be
displayed via the row and column TableComponent variables:
“QualityInfo” and “CurQuality”. The “QualityInfo” variable (see #2,
above) is used to determine which column a cell belongs to; those in the
first column are displayed as buttons, while those in the second column
are displayed as text. Then, the “CurQuality” variable is used to display
the info about the recording quality; that variable was set in #3, above,
according to which row the cell belongs to. (Selecting a button does
nothing. As an exercise, you could add a Process widget chain to do
something when a button is selected.)

The visual layout of this two dimensional table is:

The table could have been displayed differently, depending on how you wanted a table to
be presented to the user, but the above layout was chosen for this example table. Each
element of the table was placed and sized for its desired location. You can experiment
with the widget properties to see how changes affect the table and its layout.

As mentioned previously, various elements of the table were chosen to be buttons or text
simply to show that there is no rule that any certain table element has to be a selectable

Table body, created by the Cell TableComponent type.

Uses the row header and column header variable names
to access and display the table contents.

Column Header, from ColHeader TableComponent.

Row Header, from the
RowHeader

TableComponent.

Simple Text to fill left-
over space

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 121 of 171

button – they just have to be UI elements that get shown in the SageTV window. It is up
to the developer to determine which UI elements are to be selectable.

Additional Table Scraps

Before ending this tutorial set, there are a couple advanced tips regarding tables that you
might find useful:

Time spans in tables – Most of the time, the table cells are all set to the same width and
height, determined by the number of rows and columns to be displayed and the amount of
screen space to be used for the table. However, when a column or row is fed the results of
a call to the “CreateTimeSpan()” API function, SageTV will be able to automatically size
the cell to match the timespan for a cell’s contents when the cell contains a database item
that has a time span. An example of this can be seen in the code that creates the Program
Guide’s grid for the default SageTV STV. For that table, the ColHeader
TableComponent uses the results of a call to “CreateTimeSpan()”. Since the table’s cells
contain Airings, and Airings have a time span consisting of start and end times, SageTV
is able to automatically adjust each cell’s width to match its time span.

Note: when deciding what time span to display, SageTV checks the value of the
UseAiringSchedule variable. If its value is “true”, then the scheduled recording
time is used, which includes any padding added to the recording time; otherwise,
if UseAiringSchedule has any other value or does not exist, then the airing times
are used instead. Example: the parallel version of the Recording Schedule menu
displays airings using their scheduled recording times, including padding, while
the Program Guide only displays cells using airing times.

Dynamic table size adjustments – The size of a table (the number of columns and/or
rows it displays) is set in the Table widget via the NumRows and NumCols settings.
These values are only referenced when SageTV is initially setting up a menu and
determining the layout of all of that menu’s UI elements, so if you try to set them to
dynamic values (see General Widget Properties) and then calling Refresh() to redisplay
the menu when those variables are changed, the table will not resize itself to match its
new dimensions. One way around this is to call a reference to the same Menu widget
after using the “AddStaticContext()” API function (see Variable Context (Scope) for
more comments on that call) to send values for the table’s new size to a new instance of
the same menu. This technique is used in a few menus for the default SageTV STV – see
the “BeforeMenuLoad” hook and associated variables for the Program Guide, Video
Library, and Picture Library menus.

Conclusion

This ends the Tables tutorial, where you learned the basics of creating and displaying one
and two dimensional tables. When done experimenting with any widgets in this menu,
collapse the “Tutorial 12 – Tables” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 122 of 171

Tutorial Set 13 – Listeners

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 13 – Listeners”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, and a
line saying what the last listener action was.

Before continuing, you may wish to review the Listener Widget reference, which
explains how listeners are activated by user input and that when activated, they execute
their child Process widget chain. Child UI widgets are not displayed in the SageTV
window, however a listener could be used to display a pop-up options menu.

Listeners can be children of most UI widgets (see Valid Widget Parent-Child
Relationships), but this tutorial has placed all but one of the sample listeners below the
Menu widget for simplicity.

Basic Listener

In this menu, a basic Play command listener is used – in this case, it simply sets the
“LastSelection” variable to indicate which listener was called and then refreshes the
section of the screen where the last selection information is displayed, via a call to
RefreshArea("Info Panel"). Enter the Play command (Ctrl+D) to see the screen update
after the listener is activated.

Obviously, in a ‘real-life’ STV, you could have created a more useful Process widget
chain below this listener to do something more useful when the Play command is
received.

Mouse Listeners for Non-Focusable UI Elements

Unlike other listeners, mouse listeners can be activated for UI elements that can not
receive focus when using a keyboard or mouse. An example of this is the mouse listener
below the Text widget used to display this menu’s title line. Highlight the title line’s Text
widget to see its display area outlined in yellow in the SageTV window. If you click
anywhere within that yellow rectangle, the mouse click will be reflected on the info line,
in response to the widget chain that is executed below the mouse listener.

The title line’s Text widget has another listener for the Left command. However, since
the title line can not receive focus, that listener will not be activated. While SageTV has
focus, use the Left command and notice that no change is made to the info line.

Next, highlight the “Info Panel” widget in Studio to see its yellow outline in SageTV. If
you click the mouse below this rectangle, the mouse listener that is a direct child of the
Menu widget will be activated and the info line will be updated to reflect that. But, if you

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 123 of 171

click inside the yellow outline for the “Info Panel”, no info line update occurs. Why is a
mouse click reflected when clicking on the title line or on the bottom portion of the
screen, but not when the “Info Panel” is clicked? The mouse listener is being activated
for the UI element that you click on. The “Info Panel” widget has no child mouse listener,
so a mouse click on it does nothing. The bottom portion of the screen is not covered by
any other UI element, so the mouse listener under the Menu widget gets activated.

Listener-created Local Variables

Some listeners can set local variables in accordance with the data input received. (See
Listeners That Set Local Variables.) In this menu, look at the “NumberEntry” listener and
its widget chain. First, look at the properties for that widget. Note that it is actually a
“Numbers” listener with a title of “NumberEntry”, thus “NumberEntry” becomes the
local variable containing the user-entered number. When you press a number, SageTV
will update the info line to indicate the number that was entered. Note: If this listener had
not been named, the number entered could be accessed via the ‘this’ variable.

Adding Command Functionality vs. Command Override

Some of SageTV’s commands have default functionality that is built into the core
program. When processing these commands via listeners, you can continue execution
with the next-found listener (which could be in the core, or in the STV) by calling the
“PassiveListen()” API function. To see a sample of this, look at the “Full Screen”
listener’s child widget chain: it sets the “LastSelection” variable to reflect the listener
activated and updates the info line display area. It then calls “PassiveListen()” to continue
the Full Screen command’s default functionality. Enter the Full Screen command
(Ctrl+Shift+F) to see both the info line being updated and the SageTV window toggling
its full screen display status.

If you wish to override the built-in functionality for a command, simply do not call
“PassiveListen()” in the listener’s child widget chain. For this example, look at the
widget chain below the “Home” listener. Usually, when you use the Home command,
SageTV loads the menu defined by the “Main Menu” widget, however, in this example,
Home has been overridden to simply update the info line and to pop-up a simple options
menu telling you that the Home command was entered.

Conclusion

This ends the Listeners tutorial, where you learned the basics of using listener widgets to
respond to user input. When done experimenting with any widgets in this menu, collapse
the “Tutorial 13 – Listeners” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 124 of 171

Tutorial Set 14 – Hooks

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 14 – Hooks”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top,
information about the last hook action, and a couple buttons. (Close the dialog that pops
up; it will be explained later.)

Before continuing, you may wish to review the Hook Widget and 5) Hooks – The
Complete List references for a list of all hooks, the local variables they pass, and any
return values they may expect. Unlike listeners, which are activated in response to
receiving user input, such as a command, hooks are activated in response to some event
that occurs in the SageTV core application. Like listeners, the child Process widget chain
is executed when a hook activates.

Basic Hooks

The “RecordingScheduleChanged” hook shows a couple points about basic hook usage:
it responds to the SageTV upcoming recording schedule being updated by updating the
“LastHook” variable and the info line where it is displayed, and it pops up an options
menu letting you know that the schedule was updated. If you let the SageTV window sit
long enough, this hook will be activated. Or, if you are running another instance of
SageTV or SageTVClient connected to the same server, you can set another show to be
recorded to see this hook being activated.

For a few examples of hooks used below UI elements, check the widget chain below the
“Button Focus Changes” panel. The buttons contained there have a couple hooks that
update the info line when focus changes from one button to another, along with a third
hook that marks the time when “Button 1” was last rendered. Use the Left and Right
arrows to switch focus in order to see how the buttons and info line are updated.

As with the Process widget chains below the Listener widgets in a previous tutorial set,
hooks used in a real-life STV could contain much more functionality. Check the default
SageTV STV for examples of hooks doing something useful in response to the event that
activated them. By the way: in the default SageTV STV, this hook would be used to
update the SageTV window in order to reflect any UI changes that might be caused by
the new schedule.

Hook-created Local Variables

Some hooks pass local variables that may be used in the hook’s child widget chain to
access whatever information may be needed to respond to the hook properly. When
viewing the hook widget’s properties, any such variable(s) are listed in parenthesis after
the hook’s name.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 125 of 171

In the current menu, look at the properties for the “AfterMenuLoad” hook, where you
will see the hook listed as: AfterMenuLoad(Reloaded). Thus, “Reloaded” is a variable
passed to the hook’s child widget chain. If you expand the drop-down box to see the list
of all available hooks, you will see quite a few that pass such local variables. The sample
menu uses this hook to pop-up a dialog to say whether the menu has been reloaded or not.
In Studio, press F6 to refresh the menu; you will see that the menu has not been reloaded.
Now, press Home to switch to the Main Menu, then use the Back command (Alt+Left) to
return to this menu; you will see that the menu has been reloaded.

Hook Return Values

A few hooks require that the handling of that event result in the “ReturnValue” being set
to indicate how to handle the event being reported, and possibly that some additional
actions be taken – see 5) Hooks – The Complete List for full details. While the tutorial
STV does not contain samples for any such hooks, you can see examples in the default
SageTV STV. If you wish to see those examples, simply load the default STV and search
for “ReturnValue”. Or, expand and view the following hooks:

DenyChannelChangeToRecord
RecordRequestLiveConflict
RecordRequestScheduleConflict
RequestToExceedParentalRestrictions
WatchRequestConflict

Conclusion

This ends the Hooks tutorial, where you learned the basics of using hook widgets to
respond to SageTV core events. When done experimenting with any widgets in this
menu, collapse the “Tutorial 14 – Hooks” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 126 of 171

Tutorial Set 15 – Themes

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 15 – Themes”. While that menu
widget is highlighted, press F5 to load the menu and view it in the SageTV window. You
should see a blue background that fills the window, a brief description at the top, several
lines of text, and a few buttons.

Before continuing, you may wish to review the Theme Widget reference. Themes can be
used to automatically apply properties and child widgets to other widgets to simplify
defining the appearance of each UI element displayed by SageTV and to more easily
keep that appearance consistent for similar elements. Themes are not needed for most
display elements, but they help when various elements are to be displayed in a consistent
manner. So far throughout these tutorials, themes have not been used except for the
“Basic Menu Theme”, which is used to set up some basic properties such as the
background color for the menus and selected items. However, themes could have been
used to reduce the amount of support code needed to display various items, such as
buttons, as will be seen below.

Note: As with the other tutorials, this one will be introducing the basic concepts of the
uses for theme widgets, but will not be providing an in-depth example of how to lay out
all the themes for an entire STV. For examples of more complex themes, refer to fully
developed STV files, such as the default STV used for SageTV.

Basic Theme Usage

The most basic theme usage can bee seen by looking at the one that has been used on
every tutorial menu, the “Basic Menu Theme”. A reference to this theme widget has been
placed as a child of every menu widget. If you look at its properties, you will see the
background color used for the menus and the color to be used for currently selected
items. All other properties were left at their default values. Changing any of these
properties will affect every tutorial menu. (If you experiment with changing these
properties, don’t forget to Apply the changes and to refresh the current menu’s display by
pressing F6.)

Another example of basic theme usage can be seen by looking at the text widget titled
“This text is affected by its child theme” and its child widgets. Notice that the text color
is different from the menu’s description on the first line of text. The “Text's theme”
widget defines that color. Also note that the text’s layout is affected by the text widget
child of the theme widget. Compare the properties of both of those text widgets to see
that they differ. Check the “Ignore Theme Properties” option of the parent text widget,
select Apply, then refresh the menu – you will see that the text is displayed in a different
location and without a shadow.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 127 of 171

A few points to learn from these examples:

The theme widget applies its settings to its direct parent.
The properties of the direct children of a theme widget are applied to those widget
types that the theme applies to, unless the widgets have the “Ignore Theme
Properties” option checked.
If the theme properties are ignored for a widget, then all properties are skipped,
even those that are blank. Note that the parent text widget left several properties
as undefined, but those missing values that were defined by the text theme were
not applied.
Just like other widgets, themes can be reference widgets, so you can define a
theme and all of its children in one place, then reference that entire theme in
another location in the STV.

Theme Recursion

For most widgets, the properties defined on a widget that is a direct child of a theme
widget will be applied to all the widgets affected by that theme. This is not the case for
panel widgets, which have themed properties applied to them only if the theme is a direct
child of that panel. The purpose of this is that you will very often want to use a panel to
hold UI elements where additional panels can be used to break the display into sections.
You will probably not want each child panel to use the same sets of properties, but it is
desirable that the other UI display elements continue to use their themes to keep text or
buttons displayed consistently.

Examine the widget chain below the “Panel Theme Example” panel to see examples of
this. The easiest way to see which on-screen elements are affected by themed widgets or
direct widgets is to highlight a widget in Studio and press F6 to refresh the menu.

The parent panel has a theme child with themed panel and text widgets. The parent panel
also has other children for displaying the text in this example. Note that when you
highlight the themed text widget, both lines of text are outlined in yellow in the SageTV
window; however, when the themed panel widget is highlighted, only the section’s parent
panel is outlined. This shows that the text theme applies to text widgets being displayed,
but only the parent panel is affected by the themed panel. Also, by highlighting the parent
panel and then the “Child Panel” widgets, you can easily see that the “Child Panel”
widget is not using the themed panel’s Fixed Width property of 1.0.

You may wish to experiment with the property settings for the widgets in this example.
While doing so, note that the only UI element widgets that have properties set are the
ones that are children of the theme widget.

One last item of interest here is that this section’s background color is set in the theme
widget, while the border is drawn as a child of the parent widget.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 128 of 171

Adding UI Elements via Themed Display Widgets

In the previous examples, the theme widgets had UI elements as direct children. Those
themed child widgets were not displayed on the screen; only their properties were applied
to other widgets that were displayed on the screen. What would happen if those themed
UI elements also had child UI elements? In that case, those child widgets would be
displayed in the SageTV window, as if those widgets had been added as children of the
widgets affected by the themed UI elements. To see an example of this, see the widget
chain below the “Added Child Theme Example” panel.

As you explore this widget chain, notice that the “themed panel” widget now has some
children of its own. The section’s border is now drawn as a child of the themed panel and
the section’s first line of text is defined in the theme. The themed text is still applied to all
lines of text in this example, just like previously. In fact, the themed text also has a child
shape widget which is applied to all affected text widgets.

The important points to remember are:

Widgets that are direct children of a theme widget become themed widgets whose
properties apply to the widgets of that type affected by the theme. They are
essentially templates whose properties are used for other widgets.

Widgets that are children of themed widgets are displayed as if they were
contained in the UI widget chain below a Menu or OptionsMenu widget. They are
not templates; they are actual rendered UI elements added as children of the
widgets affected by the themed widget.

No Themes vs. Themes

To see an example of the difference between drawing items as buttons without using a
themed item widget vs. using a theme to draw item widgets as buttons, see the last two
panels in this menu: “Basic Buttons” and “Themed Buttons”.

In the ‘basic’ panel, the only theme is used to set the text’s normal and selected colors
and shadows. Both buttons under this panel contain child widget chains which draw the
SageTV v4 style buttons. If you remove the child widget chains from these buttons, they
will not be displayed ‘correctly’.

In the ‘themed’ panel, a themed button (item) widget contains a child widget chain to
define a button drawing style. Note that the themed button has a child “Button text
theme” widget chain to define how the button’s text is drawn. (Remember: if the text
widget had been added as a direct child of the item widget, that exact text would have
been added to each item widget. Try it.) Once the button style theme has been defined,
the buttons in this panel can simply be item widgets without any child UI widget chain.
This would greatly simplify the goal of drawing buttons with a consistent appearance,

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 129 of 171

especially when you consider that this button theme, or elements of the theme, could be
used throughout an STV, as is the case with the default SageTV STV.

More Examples: As mentioned above, see the default SageTV STV for more complex
examples of themes used to define how various UI elements are drawn. Look for the
“THEME ORGANIZER” menu, where several different theme styles are defined for
various UI widget types.

Conclusion

This ends the Themes tutorial, where you learned the basics of using theme widgets and
their child widget chains to define various settings to be applied to UI elements. When
done experimenting with any widgets in this menu, collapse the “Tutorial 15 – Themes”
menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 130 of 171

Tutorial Set 16 – Property-Based Animations

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 16 – Property-Based Animations”.
While that menu widget is highlighted, press F5 to load the menu and view it in the
SageTV window. You should see a blue background that fills the window, a brief
description at the top, and a few colored boxes containing a line of text each.

Before continuing, you may wish to review the Animation property in the Properties
Common to Many Widgets reference, and perhaps the Animation property vs. Refresh()
API call tip.

Timed Animation

In this menu, examine the “Timed Animation” panel’s widget tree. That panel defines a
time period for the Animation property of “0,1000,0”, which causes this entire section of
the screen to be updated every second. When that panel updates, the displayed text is
positioned according to the random position defined in the “Random location” panel.
(This is the basic technique used for the SageTV screen saver – see the “Screen Saver”
menu in the default STV.)

Dynamic Animation

Next, examine the “Dynamic Animation” panel’s widget tree. That panel uses an
Animation property of “=UpdateNow” to force an update of this section of the screen
when that variable is ‘true’. The text on this panel is randomly placed when the menu
loads or when you select the text by clicking on it or by pressing Enter while that text has
focus – the “X” & “Y” variables will be assigned random values and the “UpdateNow”
variable will be set to ‘true’, causing the “Dynamic Animation” to update itself. During
the update process, the “UpdateNow” variable is reset to ‘false’ so that the panel doesn’t
continue updating repeatedly.

Continuous Animation

Finally, examine the “Continuous Animation” panel’s widget tree. That panel uses an
Animation property of “=AnimationOn” to force an update of this section of the screen as
long as that variable is ‘true’. Every time the “Continuous Animation” panel updates, it
updates its child “Incremental Location” panel, where you will see a RenderingStarted()
hook. That hook will get called whenever its parent UI element is about to be redrawn.
When the hook is called, the STV calculates the new X & Y values for where the
“Incremental Location” panel is to be placed.

This animation will continue until you select the moving text, causing the
“AnimationOn” variable to be toggled off. Select it again to start it moving again.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 131 of 171

Extra: For another animation example, see the menu titled “Xtra: Tutorial 03 – Shapes,
revisited” in Studio_Tutorials7.xml.

Conclusion

This ends the Property-Based Animations tutorial, where you learned the basics of
using the Animation widget property to update the display either on a timed basis,
dynamically, or continuously. When done experimenting with any widgets in this menu,
collapse the “Tutorial 16 – Property-Based Animations” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 132 of 171

Tutorial Set 17 – Core Layer-Based Animations

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 17 – Core Layer-Based Animations”.
While that menu widget is highlighted, press F5 to load the menu and view it in the
SageTV window. You should see a blue background that fills the window, a brief
description at the top, and some self-explanatory buttons.

Note: The Effect Widget should be used for animations for SageTV version 7 and newer,
instead of the layer animation system. The layer animation system and API calls are still
available for use by older STVs but it is likely that it will be removed from a future
version of SageTV. All new STV development should use effect widgets. Layer based
animations can be used when the animations are enabled in the STV if either: 1) The STV
has no effect Widgets, or 2) The currently loaded Menu Widget has a Theme Widget
child and that Theme Widget child has a child Attribute Widget named
"ForceLayerAnimations" which evaluates to true.

This tutorial has set the ForceLayerAnimations attribute below the Layer Animation
Menu Theme widget for this menu so that it can use layer based animations.

Below is a description of the basic concepts of the animation system, followed by
descriptions of the tutorials contained in the tutorial STV.

Core Layer Animation System

As of version 6.3, SageTV has a built-in layer-based animation system which can
animate between the current state of the user interface and the next state that would result
after a call to Refresh() or RefreshArea(). It can also automatically animate the focus
indicator change from one focused item to the next focused item, and can scroll the
contents of tables as needed. Once the animation layers are defined for widgets to be
animated, API calls can be made to initiate an animation during the next refresh.

Note: The core layer animations will work on any type of SageTV client, except for the
Hauppauge MVP Media Extender.

Layers

SageTV uses a set of layers to draw the UI for the animation system, so that the
animation system can animate the appearance of the widgets on a layer without affecting
the UI elements on other layers above or below it.

The first step towards using the layer animation system is to define which layer is to be
used by certain UI widgets – the widget Animation property is used for this purpose. For
a widget whose UI contents are to be animated, set its Animation property to LayerName,

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 133 of 171

or CacheName, where Name is the name of the layer to be used for that widget. This puts
that UI widget and all of its children on the Name layer. The "Layer" and "Cache"
prefixes are interchangeable for the widget Animation property, so in the default STV
you will see some called "CacheFocus", while others might be "LayerBG" or
"LayerForeground". No equal sign is used for this setting. When referencing these layers
later in API calls, leave off the Layer or Cache prefix.

Certain layers are used by the SageTV core to perform automatic animations whenever
the core animation system is enabled. The names of these layers are set via these
properties:

Background – The name of the background layer is defined via the
ui/animation/background_surface_name property. The default STV uses BG as
the name for this layer.

Scrolling Surface – The name of the layer used when scrolling table or panel
content is defined by the ui/animation/preferred_scrolling_surface property.
The default STV uses Foreground as the name for this layer. The contents of the
scrolling surface can automatically be scrolled by the core when that area of the
UI scrolls.

Focus – The name of the layer containing the focus indicator is named, simply,
Focus. There is no setting to rename this layer. Animating the change of the focus
indicator from one focused item to the next focused item is handled automatically
by the core.

Layers are drawn from back to front, in alphabetical order according to the layer name.
The default STV uses BG, Focus, and Foreground as its layer names, so the layers
would be drawn in that order.

It is recommended that a maximum of three layers be used. A custom STV can define
more than three layers, but each layer uses more memory.

Notes:

If a UI widget does not have a value for its Animation property, then it will inherit its
layer setting from its UI widget parent.

If a menu specifies no layers for any of its UI widgets, then the menu contents will not
use any animation layer. If a layer is specified for some UI widget(s), then any UI widget
not assigned to a layer via the Animation property, or via its parent UI widgets, will be
rendered to the background layer.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 134 of 171

API Calls to Control Animations

Once layers are defined, certain animations can be performed automatically by the core,
such as scrolling tables or panels and changing focus. But, other animations require the
use of the API calls that can be used to set up animation(s) to occur during the next
refresh. Listed below are a few of the available animation calls:

SetCoreAnimationsEnabled(boolean) – Use this call to enable or disable the
core animation system, sending true or false, respectively.

AreCoreAnimationsEnabled() – This call will report whether the animation
system is enabled (true) or not (false).

Animate(WidgetName, LayerName, AnimationName, Duration) – This is the
basic call to set up an animation. During the next refresh, this call will cause the
widget with the specified name on the named layer to use an animation that lasts
the given duration, in milliseconds. Note: This call does not cause the animation
to occur immediately; rather, it sets up the core to perform the animation when the
UI is next refreshed. Multiple Animate() and related calls can be used to animate
multiple areas of the user interface at the same time.

See the Utility class of the SageTV API (http://download.sage.tv/api/index.html) for full
details on these and the rest of the animation calls. The examples in the tutorials will
show these calls in use.

Core Layer Animation Tutorials

As mentioned above, this tutorial uses the “Tutorial 17 – Core Layer-Based Animations”
menu in the Studio_Tutorials7.xml STV. That menu should be loaded and visible in
Studio before continuing. Miscellaneous notes before beginning:

This STV code for this tutorial is a little more complex than the previous tutorials, with
the expectation that you are familiar with Studio usage by now.

The BeforeMenuLoad hook contains calls to SetProperty() in order to configure the
ui/animation/background_surface_name and ui/animation/preferred_scrolling_surface
properties. Normally, this would be done only one time when the STV is loaded, but it
was added under the mentioned hook to keep them with this tutorial.

Use the top button on this menu (Select to turn animations OFF/ON) to turn animations
off or on to see the UI differences between both settings.

http://download.sage.tv/api/index.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 135 of 171

Focus Change

The animated slide of the focused button background image when focus changes is
handled by the core after setting some widget properties.

In this example, the Content Area panel has been set to be on the Foreground layer by
setting its Animation property to be LayerForeground, which places all of the content
from the UI widgets below it to be on the Foreground layer.

Then, under the Button theme Theme widget, the themed button draws the Button
Highlight image when it has focus. That image is placed on the Focus layer by settings
its Animation property to LayerFocus.

At this point, we now have the BG, Focus, and Foreground layers. (Remember: when
layers are in use, then any UI element not assigned to a layer will be assigned to the
background layer.) When focus changes, the core animation system will automatically
animate the change of the Focus layer from its old status to its new status. Simply change
focus from button to button to see the animation in action.

Panel Slides and Fades

For the basic panel sliding and fading examples, see the STV code under theses panels:
Content Area -> Panels and Tables -> Panel Animation.

The Select to slide panel and Select to fade panel buttons contain simple animation
code: when selected, they simply call the Animate() API function to set up the animation,
then call Refresh() to refresh the screen, animating the change as part of the refresh.

The animated panel named AnimationPanel is below the ShowPanels Conditional
widget. Open that panel’s properties dialog and note that it uses LayerForeground as its
Animation property. When using Animate() to animate a UI widget, the named widget
must contain the Animation property setting for the layer it is to be animated on; it cannot
simply inherit its layer assignment. If you remove the LayerForeground setting then
reload the menu, that panel will no longer animate. The contents of that panel (the child
UI widgets below it) are animated as part of the AnimationPanel without specifying
their layer assignments.

Table Scrolling

For the basic table contents scrolling examples, see the STV code under theses panels:
Content Area -> Panels and Tables -> Table Animation. In the SageTV window,
scroll the table up and down.

Looking at the code below the Table Animation panel, you will notice that there is no
STV code being used to handle the table animation when it scrolls up or down. (For now,
ignore the Animate() calls below the AnimationNameButton item widget, because those

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 136 of 171

calls perform a different animation, not the table scrolling animation.) The table is part of
the Foreground layer, which has been set to be the Scrolling Surface via the
ui/animation/preferred_scrolling_surface property in the BeforeMenuLoad hook, as
mentioned previously. The core animation system automatically animates the scrolling
surface for tables and scrollable panels.

Note: A table that scrolls will automatically be assigned to the layer defined by the
ui/animation/preferred_scrolling_surface property, if it isn’t already assigned to any
layer. A table that does not scroll is not automatically assigned to any layer.

Dialog Open, Close, and Transition

For the basic dialog open, close, and transition examples, see the STV code under theses
widgets: Content Area panel -> Dialogs panel -> Zoom Animation Dialog item widget.
So that the dialog can be used for additional animation type examples, some variables are
set for the current animation type before opening the AnimatedDialog1 OptionsMenu
widget.

The AnimatedDialog1 OptionsMenu is animated via the BeforeMenuLoad and
BeforeMenuUnload hooks that are part of its themed OptionsMenu source:
AnimatedDialogTheme. Those hooks set up the Animate() calls for opening and closing
the dialog and the AnimateTransition() call used to transition from one dialog to another.
See the code below those hooks and the Close this dialog and open another and
Transition to another dialog item widgets for examples of how the STV handles those
animated processes. Note that the open/close process closes one dialog, calls Fork(), then
waits a short time before animating the opening of the next dialog. The transition process
simply sets some variables naming the dialogs to be transitioned; those variables are used
in the hooks to perform the transition.

The second OptionsMenu, AnimatedDialog2, handles animations slightly differently
because that widget is ignoring its theme properties. When this happens, the
AnimatedDialog2 OptionsMenu has to set its own layer via the Animation property. In
addition, it is providing its own BeforeMenuLoad and BeforeMenuUnload hooks in order
to provide the name of the OptionsMenu being animated before calling the shared
animation handling code. It uses code similar to the first OptionsMenu
(AnimatedDialog1) for handling the animated open/close/transition animations, simply
reversing the names of the dialogs being opened and closed.

Additional Animation Examples

In addition to the basic animations above, see the STV code below the Random
Animation Dialog item widget and the table items for examples of some more of the
animation styles that can be used. Try changing the parameters of some of the Animate()
calls to see how the animations are affected. See the Utility class of the SageTV API
(http://download.sage.tv/api/index.html) for more information about the animation API
call parameters.

http://download.sage.tv/api/index.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 137 of 171

Conclusion

This ends the Core Layer-Based Animations tutorial, where you learned the basics of
using layers and the core animation system to animate various aspects of the user
interface. When done experimenting with any widgets in this menu, collapse the
“Tutorial 17 – Core Layer-Based Animations” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 138 of 171

Tutorial Set 18 – Scaled Diffused Images

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio and then fully
expand the tree for the menu widget titled “Tutorial 18 - Scaled Diffused Image”. While
that menu widget is highlighted, press F5 to load the menu and view it in the SageTV
window. You should see a blue background that fills the window, a brief description at
the top, some buttons, and an image in the center of the screen. The image will fade out
towards its bottom.

This tutorial shows an example usage of the Diffuse Image Source File and Scale
Diffused Image properties for an Image widget so that their effects can be visually
described. The descriptions for those properties should be reviewed before continuing;
see Image Widget Properties.

The picture displayed in the center of the screen does not fill its entire allowed display
area. The red rectangle outline indicates the full area allowed to be used by the “Picture
with Diffused Image” image widget. The picture should fill only a portion of that space.
Because it is smaller than the area and its “Resize to Fit” property is not enabled.

The effect of applying a diffused image can be seen by selecting the “Diffused Image:
On/Off” button, which will toggle the use of TutorialDiffusedImageGradient.png as a
diffused image in the “Picture with Diffused Image” Image widget. When the option is
on, the picture will appear to fade out from top to bottom. When the option is off, the
entire picture will be fully visible.

The effect of whether the diffused image is scaled can be seen by selecting the “Diffused
Image Scaling: On/Off” button, which will toggle a variable controlling the Scale
Diffused Image property in the “Picture with Diffused Image” Image widget. When the
option is enabled, the diffused image is scaled to match the size of the picture. When the
option is disabled, the diffused image fills the space available to the image widget,
regardless of the picture’s actual size and placement within that area.

For a better understanding of the effect of the Scale Diffused Image property, use the
“Image alignment” placement options to move the picture within the outlined rectangle.
You will notice that when diffused image scaling is enabled, the picture will not change
its appearance as you move it up or down. However, when diffused image scaling is
disabled, you will see that which portions of the image are faded out will vary by the
picture’s vertical placement within the rectangle.

Tip: This tutorial also shows an example use of the Dynamic Boolean Property Editing
option in Studio’s Tools menu. With that option unchecked, open the properties dialog
for the “Picture with Diffused Image” image widget. Notice that the Scale Diffused
Image property has a checkmark, but the box is grayed out. Now, close the dialog, select
the Dynamic Boolean Property Editing option from the Tools menu so that it becomes
checked, then open the properties dialog for the “Picture with Diffused Image” image

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 139 of 171

widget again. You will see that the checkbox became an editable property field with the
value “=ScaleDiffusedImage”, and all other checkboxes are also editable fields.

Conclusion

This ends the Scaled Diffused Images tutorial, where the basics of using diffused images
with Image widgets is shown, along with the difference seen when scaling of the diffused
image is enabled or disabled. When done experimenting with any widgets in this menu,
collapse the “Tutorial 18 - Scaled Diffused Image” menu widget tree.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 140 of 171

Tutorial Set 19 – Effect Widget Animations

For this tutorial, make sure Studio_Tutorials7.xml is loaded in Studio, then highlight the
menu widget titled “Tutorial 19.1 - Effect Widget Animations”. Press F5 to load the
menu and view it in the SageTV window. You should see a blue background that fills the
window, a brief description at the top, and some buttons.

This tutorial covers the basics of using Effect widgets to create animations in the SageTV
UI. Before continuing, you should review the Effect widget description and properties;
see Effect Widget.

Enable or Disable Animations

Use the top button on this menu (Select to turn animations OFF/ON) to turn animations
off or on to see the UI differences between both settings. This button and the status line
above it use the AreCoreAnimationsEnabled() API call to determine whether animations
are enabled, and uses the SetCoreAnimationsEnabled(boolean) API call to enable or
disable the core animation system, sending true or false, respectively.

Focus Tracking

The animated slide of the focused button background image when focus changes is
handled by the “Focus Tracker” Effect widget, which uses the FocusTracker trigger.
This effect automatically moves and resizes the affected UI component, an Image widget
in this case, when focus changes. When you change the properties for this Effect widget,
note that the size and position properties do not affect the transition, but the duration and
other property settings near the top of the widget properties dialog do.

Notice that this Effect widget is a child of the “Duration = 150” Action widget, and the
Effect widget uses the Duration variable to control its Duration property value. Most
Effect widget properties can be controlled by dynamic property values in this way.

Cross Fading

The next line of buttons indicates which button has focus by changing the “This button
does not have focus” text to “This button has focus” when one of the buttons gains focus.
This is accomplished by the Text widget’s Cross Fade Duration property, which will
cause the text to cross fade when the text being displayed by the Text widget changes and
the property value is not zero. Change the cross fade duration to affect how long the
transition takes to complete. Note: Image widgets can also use the Cross Fade Duration
property.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 141 of 171

Menu Transitions

Use the “Change to Effect Menu #2” button to move to another menu within this
tutorial’s series of menus. When animations are enabled, the content of the menu will
slide to the left and the next menu’s content will slide in from the right. On menu 2, use
the “Back” button to use the Back command to return to the previous menu, reversing the
animation effect.

These menu transitions are controlled by the widgets below the "REM Handle Menu
content Animation IN/OUT effects" Action widget, leading up to 4 Effect widgets. Two
Effect widgets use the MenuLoaded trigger, while the other two use the
MenuUnloaded trigger. Each pair is configured to slide to the left or right according to
the ReverseOutAnim boolean variable, which is configured by the themed menu used by
the menus in this tutorial. See the AfterMenuLoad Hook and the Back Listener widgets
below the “Tutorial 19.0 Theme for Effect Examples” Menu widget. Also, note that the
four Effect widgets all have the Menu Relative Offsets property enabled, so if there
were multiple portions of the screen affected by the Effect, they would all move together
relative to the entire menu layout.

As you switch back and forth between these menus, notice that the title line at the top of
the screen does not move. That is because it is not affected by the menu transition effects,
since the Text widgets are outside the panels affected by the “REM Handle Menu content
Animation IN/OUT effects” widget chain. Thus, some portions of the menu can be left
out of the menu transition animation, or even caused to animate differently.

Dialog Open/Close Animations

Select the “Open a Dialog” button to see various sample animations used to open and
close dialogs. A random animation style is selected each time the dialog is opened. Once
the dialog is open, use the “Switch to another dialog” button to close the dialog with the
current effect and then open another dialog using a new random effect, or select “Close”
to close the dialog.

Like menu transitions, animations for opening and closing dialogs use the MenuLoaded
and MenuUnloaded triggers to affect the OptionsMenu widgets. To see the sample
effects used for this example, expand the widgets below the “REM Effect for
opening/closing this dialog. Uses the 'DialogAnimStyle' variable.” Action widget. Try
changing the properties of some of the Effect widgets to create new animation effects.

Timescale and Easing Options

Select the “View Timescale & Easing differences” button to jump to the “Tutorial 19.3 -
Timescale & Easing Effect Example”, where the various Timescale and Easing Effect
widget property options are displayed together for a better visual understanding of their
differences. On that menu, use the first row of buttons to change the animation duration,
use the second row to choose the Easing setting, then select the “Start” button to see the

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 142 of 171

text below the buttons move from one side to the other using the Timescale setting
indicated by each line’s text. All animations are configured to start and end at the same
time, so you will be able to each animation compares to the others.

When done viewing the options on this menu, use the “Return to Effect Menu #1” button
to return to the main Effect animation menu for this tutorial.

Looping Animations

Select the “View Looping Effect Examples” button to jump to the “Tutorial 19.4 -
Looping Effect Example”, where a few colored dots are set to move back and forth from
one side of the screen to the other using looping animation effects. Each dot is configured
to start and end its loop at the same time. Dot A is configured to simply loop without any
delay periods. Dot B is configured to loop with delays at the start of the effect and in
between loop stages when it reverses itself. Dot C is configured to delay only at the start
of the effect, not between stages when it reverses the effect.

When done viewing or changing the Effect widgets on this menu, use the “Return to
Effect Menu #1” button to return to the main Effect animation menu for this tutorial.

Resizing and SmoothTracker Effects

Select the “View Resizing and SmoothTracker Effect Examples” button to jump to the
“Tutorial 19.5 - Resizing Effect Example”, where example effects resize UI elements and
use the SmoothTracker trigger to animate the transition when switching the display of
two elements.

First, set focus either of the two buttons that are side by side and mention resizing. The
first button, “This button resizes everything when it gains focus”, simply resizes the
entire contents of the button when it gains focus, using the widget chain below the “REM
Effect for zooming into focused item.” Action widget. The second button, “This text
moves but does not resize when this button gains focus”, resizes itself using the same
effect widget chain when it gains focus, but also cancels out the resizing of its text via the
“REM Effect for canceling focus zoom for text.” Effect widget chain. Change the scaling
and position properties of each Effect widget to see how that affects each button’s
appearance.

The button at the bottom of the screen, “Click to move the shape using a SmoothTracker
effect”, toggles which colored yellow dot is hidden and which is shown. Each hidable
panel that displays a dot contains an Effect widget, “ColorTrack 1” and “ColorTrack 2”,
that uses the SmoothTracker trigger and the “CircleTrackerKey” SmoothTracker Key
to link the two effects. When a panel is shown, its SmoothTracker effect animates the
transition of its size and position from the panel that was hidden to the one that is now
visible. When you change the properties for these Effect widgets, note that the size and
position properties do not affect the transition, but the duration and other property
settings near the top of the widget properties dialog do.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 143 of 171

When done viewing the options on this menu, use the “Return to Effect Menu #1” button
to return to the main Effect animation menu for this tutorial.

Conclusion

This ends the Effect Widget Animations tutorial, where the basics of using Effect
widgets for animations was covered. When done experimenting with any widgets in this
series of menus, collapse the “Tutorial 19.1 - Effect Widget Animations” and related
menu widget trees.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 144 of 171

Example Set 1 – Customizing Menus

Note: For these examples of using Studio to change menu items in the SageTV3.XML
STV, found in the STVs\SageTV3 subdirectory below the path where sagetv.exe is
located, make a copy of that STV and edit the copy.

This tutorial gives an example of changing the menu structure of the SageTV3.xml STV.
Note: The menus in SageTV3.XML are designed to hold up to 8 buttons. If you add
more, the additional buttons will not be visible below the menu’s display area inside the
SageTV window, even though you can use the arrow keys to reach them. To simplify
your menu edits, it is suggested that you keep the menus limited to 8 items or less.

Renaming a Menu Item

Perhaps there is some menu item that you think should be called something else. Maybe
the “Program Guide” makes more sense to you as “TV Listings” or as some other term.
This change can be done by:

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted. The entire menu will be outlined in yellow, because the Main Menu
widget is highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level.

3. Expand the “MainMenuContainer” panel one level.

4. Highlight the “Program Guide” item widget. Since it is the highlighted UI
element widget, you will see it outlined in yellow in the SageTV window.

5. Press F2 to edit the widget’s name. Type your preferred name for that button

(perhaps “TV Listings”, as mentioned above), then press Enter to accept the
change.

6. Press F6 to reload the menu. Focus will shift to SageTV and you will notice that

the button’s name has been changed.

Removing a Menu Item

Removing a menu item is almost as easy as renaming one. For this example, the “Watch
Live TV” button will be removed from the Main Menu:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 145 of 171

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level.

3. Expand the “MainMenuContainer” panel one level.

4. Right click on the “Watch Live TV” item widget and select “Expand Children” to
fully expand the widget’s child widget chain. (In this case, the widget only has a
single child, but other buttons may have more children.)

5. As discussed in Tutorial Set 1’s section covering Deleting Widgets, you should

not simply delete the top-most widget that you wish to remove. In this case, that
means you would not remove the “Watch Live TV” item widget first, because if
you did, its child widget would become an orphan in the top-most level of the
entire tree. Instead, highlight the child Action widget (with the “SageCommand()”
API call) and delete it using the Del key on the keyboard.

6. Now that the only child widget has been deleted, you may delete the “Watch Live

TV” item widget.

7. Press F6 to reload the menu. Focus will shift to SageTV and you will notice that
the deleted button is no longer visible.

8. Extra: If you wish, you may use the Undo command (Ctrl+Z) twice to restore the

deleted button, then reload the menu to see the restored button once again.

Reordering a Menu

Sometimes you may wish to simply change the order of the items on a menu. This
example moves the “Program Guide” button (or whatever you may have renamed it to
be) to be the top button on the Main Menu:

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level. Then expand the “MainMenuContainer” panel one level.

3. Highlight the “Program Guide” item widget and move the item widget up by
pressing Ctrl+U until it is the top-most child of the “MainMenuContainer” panel.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 146 of 171

4. Press F6 to reload the menu. Focus will shift to SageTV and you will notice that
the order of the buttons has been changed.

Moving a Menu Item to Another Menu

When rearranging the menus to suit you preferences, you may wish to move a menu item
so that it is on a different menu instead of its original location, or you may wish to copy it
so that it is in both menus. Let’s copy the Weather menu item from the Online Service
menu to the Main Menu:

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level. Then expand the “MainMenuContainer” panel one level.

3. Scroll the Studio window down until you see the “Online Services Menu” menu
widget. Expand that menu one level, then expand its “MainMenuContainer” panel
one level.

4. Highlight the “Weather” item widget and Copy it by using the Copy command in

the Edit menu that is on the menu bar at the top of the window. (If you then
highlight another widget, the “Weather” widget will have a dotted outline around
it.)

5. Return to the Main Menu in the Studio window and highlight its

“MainMenuContainer” panel.

6. From the Edit menu, choose “Paste Reference”, which will add an italicized
“Weather” item widget as the last item under the “MainMenuContainer” panel.

7. Highlight italicized “Weather” item widget and Move it up to your desired

location by pressing Ctrl+U as many times as needed.

8. Press F6 to reload the menu. Focus will shift to SageTV and you will notice that
the Weather button is now visible on the Main Menu.

If you had wished to move the menu item instead of copying it (so that it was no longer
in its old location), you would have used the “Cut” command in step 4, instead of the
“Copy” command. Then, you would have used the “Paste” command in step 6.

Adding a Menu Item

Another menu customization might be to add a new menu item, one that isn’t already
available to copy or move from some other menu. The Schedule Recordings menu has a

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 147 of 171

button to “View Recording Schedule”, but it only jumps to one of the styles for viewing
the schedule (whichever one you configured it to be). Let’s add menu items that jump
directly to each of the available schedule display styles:

1. Go to the Schedule Recordings menu in SageTV and open Studio via the
Customize command (default: Ctrl_Shift+F12). Studio will then open, with the
“Schedule Recordings” widget highlighted.

2. Click on the symbol next to the Schedule Recordings’ widget icon to expand the

tree one level. Then expand its “MainMenuContainer” panel one level.

3. Add 2 new item widgets to the “MainMenuContainer” panel, then move them so
that they are above the “Back to Main Menu” button. Name the two new widgets
“View Interleaved Schedule” and “View Parallel Schedule”.

4. Expand the “View Recording Schedule” item widget, above the ones that were

added. Double click on its italicized child widget to jump to the
“RecordingSchedule - SHORTCUTS” menu widget. Expand that menu
completely, by right clicking on it and selecting “Expand Children”.

5. From the newly expanded menu, left click & drag the italicized

“InterleavedSchedules” reference to the new “View Interleaved Schedule” widget
that you added in step 3.

6. Also from the newly expanded menu, left click & drag the italicized

“ParallelSchedules” reference to the new “View Parallel Schedule” widget that
you added in step 3.

7. Highlight the “Schedule Recordings” widget (same one as in step 1), then press

F6 to reload the menu. Focus will shift to SageTV and you will notice that the
new buttons are now visible. Select each one to see that they jump to the separate
recording schedule display styles.

Adding an Entirely New Menu

Sometimes, changing an existing menu just isn’t enough – you want to create a new
menu to hold all of your favorite items. Let’s add a new “My Custom Menu” to the Main
Menu:

1. Start with a new copy of SageTV3.XML so that the changes from the above
examples are not ‘in the way’.

2. From The Widget Bar on the left, drag a new Menu widget to the middle of the

Studio window. (Do not add it as a child of another widget.) There will be a new
“Untitled” menu widget at the top of Studio’s top-level tree – scroll all the way up
to see it. Highlight that menu widget and rename it to “My Custom Menu”.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 148 of 171

3. Find the “Main Menu” menu widget in Studio and expand its tree one level, then

expand its “MainMenuContainer” panel one level. Using what you learned in the
previous examples, add a new button that links to the newly added “My Custom
Menu” widget. (Add a new item widget to the “MainMenuContainer” panel,
rename it to “My Custom Menu”, move it to the desired position, then add a
reference to the “My Custom Menu” menu widget as the item widget’s only child.
Note: At some point, the top level tree will be resorted, so the new “My Custom
Menu” will no longer be at the top.)

4. In the Main Menu, highlight the “MainMenuTheme” theme and use Ctrl+C to

copy it.

5. Return to the new “My Custom Menu” menu widget, highlight it, then use the
Paste Reference command (Ctrl+Shift+V) to add a reference to the
“MainMenuTheme” theme.

6. Add a text widget to the new menu and rename it to “My Custom Menu”.

7. In the Main Menu, expand the “Main Menu” text widget one level. Use the Copy

command on its child theme, “MenuTitle”. Use the Past Reference command to
add a reference to that theme to the text widget added in step 6.

8. In the Main Menu, highlight and Copy the “MainMenuContainer” panel. Paste it

as a child of the new “My Custom Menu” menu widget, using Ctrl+V. (This
creates a copy of the widget, not an italicized reference.)

9. In the Main Menu, expand the “MainMenuContainer” panel and Copy its child

theme, the “MainMenuContainerTheme” widget. Use Paste Reference to add it as
an italicized child of the “MainMenuContainer” panel in the new menu.

10. Copy the “Left” listener widget and Paste it to the new menu widget. Copy the

Main Menu widget and use Paste Reference to add it as a reference child of the
Left listener in the new menu.

11. You now have a blank new menu where you can add menu items, as described in

the examples above. You may wish to start by adding a “Back to the Main Menu”
button.

12. After you have added your custom menu items, don’t forget to use F6 to reload

the menu to see the buttons that were added.

Conclusion

This ends the Menu Changes examples, where you experienced the basics of using
Studio to customize the SageTV3.xml menus.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 149 of 171

Example Set 2 – Creating Pop-up Dialogs

Note: For these examples of using Studio to add a pop-up dialog using an OptionsMenu
widget in the SageTV3.XML STV, found in the STVs\SageTV3 subdirectory below the
path where sagetv.exe is located, make a copy of that STV and edit the copy.

There are times when you may wish to display a message or get input from the user while
remaining at the current menu. To do this, the OptionsMenu Widget is used.

Adding an Informational Dialog

After creating your customized STV, you may wish to provide a way to let users know
exactly what STV they are using – who created it and when. Let’s add such a dialog to
the Main Menu when the Info command is used:

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level.

3. Drag a Listener widget () from The Widget Bar to the “Main Menu” widget. It
will show up as a child of the Main Menu, named “Untitled”. Right click on this
new listener and select Properties. In the properties dialog, enter “Info: Display
STV Version” (without the quotes) in the Listener field, then choose “Info” from
the Listener Type drop-down list. (If the Main Menu already has an Info
command listener, choose another command form the list.) Click on the OK
button.

4. Drag a new OptionsMenu widget () from The Widget Bar to the newly-added
listener widget. Highlight the new OptionsMenu widget, press F2 to edit its name,
then enter “STV Version” and press Enter.

5. Scroll down in the Studio window to find the “THEME ORGANIZER” menu

widget. Expand it one level, then expand the “OptionsMenuThemes” panel one
level. Highlight the “OptionsConfirmTheme” theme widget and use the Copy
command. (Ctrl+C, or Edit menu -> Copy)

6. Return to the newly added “STV Version” OptionsMenu widget, highlight it and

use the Paste Reference command (Ctrl+Shift+V) to add the italicized
“OptionsConfirmTheme” theme as a child widget.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 150 of 171

7. Add a Text widget () as a child of the “STV Version” OptionsMenu widget
and rename that Text Widget to something like: “Bob B. Robert’s Custom
STV”... or whatever you wish to call it. (Don’t include the quotes.)

8. Add another Text Widget to the OptionsMenu widget, naming it with the version

number and date of your STV, such as “Version 1.0, November 2, 2005”. (Again,
leave out the quotes.)

9. Add an Action widget to the OptionsMenu widget, naming it: ["Based on the

SageTV STV, version " + STVversionNumber + " " + STVversionText]. (Include
everything inside those brackets, including the quotes, but not the brackets
themselves.)

10. Add a Text widget as a child of the Action widget that was added in the previous

step. It does not need to be renamed.

11. Add an Item widget () to the OptionsMenu widget, naming it “OK”, without
the quotes.

12. Add an Action widget as a child of the “OK” Item widget, renaming it to:

“CloseOptionsMenu()”, without the quotes.

13. Scroll down to find the “System Information” menu widget. Expand it one level.
Highlight the “STVversionNumber” Attribute widget, then use Ctrl+Left-click to
also highlight the “STVversionText” Attribute widget. Use the Copy command
after both widgets are highlighted.

14. Return to the “STV Version” OptionsMenu widget, highlight it and use the Paste

Reference command (Ctrl+Shift+V) to add two italicized Attribute widgets as
children.

15. Press F6 to reload the Main Menu. Focus will shift to SageTV. While on the Main

Menu, use the Info command (default: Ctrl+I).

Adding an Interactive Dialog

Some people would like to be able to exit SageTV from the Main Menu, instead of
putting it to sleep. This can easily be accomplished using the Exit() API call, but to
prevent accidentally closing SageTV completely, we will add a confirmation dialog,
asking the user whether to proceed with the exit process. Remember: exiting a server
instance of SageTV will prevent it from continuing to record. The client UI can safely be
exiting without affecting any recordings.

The option will be added to the Main Menu as a new button which initiates the
confirmation dialog:

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 151 of 171

1. Go to the Main Menu in SageTV and open Studio via the Customize command

(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level. Expand the “MainMenuContainer” panel one level.

3. Add an Item widget () to the “MainMenuContainer” panel, press F2 to edit is
name, then enter “Exit SageTV” (without the quotes) and press Enter. Use Ctrl+U
to move it up one position, so that it is directly below the “Standby” widget.

4. Drag a new OptionsMenu widget () from The Widget Bar to the newly-added
menu item widget. Highlight the new OptionsMenu widget, press F2 to edit its
name, then enter “Confirm Exit” and press Enter.

5. Scroll down in the Studio window to find the “THEME ORGANIZER” menu

widget. Expand it one level, then expand the “OptionsMenuThemes” panel one
level. Highlight the “OptionsConfirmTheme” theme widget and use the Copy
command. (Ctrl+C, or Edit menu -> Copy)

6. Return to the newly added “Confirm Exit” OptionsMenu widget, highlight it and

use the Paste Reference command (Ctrl+Shift+V) to add the italicized
“OptionsConfirmTheme” theme as a child widget.

7. Add a Text widget () as a child of the “Confirm Exit” OptionsMenu widget
and rename that Text Widget to: “Exit SageTV?”. (Don’t include the quotes.)

8. Add two Item widgets () to the OptionsMenu widget, naming the first one

“Yes”, and the second one “No”, without the quotes. (“Yes” should be directly
above “No”.)

9. Add an Action widget as a child of the “Yes” Item widget, renaming it to:

“Exit()”, without the quotes.

10. Add an Action widget as a child of the “No” Item widget, renaming it to:
“CloseOptionsMenu ()”, without the quotes.

11. Add an Attribute widget () as a child of the “No” Item widget. Edit its

properties: for the Attribute filed, enter “DefaultFocus”; for the Value field, enter
“true” – both without quotes. Note: This tells SageTV to give the “No” button
focus when the dialog is opened. If this attribute were not used, then the first Item,
“Yes”, would receive default focus... causing SageTV to exit if the “Exit
SageTV” button were highlighted and “Enter” was pressed twice by accident.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 152 of 171

12. Press F6 to reload the Main Menu. Focus will shift to SageTV. While on the Main
Menu, you will now be able to select “Exit SageTV” to completely close the
program.

Conclusion

This ends the Creating Pop-up Dialogs examples, where you experienced the basics of
using Studio to create pop-up dialogs.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 153 of 171

Example Set 3 – Adding a Customizable Option

Note: For this example of using Studio to add a new option to the SageTV3.XML STV,
found in the STVs\SageTV3 subdirectory below the path where sagetv.exe is located,
make a copy of that STV and edit the copy.

Several customizable properties settings have been added to Detailed Setup -> Customize
in the default SageTV3.XML. However, not all available properties can be configured
there, so this example will show how to add a new option. Note: Not all properties can be
configured in this manner, since some are only checked at program start-up time.

Adding a New Option to Customize SageTV’s Settings

One of SageTV’s properties is “ui/reset_menu_history_on_sleep”, which defaults to
“true”. If set to “false”, this property tells SageTV to return to the menu that was active at
the time when SageTV was put to sleep. Let’s add a new option to allow setting this
property from within the SageTV UI:

1. From the Main Menu in SageTV, choose Setup, go to Detailed Setup, highlight
Customize, then select the top button on the right hand side (next to “Fast
Forward & Rewind times”). While that dialog is open, use the Customize
command (default: Ctrl_Shift+F12) to open Studio at that OptionsMenu widget.
Note: You can return to SageTV to Close the dialog (we simply wanted to go to
the section of the STV where all the Customize options are), then return to Studio.

2. In Studio, scroll down to find the “Expanded Record command options” panel.

(Yes, a couple words are misspelled! But, it is just the name of a panel and
doesn’t affect anything.) Highlight that panel and use Ctrl+E to expand all of its
children. While the panel is still highlighted, use Shift+Left-click on the italicized
“WideLeftRowPanelTheme” theme. Eight widgets should now be highlighted.
Finally, use the Copy command (Ctrl+C) to copy all 8 widgets to the clipboard.

3. Scroll up in Studio to the “CustomizeItems” panel, which is the parent widget of

the “Expanded Record command options” panel. While the “CustomizeItems”
panel is highlighted, use the Paste command (Ctrl+V) to paste a copy of all 8
widgets that were previously Copied.

4. Scroll down in Studio to highlight the new copy of the “Expanded Record

command options” panel, directly above the “VPagination” panel. Use F2 to
rename the panel to “Reset Menu History”, press Enter, then use the Up command
(Ctrl+U) five (5) times, to move the panel directly below the original “Expanded
Record command options” panel.

5. Fully expand the “Reset Menu History” panel.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 154 of 171

6. Rename the first Text widget child to: “Reset SageTV menus after sleeping”.

7. Rename the Item widget to: “Reset Menu History”. (This isn’t necessary, but it
makes the STV code more understandable.)

8. For the first Action widget, use F2 to edit the name of the widget, changing

“Enabled” to “Yes”, and “Disabled” to “No”. Press Enter when done.

9. There are 3 occurrences of "ui/record_options_expanded" on two Action widgets.
Change all 3 occurrences to "ui/reset_menu_history_on_sleep" by pressing F2 on
each line and editing the existing text. Make sure all 3 uses of that property name
are within quotes, just like the original property was. As above, press enter when
done.

10. Press F6 to reload the Detailed Setup menu. Focus will shift to SageTV.

11. Scroll to the last option of the Customize section and select the button next to

“Reset SageTV menus after sleeping” to change its setting to “No”.

12. While SageTV has focus, use Ctrl+Z to put SageTV to sleep, then wake it again.
You should return to the Detailed Setup Menu. (The Main Menu may be visible
for a short time before returning to the Detailed Setup menu.)

13. You may now set the option to your preferred setting.

Conclusion

This ends the Adding a Customizable Option example, where you experienced adding a
new option to the Detailed Setup -> Customize tab that enables configuring a SageTV
property by toggling the current setting and saving it.

Extra: Explore the other options in the Customize section to see the ways in which some
other properties are configured by using a pop-up dialog to ask the user what the setting
should be instead of simply toggling it.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 155 of 171

Example Set 4 – Adding a Basic Menu Animation

Note: For this example of using Studio to add an old-style animation to the buttons on the
Main Menu in the SageTV3.XML STV, found in the STVs\SageTV3 subdirectory below
the path where sagetv.exe is located, make a copy of that STV and edit the copy.

Adding a Fade In/Out Animation to Menu Items

In the default STV, the focused menu item is either highlighted, or it isn’t. But, by using
the RenderingStarted() hook, it is possible to adjust display parameters just before an
object is updated on the screen. We will use this hook to perform a fade in or out for the
Main Menu’s items as they com into or out of focus:

1. Go to the Main Menu in SageTV and open Studio via the Customize command
(default: Ctrl_Shift+F12). Studio will then open, with the “Main Menu” widget
highlighted.

2. Click on the symbol next to the Main Menu’s widget icon to expand the tree one

level. Then, expand the “MainMenuTheme” Theme widget one level. Finally,
expand the theme’s child “ItemTheme” Item one level. (Below that item is just a
single widget: the “SelectedRightEdgeButton” Theme.)

3. Add an Attribute widget () as a child of the “ItemTheme” Item widget. Edit its

properties: for the Attribute filed, enter “Shade”; for the Value field, enter “0”
(zero) – both without quotes. Click on “OK” to close the properties editor.

4. Add a Hook widget () as a child of the “ItemTheme” Item widget. Edit its

properties: from the drop-down list box, select “RenderingStarted()”, then click
on “OK” to close the properties editor.

5. Add an Conditional widget () as a child of the hook you just added. Highlight
the new widget, press F2, and change its name to “Focused”, without the quotes.

6. Add two Branch widgets () to the “Focused” conditional widget, naming the
first one “true”, and the second one “else”, without the quotes.

7. Below the “true” Branch, add a Conditional named “Shade < 1”, then add an

Action child of that Conditional and name it “Shade = Min(1.0, Shade + 0.04)”,
all without quotes.

8. Below the “else” Branch, add a Conditional named “Shade > 0”, then add an

Action child of that Conditional and name it “Shade = Max(0, Shade - 0.04)”, all
without quotes.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 156 of 171

9. Go up a few lines to find the “SelectedRightEdgeButton” Theme. Edit its

properties to change the Background Alpha and Background Selected Alpha
properties to “=Shade*255”, without the quotes. Also change the Background
Image property to “MenuBarLong.png” and clear the Background Selected Image
property. Click on “OK” to close the properties editor.

10. Go up a line to find the “ItemTheme” Item. Edit its properties to change the

Animation property to “=Shade > 0 && Shade < 1”, without the quotes. Click on
“OK” to close the properties editor.

11. Highlight the “SelectedRightEdgeButton” Theme. (Just so all the Main Menu

items won’t be outlined in yellow after switching back to the SageTV window.)

12. Press F6 to reload the Main Menu. Focus will shift to SageTV. While on the Main
Menu, use the Up and Down arrows to change which item has focus. Notice that
the items now fade in & out.

13. As a result of editing the theme for these items, all the menus that use this theme

also use this fade in/out process. From the Main Menu, select Setup to see this in
action on another menu.

Conclusion

This ends the Adding a Basic Menu Animation example, where you experienced using
the RenderingStarted hook to add a fade in/out animation to the items on the Main Menu
and other menus.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 157 of 171

9) Miscellaneous Studio Tips

Highlighting the Current UI Element

When using Studio, if the currently highlighted widget is visible in the SageTV window,
that widget’s UI display area will be outlined in yellow in the SageTV window. If the
widget is part of a theme, it will outline all elements that it affects. Note: Shape widgets
are not outlined in the SageTV window when they are highlighted in Studio.

Finding the Currently-Used STV Menu

While running SageTV, use the Customize command (default: Ctrl+Shift+F12) to cause
Studio to open to the Menu or OptionsMenu widget that is currently active. Note: If
Studio is already open, it will simply jump to the Menu or OptionsMenu’s widget.

Finding a UI element’s Widget in Studio

To find the widget that defines a UI element in the SageTV user interface, use the UI
Components option in the Debug menu. If a widget in the UI components tree is
displayed in SageTV, it will be outlined in yellow in the SageTV window. You can
expand the component tree to find the widget you are looking for, then right click on it to
highlight and jump to the widget or its themed source in the Studio window.

Action Chain Color Coding

All action chains are one of three types: Process, UI, or None. Action, Conditional, and
Branch widgets are color coded by a small indicator dot in the upper left corner of the
widget’s icon to show the type of that action:

Process – green.
UI – blue.
None – yellow.

For more details, see Widget Chain Types.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 158 of 171

Run Multiple Instances or Multiple Windows in a Single Instance

When comparing STV files or trying to duplicate a feature in another STV, it can be quite
useful to run multiple Studio instances on a single computer or run multiple Studio
windows within the same SageTV instance.

To use multiple instances, run SageTV and SageTV Client, or run SageTV in non-service
mode and run a second instance using the -client command line parameter. For each
instance of SageTV, use the Customize command to launch Studio. Also, using the
Customize command from the MVP’s SageTV UI will open Studio on the SageTV server
PC. Note that while you cannot currently copy widgets from one Studio instance to
another, you can easily copy the text between windows via the copy (Ctrl+C) and paste
(Ctrl+V) commands.

To run multiple SageTV windows in a single instance, run SageTV as a server, then run
one or more Placeshifter clients on the same PC as the SageTV server. When the SageTV
clients are all part of the same instance (SageTV server + Placeshifter clients), you can
drag and drop widgets from one STV to another (see below).

Run Multiple Placeshifter Clients on a Single PC

Multiple Placeshifter clients can be opened on a single PC by launching Placeshifter
using the following command line in the directory where Placeshifter is installed:

java -cp MiniClient.jar;jogl.jar;gluegen-rt.jar -Xmx256m
sage.miniclient.MiniClient <server IP address> -mac <custom mac
address>

On that line, be sure to specify the IP address of the SageTV server to connect to (such as
“172.16.1.1” without the quotes) and the custom mac address for the Placeshifter client
window to be opened (such as “00:01:23:45:67:89” without the quotes).

Remember: the Placeshifter client will use the <mac address>.properties file in the
“clients” subdirectory under the SageTV server installation directory. By setting up batch
files or shortcuts for each Placeshifter client you wish to regularly open, you could
configure each one differently for testing and development purposes.

Copy Widgets from One STV to Another

As mentioned above, widgets cannot be copied directly between multiple instances of
Studio, but widgets can be copied between SageTV windows running in the same
instance. There are a couple additional ways to copy widget chains from one STV to
another.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 159 of 171

1. Run SageTV as a server on a PC, then open Placeshifter on the same PC,
connected to the server on that same PC. This will create multiple SageTV
windows that are part of the same SageTV application instance. Open Studio from
both SageTV windows. Then, you can drag and drop using the mouse to copy
widgets from one Studio window to another Studio window. This method can be
used to copy widgets between different STVs.

2. Within a single instance of Studio, open the STV from which you wish to copy a

widget chain. Highlight those widgets and use Ctrl+C to copy those widgets to the
clipboard. Open another STV and paste the widgets into it. You may need to
update any widgets that were secondary references in the source STV, such as
themes.

3. Create a new temporary menu in the source STV. In that new menu, create

references to any widget chains that you wish to copy to another STV. Next,
export that menu (File -> Export Selected Menus) to a new STV file and import
the new STV file into the destination STV where you wish to copy those widgets.
Move the widgets to their new locations, delete the imported temporary menu. As
in #1, you may need to update any widgets that were secondary references in the
source STV, such as themes.

Edit Multiple Widgets’ Properties at Once

If there are multiple widgets that are to use the same value for some properties, simply
select all of those same types of widgets and open the properties dialog. Any changes will
then be set for all selected widgets. Note: if any widgets have different values for some
properties, those property entry fields will be grayed out. Any changes to those initially
grayed out properties will then be set for all selected widgets.

Automatically Updating Clock Display

If you want to change the format for the clock/time display, SageTV uses special-case
values for a Text widget to display a self-updating clock display. This clock display will
update itself on the minute. Other methods of creating and displaying the time or date
will not automatically update themselves.

To create a self-updating clock display, use one of the values listed below as the content
of a Text widget’s name:

$Clock – Display the time only
$ClockTime – Display the time only (same as $Clock)
$ClockDate – Display the date only
$ClockDateTime – Display the date followed by the time

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 160 of 171

$ClockTimeDate – Display the time followed by the date
$Clock<format string> – Everything after $Clock is used as a date/time
formatting string according to the SimpleDateFormat rules in Java; see Java's
SimpleDateFormat documentation for formatting codes at:
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Example: $ClockE, MMM d would displays Tue, Dec 21, if that were the date.

Note: The preformatted versions of $Clock adjust the data and time display format to
match the system’s internationalization settings. Using the <format string> version forces
the use of a specific date or time format.

If no Action widget feeds directly into the Text widget, then the clock string created by
one of the above special $Clock values will be displayed in the SageTV UI.

If an Action widget feeds into a $Clock style Text widget, then the string created by the
Action widget (and the UI chain above it) will be displayed in the SageTV UI instead of
the preformatted clock display. Every minute, the UI chain above the $Clock style Text
widget will be updated and the resulting text will be displayed. This method of using the
clock display can result in a more customized time/date display.

Animation property vs. Refresh() API call

[Note: The older layer based animation system also uses the Animation property to
define the layer that a UI element is on. When used to define a widget’s layer, the
Animation property will not cause its widget to update itself because of a timer or ‘true’
expression evaluation. This tip discusses use of the Animation widget property to update
a portion of the UI. Layer based animations are obsolete and may be removed in a future
version of SageTV; new STV development should used effect widgets for animations
instead. See Effect Widget.]

It was noticed that Refresh() was being used a lot in custom STVs, so this will explain the
Animation property a little more because its a lot more efficient than Refresh() when used
to update a UI area and can achieve most of the same results. There is also some other
auto-refreshing that occurs that you might not be aware of. Refresh() is instead to be used
quite conservatively.

First thing to point out is that you should not use Refresh() in the parent Action chains for
Shapes or UI Widgets. Only use them in Actions that get fired from Listeners, Items
(Select or click), Images (click) or Hooks (with the exception of the RenderingStarted
hook – do not call Refresh() in an Action under this hook).

When you call Refresh(), SageTV will do a full evaluation of the Menu:

It will rebuild any changes in UI component hierarchy structure first (such as a
tables children, but it reuses where it can).

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 161 of 171

Then it will go through and re-evaluate all of the data contents for all of the UI
elements (parent Actions of UI components).
Then it marks the entire UI as dirty and in need of redraw. Then it will go through
and perform the layout on all the dirty components (which is the whole UI in this
case).
Then it will create the list of rendering operations used to perform the graphical
update.
When it creates this list of rendering operations, that's when a Shape's parent
action chain will be called.
The rendering operations get passed off abstractly to the rendering system which
deals with DirectX9, Java2D and the 350 OSD. (the rendering system is plugin
based)

The Animation property for Panels, Items and OptionsMenus has a different effect than
Refresh() and is much more efficient. See the Animations property details, in Properties
Common to Many Widgets.

When an Animation update occurs on a UI component, first it checks to see if it passes
the UI conditional test (i.e. if it has a parent Branch or Conditional then it must evaluate
to true). Then it checks to see if its time to perform an actual Animation based on the
rules above. If it is time to perform an animation, then:

It will first mark its UI area as dirty
Then it will re-evaluate its UI children's parent Actions to refresh their data. Note:
The data for the UI children will be re-evaluated, but the entire UI hierarchy is not
rebuilt, so the parent Actions of Tables and TableComponents are not executed
again. To force an update of the data fed to a Table or Table Component, use
Refresh() or RefreshArea(0 instead.
Finally, the rendering engine proceeds as above with the layout in that UI area
and redrawing of it also

There is also 'refreshing' activity that occurs when focus changes or paging occurs.

Focus changes will cause the same behavior as Refresh() does, but only in parts of the UI
hierarchy that are marked internally as 'focus listeners'. A UI component is considered a
'focus listener' if there is a GetFocusContext() Action in its parent Action chain or Shape
rendering or conditionality, or if the variable Focused is used in its parent Action chain or
Shape rendering or conditionality.

Paging changes will cause the same behavior as an Animation does, but only in parts of
the UI hierarchy that are marked internally as 'paging listeners'. A UI component is
considered a 'paging listener' if any of the variables IsFirstPage, IsFirstVPage,
IsFirstHPage, IsLastPage, IsLastHPage or IsLastVPage are used in its parent Action
chain or Shape rendering or conditionality.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 162 of 171

What Text in the STV is Evaluated?

All “expressions” are displayed in Studio using a fixed width font, so any text displayed
like that will be run through the expression parser and will be evaluated. Similarly, some
widget names are used as variable names, such as TableComponent widgets, and will be
displayed in a fixed width font also.

Difference Between Watch and WatchLive for Live TV

When Watch(Airing) is used to watch live TV, SageTV will play the airing via its usual
“record to a file, then play it” Live Buffered mode. Playback will have a slight delay as
the airing is first recorded to a file, then decoded and played. However, the user will be
able to use all the usual transport commands such as pause, play, FF, REW, etc. The file
size will grow as the recording continue; recording will not wrap back to the beginning of
the file.

WatchLive(CaptureDeviceInput,PauseBufferSize) differs from Watch(Airing) in that
when PauseBufferSize is 0, it will try to play the video without first encoding it to a file
if SageTV supports such functionality for the specified capture device. In this situation,
the user will not be able to use the transport control commands, since there is no playback
buffer. If live playback is not possible, then SageTV will first encode the video to a file
before playback, with the buffer file size set to a default value. (See below for more
buffered file playback details.)

If PauseBufferSize is not 0, then SageTV will encode the video to a file before playback,
with the buffer file size set to the specified value. The video will be encoded to the buffer
file, wrapping back to the file’s beginning when it reaches the end. Transport commands
may be used, but it will not be possible to rewind further than the playback time that can
be stored in the buffered file.

Use true as Conditional & Expressions as Branches

Since the Conditional and Branch widgets both simply contain expressions that are
evaluated and compared, there is no rule saying that you have to have a detailed
expression on the Conditional and simple true/false/else statements on the Branch
widgets. All the expressions on both type of widgets are evaluated and compared, then
the children action chains are executed for all Branch widgets whose expressions
evaluate to the same value as the Conditional. So, it is possible to use true on the
Conditional and more-detailed expressions on the Branch widgets. This allows a single
Conditional + multiple Branches to be used instead of a series of Conditional widgets
checking to see which of several situations is the active one.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 163 of 171

Consequences of Conditional Expression Evaluation

As previously mentioned, all expressions are evaluated when using any conditionals and
branches – this applies both to the use of the Conditional and Branch widgets and to the
If(Condition, true-expression, false-expression) API call. In other words, SageTV
does not stop evaluating branch expressions once it finds a match. So, a call to If() that
uses API calls in all three parameters may not function as expected: If(IsPlaying(),
Pause(), Play()) will not toggle between paused and playing because all three of those
API calls will be evaluated, not just IsPlaying() plus either Pause() or Play(). After
evaluating all expressions, either the result of the first Pause() or Play() calls will be
returned; Pause() or Play() do not get called again depending on the result of IsPlaying().

Using java Code

Java code can be used as part of an expression, but the usage differs from standard java
notation: use an underscore (‘_’) instead of a dot (‘.’) for the package separator and do
not use the ‘.’ operator to access object instance fields or methods. To create a new class
item, use “new_” in front of the statement. And, object member functions can be called
by passing the object pointer as the first parameter of the function call. Examples:

MyFile = new_java_io_File(“C:\\file.txt”)

Use: java_io_File_isFile(MyFile)
Instead of: MyFile.IsFile()
(Note that the java object is passed as the first parameter of the function.)

Static fields are accessed similarly, example:

PathSeparator = java_io_File_separator

Note: When adding java customizations, place the JAR files in the jars subdirectory in
the SageTV directory and restart SageTV. When SageTV starts, it will append any JAR
files found in that location to the JVM's classpath.

Calling SageTV API methods from Java

The SageTV API calls can also be invoked from Java code directly. To do this, you can
use the following static method in the sage.SageTV class:

public static Object api(String methodName, Object[]
methodArgs) throws InvocationTargetException;

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 164 of 171

The methodName parameter should be the name of the SageTV API call and the method
Args should be an array of the arguments to pass to the API call. It is safe to use null for
methodArgs if the call has no arguments. If an exception is thrown during execution of
the SageTV API call then the exception will be wrapped in an InvocationTargetException
and thrown.

To compile code that uses this, just put the Sage.jar file in the classpath of your Java
compiler.

A very thorough example of using the SageTV API from Java can be seen in the
Webserver plugin developed by Nielm. The code for that project is publicly available on
Sourceforge.net in the 'sageplugins' project

Translation Files

STV translations

SageTV can use language translation files to enable the UI text to be translated to other
languages. To create the base translation file containing the text to be translated, use the
Generate Translation Source… option on the Tools menu. This will create a file named
“<STV base filename>_i18n.properties” in the same directory where the STV file is
stored.

Note: Currently, the base STV filename is determined by the older
wizard/widget_db_file property instead of the newer STV property. Thus, the <STV
base filename> may not be the same as the actual STV filename that is being used. The
naming of the translation property file may be changed to be based off a different
property in the future.

In the base translation file, each line will contain a text name, followed by an equal sign,
followed by the text that you may wish to translate. Example:

S_Add_Favorite=Add Favorite

The translated language file should have a two-letter language code added to the
filename, such as: “<STV base filename>_i18n_de.properties”, where the code “_de”
was added to indicate that it is a translation file for German. (The 2-letter code is
specified by ISO 639.)

To translate phrases, change the text that appears on the right hand side of the equal sign
in the translated language file. So, in the above example line, the phrase “Add Favorite”
is the part to be translated.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 165 of 171

The original translation properties file may contain much more text than that which needs
to be translated, so you may wish to edit the file to remove some lines which do not really
need translation.

Alternately, sometimes there may be a line of text that does need translation, yet has not
been added to the translation properties file. In this case, you can add the line yourself
and go ahead and translate it. To add another translation line, find the text in the STV to
be translated and create a new translation properties file line for it:

1. Create a property name for the string. This is done by starting with the original
text, then:

a. Create a prefix to the line: an ‘S_” for a Text, TextInput, or Item widget;
or a ‘D_’ for an Action widget or an Attribute value. (The 'S_' prefix
indicates that the text is static, while the 'D_' prefix indicates the text is
dynamic and therefore the result of an expression.)

b. Add the original text, while replacing all non-alphanumeric characters
with an underscore (‘_’), but do not place more than one ‘_’ character in a
row

2. Add an equal sign
3. Create the translated text and place it to the right of the equal sign.

So, as an example, if there was an Action widget containing the following text, it would
be converted to a translation property file line as:

Original Action widget text: "MPEG Mode " + MpegMode
Translation line: D__MPEG_Mode_MpegMode="MPEG Mode " + MpegMode

Core Translations

Some text is part of the core program and is stored in the sage.jar instead of the STV. If
such text needs to be translated, extract the SageTVCoreTranslations.properties file
from Sage.jar (by opening the jar file in a zip file viewer). Place this file in your SageTV
folder.

Then, as above, add the 2-letter language code to the end of the base file name, such as:
SageTVCoreTranslations_de.properties. Note that ‘_de’ (for German) is just an
example here; Sage.jar should already contain a ‘_de’ translation properties file.

Again, as above, translate any text to the right of the equal sign on each line to your
desired language.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 166 of 171

Translations Involving Double Byte Character Sets

When using a double byte language for the translation, the translation file will need to be
transformed to be compliant. During the translation process, the files should be saved in
either UTF8 or UTF-16 encoding. After the translation is complete, Java’s native2ascii
tool can be used to do the transformation; this tool is part of the Java Development Kit
(JDK) from Sun Microsystems. The command line syntax for the native2ascii tool is:

For UTF8 encoded files:
native2ascii -encoding UTF8 InputFilename OutputFilename

For UTF-16 encoded files:
native2ascii -encoding UTF-16 InputFilename OutputFilename

Local vs. Server File Access

When accessing file paths from within Studio, it is important to remember which SageTV
API functions for file access always reference file paths relative to the SageTV server.
Example: A call to IsFilePath(TestFilePath) from a client will check whether
TestFilePath is a file that exists on the SageTV server, not on the client, while
IsLocalFilePath(TestFilePath) will check whether TestFilePath is a local file. Use non-
Local SageTV file access calls to refer to files relative to the SageTV server; use
their “Local” variations to perform the same function on files local to SageTV
Client.

Note: Previously, java file access functions had to be used to perform file functions on
local files. This will still work for computer clients, but it is recommended that the Local
variations of the SageTV API calls be used when available. Example: to check whether
TestFilePath exists on the local computer, java_io_File_isFile(TestFilePath) could be
used. If a Local variation of a SageTV API call is not available, use the java version
instead.

A few examples, but not a complete list of equivalent function calls:

Access files relative to the server Access files on the local PC
IsDirectoryPath IsLocalDirectoryPath

IsFilePath IsLocalFilePath

DirectoryListing LocalDirectoryListing

CreateFilePath new_java_io_File

CreateNewDirectory CreateNewLocalDirectory

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 167 of 171

Notes:

The Placeshifter and Extender clients are run in the context of the SageTV server
that it is connected to, but these remote clients can sometimes have local file
systems that they can access. Previously, ‘local’ file access for these clients
actually referred to the server, but as of v6.6, local file access for these remote
clients refers to their local file systems, not the SageTV server. For these remote
clients, Java file IO calls access files on the SageTV server; the SageTV localized
API calls must be used to access their local files.

SageTV Client uses local file access for files such as STV files, STV support
files, online video property files, and other local files. Remote clients (Placeshifter
and Extenders) access those same files on the SageTV server via the non-local
server-access calls.

While the SageTV API functions can accept a string as the file path, the java
functions are expecting a java.io.File argument. So, when using a string as the file
path and using the java functions to access a local file, be sure to use the result of
new_java_io_File(FilePathString) for the java File functions.

Using Long Numbers

Most numbers entered directly in Studio will be interpreted as Integers, meaning they can
range from -231 to 231 - 1, or -2147483648 to 2147483647. At times, it may be necessary
to use larger values, or to force smaller values to be Longs instead of Integers.

One way to specify a larger number is to simply enclose the number in quotes and
multiply that string by 1, such as:

"2147483648" * 1

Alternatively, to specify that any sized number is a Long, use one of the following java
calls:

new_java_lang_Long(8)
new_java_lang_Long("2147483648")

java_lang_Long_parseLong("8")
java_lang_Long_parseLong("2147483648")

Note: For new_java_lang_Long, it is important that the value used for this java call
is enclosed in quotes if the number is outside the range for an Integer. Smaller values can
be entered without quotes, as shown.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 168 of 171

Finding Syntax Errors

SageTV can check the syntax of all STV widgets when an STV is loaded if the following
properties are set exactly as shown in order to a) enable debug logging and b) enable
widget preloading:

debug_logging=TRUE
preload_expression_cache=true

After these properties are set, SageTV will check all the widgets when an STV is loaded
and report any syntax errors in the debug log, after a line containing “Preloading all
Widget data into expression cache....”

Calling the Default STV from Custom STVs

Sometimes, while using a custom STV, it may be desirable to load the default STV for
certain functionality instead of trying to use the custom STV for those features. For
example, the current default STV (SageTV7.xml) always has the most up to date code for
configuring SageTV, so using a custom STV to configure things like capture sources may
use obsolete code resulting in an incorrect configuration or other issues. Or, a custom
STV may simply wish to use a particular menu in the default STV rather than try to
implement a custom menu to perform the same task. For this reason, the default STV has
a special mode where it can be loaded from a custom STV, used to perform whatever
function is desired, then exited to return to the custom STV.

There are some global variables that may be set by a custom STV via the
AddGlobalContext() call before loading the default STV:

gCurCustomSTVFilePath – Set this variable to the path of the custom STV,
Usually, this would be set to the results of a call to GetCurrentSTVFile().
IMPORTANT: If this variable is not set, then the default STV will not enter
Custom STV Mode.

gReloadCustomSTVWithoutConfirm – If this variable is set to true, then
Custom STV Mode will allow returning to the custom STV without asking for
confirmation from the user.

gReloadCustomSTVOnHome – If this variable is true, then the user will be able
to return to the custom STV by using the Home command.

gTargetMenuName – If you wish to jump to a specific menu within the default
STV, then set this variable to the name of the menu widget to be loaded first.
Notes: If this variable is not set, then the Setup Menu will be the initial menu. If
the name of the menu widget is not found, then the Main Menu will be the initial
menu.

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 169 of 171

gCustomSTVInit, gCustomSTVInitParams – Use these variables together if
you wish to have the default STV call a custom Java method. gCustomSTVInit
is the name of the method to call, while gCustomSTVInitParams is an array of
the parameters to send.

gReloadCustomSTVOnPlayback – If this variable is true, then the default STV
will reload the custom STV after entering the playback menu.

To use Custom STV Mode, the gCurCustomSTVFilePath variable must be set via the
AddGlobalContext() call before loading the default STV. The other variables are
optional. Once the global variables are set, the default STV can be loaded via this call:

LoadSTVFile(GetDefaultSTVFile())

Then, if you wish to have the custom STV perform any special actions when it is
reloaded, simply set some global variables and program the custom STV to react
appropriately to those settings when it is loaded. Do not expect the global variables listed
above to still be set when the custom STV is reloaded, because the default STV may clear
them when exiting custom STV mode.

For a discussion of this feature, please see this topic on the SageTV forum:
http://forums.sagetv.com/forums/showthread.php?t=32921

Creating an STVI Import to Patch Other STVs

As of version 6.4, it is possible to automatically create STVI import files that can be used
to patch another STV to match an edited STV, or to create patches to add new
functionality.

After editing an STV, use the STV UID File Difference… option on the Tools menu on
The Studio Menu Bar to compare the edited STV to another STV. The resulting dialog
showing the comparison results has a button titled “Generate STVI”; use that option to
create and save the .stvi file.

Afterwards, a user could use the Detailed Setup -> Advanced -> Import SageTV
Application Package (.STVI File) option in the default STV to import the file.

Finding the Mouse Cursor Screen Coordinates

As of version 6.5, it is possible to find the current mouse cursor coordinates by using
these calls:

sage_UIManager_getCursorPosX()
sage_UIManager_getCursorPosY()

http://forums.sagetv.com/forums/showthread.php?t=32921

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 170 of 171

The origin coordinate (0,0) is the top left corner of the primary monitor.

Information about the SageTV Window can be obtained from the java.awt.Frame class.
SageTV’s Frame can be obtained via this call:

WindowFrame = javax_swing_SwingUtilities_getAncestorOfClass(
java_lang_Class_forName("java.awt.Frame"), GetEmbeddedPanel())

The SageTV window location can then be determined via these calls:

java_awt_Frame_getX(WindowFrame)
java_awt_Frame_getY(WindowFrame)

The java.awt.Frame class call getInsets() can be used to get the window’s border sizes.
This does not include the window’s title bar height, but that can be determined by calling
java.awt.Frame.getSize() to get the size of the window, then subtracting the bottom inset
and the return value of the SageTV API call GetFullUIHeight(). In full screen mode,
there should be no borders or title bar to adjust for.

Creating Version 6 compatible STVs using Version 7

Normally, STV files created using SageTV version 7 are not compatible with earlier
versions of SageTV due to the addition of the new Effect widget type. If an STV has no
Effect widgets, then it can be saved in a format that is compatible with SageTV version 6
by automatically removing any widget properties that are not valid for version 6. To
enable this, set the studio/save_v6_compatible_stvs property to true.

Important: If you set this property, be sure to reset it to false before editing and saving
any STV that is designed to use any of the version 7 widget features.

Converting XBMC Skins for use with SageTV

As of version 7, it is possible to convert XBMC skins for use with SageTV. For more
information see the following topic on the SageTV forum:
http://forums.sagetv.com/forums/showthread.php?t=48462

Updating an Area When Focus Changes

There are a couple of different ways to update an area of the UI that is not part of any
focusable item:

1. Any widget chain below a call to GetFocusContext() is automatically refreshed
when focus changes.

http://forums.sagetv.com/forums/showthread.php?t=48462

SageTV Studio User Guide

SageTV Studio
 Copyright 2011 SageTV, LLC All rights reserved
 Page 171 of 171

2. Use “Focused” (including quotes, as shown) as part of an expression that gets
evaluated. This also tells SageTV to refresh the UI chain below the widget
containing the expression when focus changes.

Examples of both of those methods can be found in the default STV. Also see: How to
Access Variables for the UI Element Currently in Focus.

Developing and Sharing Plugins

Starting with version 7, the SageTV UI supports a plugin system where users can browse
for and install plugins developed by other SageTV users. Developers can download a
document covering how to share plugins with other users from this link:
http://download.sagetv.com/DevelopingSageTVPlugins.doc

Using SageTV When Plugin Imports are Active

SageTV will dynamically load all enabled STVI imports before the ApplicationStarted
hook is called and before any other STV execution is done. When dynamically loaded
imports are loaded and active, Studio will:

a) Display an indicator in the title bar as a reminder that dynamic imports are active.
b) Warn the user when saving the currently loaded STV.
c) Disable the File menu’s 'Save As...' option, since saving an STV using that option

loads the newly saved STV and ends up applying the imports a second time. The
File menu’s 'Save A Copy As...' option can be used instead.

http://download.sagetv.com/DevelopingSageTVPlugins.doc

	1) Getting Started
	Introduction
	Installation
	License Key Requirement
	Starting Studio
	Additional Documentation
	Safe STV Editing
	What’s New in Version 7.1
	What’s New in Version 7.0

	2) The SageTV Studio Language
	The STV File in Relation to SageTV
	The Widget
	What is a Widget?
	Widget Relationships
	Displaying Widget Relationships as a Tree
	Widget Types
	Widget Chain Types

	Expressions
	General Expression Information
	Variable Assignment
	Creating Code Comments

	3) Widget Details
	General Widget Properties
	Properties Common to Many Widgets
	Properties Dialog Buttons

	Menu Widget
	Special Menu Widget Names
	Menu Widget Properties

	OptionsMenu Widget
	OptionsMenu Widget Properties

	Panel Widget
	Panel Widget Properties

	Theme Widget
	Special Theme Widget Names
	Theme Widget Properties

	Action Widget
	Action Widget Properties

	Conditional Widget
	Conditional Widget Properties

	Branch Widget
	Special Branch Widget Names
	Branch Widget Properties

	Listener Widget
	Dual-Use Command Listeners
	Mouse Event Listeners
	Listener Widget Properties

	Item Widget
	Item Widget Properties

	Table Widget
	Table Widget Properties

	TableComponent Widget
	1-Dimensional Tables
	2-Dimensional Tables
	TableComponent Widget Properties

	Text Widget
	Text Widget Properties

	Image Widget
	Image Widget Properties

	TextInput Widget
	TextInput Widget Properties

	Video Widget
	Video Widget Properties

	Shape Widget
	Shape Widget Properties

	Attribute Widget
	Attribute Widget Properties

	Hook Widget
	Hook Widget Properties

	Effect Widget
	Effect Widget Properties

	Valid Widget Parent-Child Relationships

	4) Attributes / Variables
	Variable Context (Scope)
	How to Access Variables for the UI Element Currently in Focus
	SageTV’s Built-In Variables
	Predefined Local Variables
	Listeners That Set Local Variables
	Special Widget Names

	5) Hooks – The Complete List
	FilePlaybackFinished(MediaFile)
	MediaPlayerFileLoadComplete(MediaFile, boolean FullyLoaded)
	MediaPlayerError(String ErrorCategory, String ErrorDetails)
	RequestToExceedParentalRestrictions(AiringOrPlaylist, String LimitsExceeded)
	RecordRequestScheduleConflict(Airing RequestedRecord, java.util.Collection ConflictingRecords)
	RecordRequestLiveConflict(Airing RequestedRecord, Airing ConflictingRecord)
	WatchRequestConflict(Airing RequestedWatch, Airing ConflictingRecord)
	DenyChannelChangeToRecord(Airing AiringToRecord)
	InactivityTimeout()
	NewUnresolvedSchedulingConflicts()
	MediaPlayerPlayStateChanged()
	MediaPlayerSeekCompleted()
	BeforeMenuLoad(boolean Reloaded)
	AfterMenuLoad(boolean Reloaded)
	BeforeMenuUnload()
	MenuNeedsDefaultFocus(boolean Reloaded)
	RecordingScheduleChanged()
	RenderingStarted()
	FocusGained()
	FocusLost()
	STVImported(Widget[] ExistingWidgets, Widget[] ImportedWidgets)
	MediaFilesImported(MediaFile[] NewMediaFiles)
	StorageDeviceAdded(java.io.File DevicePath)
	ApplicationStarted()
	ApplicationExiting()
	LayoutStarted()
	SystemStatusChanged()

	6) The Studio Interface
	User Interaction
	Using a Mouse
	Using a Keyboard

	The Menus and Status Indicator
	The Studio Menu Bar
	The Pop-up Options Menu
	The Widget Bar
	The “Running” Indicator

	Basic STV Editing
	Widget Manipulation
	Adding Widgets
	Removing Widgets
	Moving and Copying Widgets
	Editing Widgets

	Using Studio – A Beginning Tutorial

	7) Using The Debugger
	Breakpoints
	Code Tracer
	UI Components
	Stepping Through Code

	8) Studio Tutorials and Examples
	Tutorial Set 1 – Basic Widget Manipulation
	Adding New Widgets
	Rearranging Widget Order
	Moving Widgets
	Copying Widgets
	Copy Widget Reference
	Deleting Widgets
	Conclusion

	Tutorial Set 2 – Text Display
	Static Text Display
	Dynamic Text Display
	Advanced Text Widget Properties
	Conclusion

	Tutorial Set 3 – Shape Drawing
	Conclusion

	Tutorial Set 4 – Image Display
	Static Image Display
	Dynamic Image Display
	Pressed Image Display
	Clicking on Images
	Image Placement and Sizing
	Conclusion

	Tutorial Set 5 – Item Widgets (Buttons)
	Basic Item Display
	Setting Item Names
	Adding Functionality to Buttons
	Using Images on Buttons
	Conclusion

	Tutorial Set 6 – Panel Widgets
	Defining a UI Display Area
	AutoArrange Child UI Elements
	Navigation Between Panels
	Conclusion

	Tutorial Set 7 – Action Widgets
	Widget Chain Types
	Widget Chain Execution Order
	SageTV API Function Calls
	Automatic Type Conversion
	Conclusion

	Tutorial Set 8 – Variable Usage
	Using the “this” Variable
	Declaring and Accessing Variables
	Accessing Out-of-Scope Variables
	Conclusion

	Tutorial Set 9 – Conditionals and Branches
	Basic Conditional Statement
	Conditional + Branch(es) Usage
	Conditionals in Process Widget Chains
	Conclusion

	Tutorial Set 10 – Loops
	Creating a Basic Loop
	A Sample Loop
	Preventing Infinite Loops
	UI Elements in Loops
	Restoring “Hidden” Loop References
	Conclusion

	Tutorial Set 11 – Pop-up Options Menus
	Creating and Closing Options Menu Dialogs
	Widget Chain Execution After Closing an Options Menu
	Conclusion

	Tutorial Set 12 – Tables
	One Dimensional Tables
	Two Dimensional Tables
	Additional Table Scraps
	Conclusion

	Tutorial Set 13 – Listeners
	Basic Listener
	Mouse Listeners for Non-Focusable UI Elements
	Listener-created Local Variables
	Adding Command Functionality vs. Command Override
	Conclusion

	Tutorial Set 14 – Hooks
	Basic Hooks
	Hook-created Local Variables
	Hook Return Values
	Conclusion

	Tutorial Set 15 – Themes
	Basic Theme Usage
	Theme Recursion
	Adding UI Elements via Themed Display Widgets
	No Themes vs. Themes
	Conclusion

	Tutorial Set 16 – Property-Based Animations
	Timed Animation
	Dynamic Animation
	Continuous Animation
	Conclusion

	Tutorial Set 17 – Core Layer-Based Animations
	Core Layer Animation System
	Layers
	API Calls to Control Animations

	Core Layer Animation Tutorials
	Focus Change
	Panel Slides and Fades
	Table Scrolling
	Dialog Open, Close, and Transition
	Additional Animation Examples
	Conclusion

	Tutorial Set 18 – Scaled Diffused Images
	Conclusion

	Tutorial Set 19 – Effect Widget Animations
	Enable or Disable Animations
	Focus Tracking
	Cross Fading
	Menu Transitions
	Dialog Open/Close Animations
	Timescale and Easing Options
	Looping Animations
	Resizing and SmoothTracker Effects
	Conclusion

	Example Set 1 – Customizing Menus
	Renaming a Menu Item
	Removing a Menu Item
	Reordering a Menu
	Moving a Menu Item to Another Menu
	Adding a Menu Item
	Adding an Entirely New Menu
	Conclusion

	Example Set 2 – Creating Pop-up Dialogs
	Adding an Informational Dialog
	Adding an Interactive Dialog
	Conclusion

	Example Set 3 – Adding a Customizable Option
	Adding a New Option to Customize SageTV’s Settings
	Conclusion

	Example Set 4 – Adding a Basic Menu Animation
	Adding a Fade In/Out Animation to Menu Items
	Conclusion

	9) Miscellaneous Studio Tips
	Highlighting the Current UI Element
	Finding the Currently-Used STV Menu
	Finding a UI element’s Widget in Studio
	Action Chain Color Coding
	Run Multiple Instances or Multiple Windows in a Single Instance
	Run Multiple Placeshifter Clients on a Single PC
	Copy Widgets from One STV to Another
	Edit Multiple Widgets’ Properties at Once
	Automatically Updating Clock Display
	Animation property vs. Refresh() API call
	What Text in the STV is Evaluated?
	Difference Between Watch and WatchLive for Live TV
	Use true as Conditional & Expressions as Branches
	Consequences of Conditional Expression Evaluation
	Using java Code
	Calling SageTV API methods from Java
	Translation Files
	STV translations
	Core Translations
	Translations Involving Double Byte Character Sets

	Local vs. Server File Access
	Using Long Numbers
	Finding Syntax Errors
	Calling the Default STV from Custom STVs
	Creating an STVI Import to Patch Other STVs
	Finding the Mouse Cursor Screen Coordinates
	Creating Version 6 compatible STVs using Version 7
	Converting XBMC Skins for use with SageTV
	Updating an Area When Focus Changes
	Developing and Sharing Plugins
	Using SageTV When Plugin Imports are Active

