
Android
Enterprise
Migration
Bluebook

Migration from Device Admin to Android Enterprise

Table of Contents

Introduction
Audience

Using the Guide

EMM-Specific Functionality

Pre-deployment
Key Milestones

Device Admin

Determining Impact

Android Enterprise as Default

Overview Analysis
Key Milestones

Documenting DA Use Cases

Examples

Requirements Mapping
Document Requirements

Cap-and-grow

Management Mode

App Migration Strategy

Managed Google Play

Private Applications and Play Developer
Console

Android Enterprise Features

Minimum OS Support

Identity Model

Provisioning Method

Device Strategy

Android Enterprise Recommended Devices

Examples

Proof of Concept
Complete a Proof-of-Concept

Infrastructure

EMM Instance

Certificates and VPN

Firewall

Devices

Consoles

Static IP Addresses

Set up User Apps

Policy Groups and Feature Setup

Feature Testing

Walkthrough and Setup Documentation

Deployment
Migrate Today

Production Rollout

Android Champions

Evaluation

Documentation

Cap-and-grow

Field Migration

In-house and Rip-and-Replace Provisioning

Introduction
This guide is intended to provide information and best practices on how to move from a legacy
device administrator Android deployment to Android Enterprise. The legacy method is referred
to as “DA”.

The guide is an Android Enterprise deployment manual with a focus on migration. Though we
concentrate on migrating from DA, the concepts presented apply as well to migrating between
different mobile management solutions that implement Android Enterprise.

This guide is a living document. As Android Enterprise evolves, we will continue to update it
to reflect new features and best practices.

Audience

This guide is intended for EMM (enterprise mobility management) administrators with previous
Android experience. It is not a general guide on using Android or explaining how it works.
Context provided will occasionally fall outside the scope of Android Enterprise. In these cases,
we will provide references to outside documentation. The documentation will at times be
technical in nature so the reader is expected to have experience researching advanced mobility
topics.

We also assume the reader has a basic understanding of the advantages of Android Enterprise
over DA and has already decided to migrate.

Using the Guide

The sections are self-contained but ordered to be read sequentially from migration planning to
implementation. While reading every section is not required to progress, you should still
understand all the concepts presented in them. Make sure to check off the key milestones
before moving forward.

If you notice any mistakes, incorrect content, or missing content please flag the issue
and send a message to ae-migration@googlegroups.com

mailto:ae-migration-guide@google.com

EMM-Specific Functionality

Google reviews and validates EMM solutions for consistency completeness. However, it is
ultimately up to the EMM providers themselves to choose which Android Enterprise features to
implement and which Android Enterprise solutions to submit for validation. A lack of validation
does not mean a lack of support for a given Android Enterprise feature so you should always
consult your EMM provider for information on feature support or feature requests.

Pre-deployment
In this section, we establish a baseline of knowledge necessary for planning your DA migration.
We also provide a brief summary of motivations for migrating.

Key Milestones

● Understand what device admin is and why it’s considered legacy

● Understand device admin deprecation impact

● Understand why Android Enterprise is preferred to device admin

Device Admin

Android included support for enterprise apps by offering the Android Device Administration API
as of Android 2.2. The Device Administration API provides device administration features at the
system level. These APIs allow developers to create security-aware apps that are useful in local
administrative settings, but in the absence of more powerful enterprise APIs, became the basis
for enterprise device management in early versions of Android. Since the introduction of Device
Admin API, enterprises’ needs have evolved. Devices are accessing more confidential resources
and being used in a wider variety of use cases than Android’s original device admin API was
designed for.

Simultaneously, organizations demand a higher trust relationship than device admin was
designed to support. Because a device admin can be enabled by any application that the user
authorizes, it doesn’t support several enterprise use cases where holistic management is
required.

Device admin has been considered a legacy management approach since Android’s fully
managed device and work profile modes were introduced in Android 5.0. Because device
admin isn’t well suited to support today’s enterprise requirements, we recommend customers
and partners adopt fully managed device and work profile modes to manage their devices from
now on.

Determining Impact

The following Device Admin APIs will fail to work when when your EMM DPC is upgraded to
target the Android Q API level:

● USES_POLICY_DISABLE_CAMERA

● USES_POLICY_DISABLE_KEYGUARD_FEATURES

● USES_POLICY_EXPIRE_PASSWORD

● USES_POLICY_LIMIT_PASSWORD

If your EMM solution relies on any of these, you will eventually have to migrate. Please contact
your EMM provider to find out if this is the case for your deployment.

Only devices which run DPCs targeting Q features are required to migrate if they are still on DA.
Devices running DPCs targeting an API level below Q will not be impacted even if the devices
are upgraded to Android Q. Likewise, DPCs targeting an API level below Q will continue to be
installable on devices running Android Q.

Note that apps uploaded to Google Play are now required to target a recent Android API level to
ensure that users benefit from significant security and performance improvements. It’s
reasonable to expect that the API target will increase as new API versions are released. This
means that EMM may eventually have to target Q if they wish to update their DPCs over Play.

You can read more about Play’s API level requirement here:
https://developer.android.com/distribute/best-practices/develop/target-sdk

Android Enterprise as Default

Besides DA deprecation, Android Enterprise is actively being developed with new functions and
management modes. Android Enterprise is the modern management solution that will serve
your organization's needs well into the future.

https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_DISABLE_CAMERA
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_DISABLE_CAMERA
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_DISABLE_KEYGUARD_FEATURES
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_DISABLE_KEYGUARD_FEATURES
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_EXPIRE_PASSWORD
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_EXPIRE_PASSWORD
https://developer.android.com/reference/android/app/admin/DeviceAdminInfo.html#USES_POLICY_LIMIT_PASSWORD
https://developer.android.com/distribute/best-practices/develop/target-sdk

See this article for more info on why it’s time to migrate:
https://blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-
modern-device-management-apis/

You may find certain situations where the Android Enterprise solution isn’t preferable to Device
Admin. In these cases you should file feature requests against Android Enterprise via your EMM
provider. Feature inclusion is based on user feedback and we are responsive to enterprise and
EMM needs.

Overview
We approach our DA migration by dividing into four main phases:

https://blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-modern-device-management-apis/
https://blog.google/products/android-enterprise/why-its-time-enterprises-adopt-androids-modern-device-management-apis/

A migration document is started in the Analysis phase which is passed into subsequent phases
and expanded upon through the Deployment phase. This model should look familiar. Many IT
infrastructure deployments follow this progression and DA migration is no different.

In the analysis phase, we document the policies in use today. Next is feature mapping where we
match those policies to the corresponding ones in Android Enterprise. The proof-of-concept
phase is where we start applying and testing the new policies. The deployment phase is where
we develop our strategy for rolling out the new solution to users.

Analysis
Before choosing which features to implement in Android Enterprise, an administrator needs to
understand their current deployment. In this section we show how to analyze a legacy Android
setup and document it for feature mapping against Android Enterprise.

Key Milestones

● DA policies documented
○ Security
○ Management
○ Usability

● App catalog documented
● Device inventory created
● Use case documentation generated

The goal in the analysis phase is to create a document that provides enough information to
understand which features need to be implemented in Android Enterprise.

The information in this document is then passed to the Feature Mapping phase covered in the
next section of this guide.

The dependency diagram for the analysis documents look like this:

Documenting DA Use Cases

1. Create a spreadsheet and list the current policy groups in your EMM console

2. Create separate use cases based on the existing policy groups

3. For each use case, document its:

a. Name

b. Business owner

c. User identity model

d. Device Requirements

i. Security

ii. Management

iii. Usability

e. Device inventory

i. Make and model

ii. OS Version

f. Apps

For each app list:

i. App name

ii. Package name

iii. Hosting method

iv. Whether the app is public or private

v. Whether the app is mandatory (true/false)

We define a use case as the set of all features and requirements suited for a particular role in an
organization. We recommended breaking up every use case into separate mini-deployments to
simplify planning.

Most EMM providers allow creating groups of policies. This should be the first place to look
when enumerating an organization’s use cases. In case the grouping defined is not suitable, you
will need to ask the owner or a member of the business unit who can describe its requirements.

User identity model refers to the source of truth for user accounts on the device. This could be
per device, Active Directory, LDAP, or Google Directory for example. It could even be “none”.

Device requirements can either be listed as they appear in your current console or as a simple
description. We organize them within “Security”, “Management”, and “Usability” to make feature
mapping easier in the next section. However this can be organized in any way logical to your
organisation.

A device inventory will be needed to determine the minimum OS level to support, devices to
replace, provisioning method, and more.

In the Apps section, the hosting method refers to whether the app is currently being served on
Google Play or self-hosted on an internal server or EMM instance.

The next question is relevant if the app is hosted on Google Play. Apps served publicly are
available to anyone who has access to the Google Play store.

Developers can also opt to serve apps privately, where only one or a select number of
enterprises can view and download them.

Examples

Here and in subsequent sections we follow fictional customers’ migration journeys. We step through key
milestones for a single use case at each and provide examples of what an organization might do when using
this guide. We will refer back to these customers in later sections of the guide.

Sales Ltd.

Sales Ltd is a small appliance company. It sells appliances across the country. A field sales
team at the company uses Android phones for email and viewing internal company websites
over VPN. Team members use their personal phones for work but Sales Ltd. enforces a few
compliance policies on them. This is what their use case document looks like:

Name Field Sales

Owner Francois Black

User Identity Active Directory

Device
Requirements

Type Description

Security Business data needs to be password
protected

Need to be able to erase business data on
device

Management Needs VPN configuration

Need to Lock down GPS

Usability

Need to set custom user icons

Business contact info should be visible when
receiving calls

Device Inventory Make and
Model

OS Version Qty

Nexus 5 5.0 5

Nexus 5 6.1 10

Apps

Name Hosting Method

Gmail Google Play

Bank Corp.

Bank Corp. is a large regional bank. It provides services to small businesses through a team of
client advisors. The bank requires total control of advisor devices to guard against harmful
apps. They use certificate-based authentication on Gmail and have strong wireless protection
on their network among other security controls.They also have a self-hosted app, called
ClientSecure, which is used to access customer data.

Name Client Advisor

Owner Kimberly Dealer

User Identity Active Directory

Device
Requirements

Type Description

Security Lock corporate data if device compliance
not met

Need app scanning against harmful apps

Strong password complexity

Management Need client certificates

Disable screen capture

Configuration WiFi SSIDs

Control app permissions

Usability Ability to request device logs remotely

Custom lock-screen message

Device
Inventory

Make and
Model

OS Version Qty

Google Pixel 8.0 50

Apps Name Hosting Method

Gmail Google Play

ClientSecure Self-hosted

Signage LLC

Signage LLC is a large digital signage company that provides wayfinder kiosks to airports. They
need the ability to deploy Android devices with a single application running that cannot be
closed. In addition, they need to be able to control system updates in order to avoid disruptions.
They apply a template for each airport deployment that looks like the following:

Name Wayfinder Kiosk

Owner Joseph Santiago

User Identity Service accounts

Device
Requirements

Type Description

Security Lock down config settings on device

Management Configure WiFi network

Usability Lock to AirportMapper app only

Remote swapping of the locked app

Device
Inventory

Make and Model OS Version Qty

Nexus 10 Tablet 4.2 100

Apps Name Hosting Method

AirportMapper Custom side-loaded

Requirements Mapping
With the legacy deployment use cases documented, we are now able to determine our Android
Enterprise feature requirements.

Key Milestones

● Management method chosen

● App migration strategy created

● Android Enterprise features mapped

● Minimum Android OS level determined

● Provisioning method chosen

● Identity model chosen

● Device strategy created

The goal of this section is to document those requirements in order to prepare for a
proof-of-concept deployment.

The dependency diagram for the requirements looks like this:

Document Requirements

We summarize the steps you need to take to document your Android Enterprise feature
requirements. Each step is explored in more detail below.

1. Choose a management mode

a. Fully managed device mode if device is corporate-owned

b. Work profile mode if device is owned by the end user

2. Create an app migration strategy

3. Map use case requirements to Android Enterprise features

a. Create two new columns beside the device requirements titled “Feature” and
“OS”

b. Review the list of Android Enterprise features for the management mode chosen
in step 2: developers.google.com/android/work/requirements/features

https://developers.google.com/android/work/requirements/features

c. Document the feature for each device requirement that most closely matches it
and its corresponding Android version

4. Determine Android OS level to support

a. Compare the versions for the features listed in the previous step. The highest
Android version listed is the minimum OS version that your deployment will
support.

5. Choose identity model: developers.google.com/android/work/overview#identity_models

a. Managed Google Play Accounts is recommended

b. Google Accounts only if you’re a Google Cloud Identity (including G-Suite or
Chrome OS) customer

6. Choose a provisioning method: developers.google.com/android/work/prov-devices

a. Choose based on minimum OS and management method chosen

7. Create device strategy

a. Refer to the device inventory in the analysis documentation, minimum OS version
chosen in step 5

b. For each inventory item document an action that needs to be taken to meet
requirements:

i. “No action”: If devices meet minimum OS level

ii. “Upgrade”: If devices support and can be updated to the supported OS

iii. “Replace”: If devices cannot be updated to supported OS level

1. If devices need to be replaced, choose a replacement device

2. Choose from devices in the Enterprise Recommended program:
https://www.android.com/enterprise/recommended/

3. Otherwise choose from Android Enterprise compatible devices
list: https://www.android.com/enterprise/device-catalog/

iv. “Age Out”: Allowing devices to age out of the fleet naturally is part of the
cap-and-grow model of device replacement.

Cap-and-grow

In cases where an upgrade or replacement is necessary, it might be advisable to wait until a
device refresh cycle or other event to replace the devices. This is the so-called cap-and-grow
model. In cap-and-grow, you gather all requirements and set up all necessary infrastructure but
only replace device and move them into modern management at the end of their usual lifecycle
or when they need replacement due to loss or breakage.

https://developers.google.com/android/work/overview#identity_models
https://developers.google.com/android/work/prov-devices
https://www.android.com/enterprise/recommended/
https://www.android.com/enterprise/device-catalog/

This provides a convenient way to roll out devices slowly and spread out capital expenditures
associated with replacing mobile devices.

Management Mode

The management mode chosen for migrated devices determines Android Enterprise features
available for management, provisioning methods that can be used, and how devices can be
enrolled.

There are two Android Enterprise management modes that can be chosen for a given use case:

● Work profile

● Fully managed device

Detailed information for each mode can be found here:
https://developers.google.com/android/work/requirements

The choice depends first on the owner of
the devices then on the device use case. If
the device is owned by the end-user, then
“Work profile” should be chosen. If the use
case requires that the admin have more
control of the device or that the end-user
only have access to a few apps, then “fully
managed device” should be used.

Creating a work profile does not require
a device reset and the mode separates
work from personal data. BYOD use cases
typically call for deploying work profiles.

Fully managed device mode is for more
restrictive use cases and requires a full
device reset.

https://developers.google.com/android/work/requirements

Features available for each management mode can be found below

● Work profile:
https://developers.google.com/android/work/requirements/work-profile

● Fully managed device:
https://developers.google.com/android/work/requirements/fully-managed-device

App Migration Strategy

Copy the Apps section from the analysis phase into a spreadsheet. This info will be expanded
upon.

For every app:

1. Document the package name if available on Play

a. The easiest way to determine the package name of an app is to find it on the
Google Play website and read its id parameter from the URL

b.

c. If sideloaded, create and document a unique package name for uploading to Play

2. Note if the app needs to be unwrapped (see explanation below)

3. Note if app is custom or developed in-house

https://developers.google.com/android/work/requirements/work-profile
https://developers.google.com/android/work/requirements/fully-managed-device

4. List any set of configuration properties that need to be set (see explanation below)

App wrapping refers to the process of applying a layer of custom policies to an app without
requiring any changes to the app itself. System administrators often do this to provide an extra
level of security to protect corporate data or to comply with corporate networking policies. App
wrapping is typically applied using a custom SDK but some EMM vendors provide the ability to
wrap apps from within their consoles.

Wrapped apps should behave as normal Android apps but in some cases an app may need to
be unwrapped in order to function properly on Android Enterprise. You should also consider
unwrapping an app if the policies applied to them are already covered in Android Enterprise.
Consult your app wrapping provider if you experience any trouble with wrapped apps in Android
Enterprise.

Some apps require configuration settings in order to work properly in an organization or to
comply with corporate policy. An email client might require a mail server address or a VPN
client might need the name of a certificate to use for creating a secure network tunnel. Android
Enterprise has made it easy for administrators to set these properties remotely by using
managed configurations. Managed configurations work by reading a list of configuration
settings that are embedded in a managed app. These settings are defined by the app developer.
Your EMM then uses this list to present configuration options in their console. When the
administrator sets these options, they are delivered to managed devices automatically via
Google Play.

You can find more details about managed configurations here:
https://developer.android.com/work/managed-configurations

Managed Google Play

One of the biggest differences between legacy and Android Enterprise is how applications are
managed. App management is centered around Managed Google Play and merits some
explanation here. Play is used for:

● App approval - Admins browse Play and choose the applications that they would like
their users to have

https://developer.android.com/work/managed-configurations

● App distribution - Once an app is approved, admins can choose to have them
automatically pushed to user device or simply make them available in in the Managed
Play Store for users to choose (more on this to follow)

● Approving app permission - Admins can accept app permissions on behalf of the user

● Managed configurations - Admins can set configuration properties for applications that
support them

EMMs use the Play EMM APIs to communicate with Play directly or integrate the
Managed Play iFrame in their consoles

● Play EMM API: https://developers.google.com/android/work/play/emm-api/

● Managed Play iFrame:
https://developers.google.com/android/work/play/emm-api/managed-play-iframe

https://developers.google.com/android/work/play/emm-api/
https://developers.google.com/android/work/play/emm-api/managed-play-iframe

Another aspect of Play is the Managed Play Store client on the users device. When admins
approve the apps that their users can install, the Play Store client is where user can choose to
install them, assuming the apps aren’t already pushed automatically by the admin.

A few things to keep in mind concerning apps on the Managed Play Store:

● It’s a whitelist. There is no blacklist functionality as of yet. Every app that is allowed
to be installed by users must individually be chosen by the admin. Optionally, the admin
can choose to enable access to all applications available on Play

● IT admins can approve any app that is available in public Google Play

● There’s no difference between apps available in Managed Play Store and public Google
Play, the only exception being any additional apps that developers choose to deploy
to specific enterprises. More on this in the next section.

Private Applications and Play Developer Console

Organizations which develop custom apps that they need to distribute to their users (and only their
users) need to become familiar with the Google Play Console. The console allows you to:

● Upload custom apps

● Mark custom apps as private so they’re only available to specific enterprises

● Manage multiple development channels for custom apps to enable beta testing before wider
distribution

If your EMM integrates the Managed Google Play iFrame in their console, you can manage your
organization’s custom apps and access the Play console directly from your EMM console. This enables
faster publishing of custom apps, and it does not require you to pay the one time fee of $25 for creating
a Play Developer account.

App submission process

1. Log in to the Google Play console with the same account that was used to bind your
organization to an EMM. It isn’t mandatory to use the same account but it’s best practice.

2. Upload your custom app

3. Select the checkbox that denotes the app is for private distribution

4. Create separate distribution channels for development and production

Once a private application is approved for use within your organization, it can be managed like any
other application from the EMM console: https://play.google.com/apps/publish

There are other aspects of Managed Google Play not covered here like custom store layouts,
system update management, and Google Play Protect. A thorough understanding of Managed
Google Play is highly recommended:
https://developer.android.com/distribute/google-play/work

Android Enterprise Features

At this point you should have the requirements for your migration use case and the
management mode that will be employed. This is enough information to determine the Android
Enterprise features to document from the features page listed here:
developers.google.com/android/work/requirements/features

Refer back to the https://developers.google.com/android/work/requirements page for
details on individual features.

https://play.google.com/apps/publish
https://developer.android.com/distribute/google-play/work
https://developers.google.com/android/work/requirements/features
https://developers.google.com/android/work/requirements

Caveats to watch for:

● Many legacy features that share names with modern features may not behave
the same way.

● Features that exist within Android Enterprise may not all be supported by your EMM.
Contact your EMM provider for feature requests, clarification on implementation,
and any workarounds if features are missing.

● Don't forget to note the Android version that supports each feature. It will be used
to determine the minimum OS your deployment can support.

Minimum OS Support

You will need to determine a minimum Android version to support in order to ensure that the
Android Enterprise Features chosen in the previous step are all available on your organization’s
devices.

This can be done by choosing the highest Android version listed beside the Android Enterprise
features that need to be implemented for each use case.

If you find that the minimum Android version necessary is too high, you will need to loosen the
requirement to allow for more device choice. A higher minimum OS allows for more features. If
only some devices require a higher minimum OS, consider breaking those out into a separate
use case.

Identity Model

Android Enterprise features are managed by APIs provided to EMMs. Individual users are
targeted for policies via their identity. The two options to consider are:

● Managed Google Play Accounts

● Google Cloud Identity Accounts

Detailed information on the models can be found here:
https://developers.google.com/android/work/overview#identity_models

https://developers.google.com/android/work/overview#identity_models

As mentioned in the summary steps, Managed Google Play Accounts should be the default
choice. They’re generic, obfuscated accounts created for easy setup and identification within
Android Enterprise. They’re maintained entirely within the EMM so there is no complex sync
required.

Google accounts should only be used if you are (or will be) a Google Cloud Identity, G-Suite or
ChromeOS device customer.

Provisioning Method

The provisioning method describes the way the EMM DPC is downloaded onto an Android
device. The method chosen depends on the device management mode, hardware capabilities,
and the version of Android running on the device.

 In work profile mode, there is one common option and it does not require a factory reset on the
device:

● Manual DPC install

○ This method involves having the DPC manually downloaded and installed from
the Google Play store. In some cases the DPC installer is sideloaded onto
devices but this is not recommended.

There are more provisioning options for fully managed device mode but these can only be
employed during initial device setup. This means that devices already in use will require a full
reset:

● Zero-touch (recommended)

○ Zero- touch allows IT admins to create provisioning configurations and apply
them to devices via a web console. These configurations are automatically
applied to devices on first boot. There is no need for the admins to physically
handle the managed devices making this the easiest deployment method in most
cases. Note that devices need to be zero-touch compatible and purchased from
authorized resellers.

○ Ideal for most fully managed device deployment scenarios.

○ Available on Android 8.0+ (7.1+ for Pixel devices)

○ Find authorized resellers at the Zero-touch page:
https://www.android.com/enterprise/management/zero-touch/

https://www.android.com/enterprise/management/zero-touch/

● NFC

○ Using a programmer app provided by the EMM, administrators can transfer
information about DPC, Wi-Fi, and other EMM configuration parameters to
another device using NFC.

○ Ideal for “white glove prep” scenarios where a large number of devices need to
be provisioned and the programming device can be physically present.

○ Available on Android 5.1+

● QR code

○ Similar to the NFC method, QR code provisioning allows passing along
configuration parameters to other devices but requires only a camera on the
device being provisioned. In addition, there is no need for a physical
programming device to be present. The admin can generate a code and email it
to an end-user or print it on a piece of paper. During device setup, a user taps on
the welcome screen 6 times to initiate download of the QR reader app then scans
the code. As of Android 9.0, the QR code is built into the operating system.

○ Ideal for devices that don’t support NFC and scenarios where devices are
distributed remotely and a programmer device cannot be present.

○ Available on Android 7.0+

● EMM token

○ Also known as “afw#” method.

○ During device setup, when prompted for an account to use, the user instead
enters afw#<EMM code>. That is “afw#” and an EMM-specific code appended to
it. The advantage of this provisioning method is that it’s available on the widest
variety of Android devices. It requires no optional hardware such as a camera or
NFC chip. Unlike the ZT, QR, and NFC methods though, there is no way to provide
extra parameters for configuration. This method requires the most manual steps
and should be used when other methods are not readily available.

○ Available on Android 5.1+

An example of a provisioning method decision tree:

Device Strategy

You will have to document a choice about what to do with devices in the DA fleet being
migrated. In this step we’re only documenting what action will need to be taken for each group
of devices. However you also need to consider any new devices that will enter your fleet if the
migration also calls for an expansion in a use case. Note that there is no platform-level
automation for migrating from DA so there will be some manual steps required even for devices
that do not have to be replaced.

Device strategy is illustrated by the following diagram:

Device upgradeability will depend on the OEM and carrier being used. Contact them for more
information on your specific devices.

The following shows an example of what the device strategy document may look like for
corporate-owned, fully managed devices where the decision was made to support a minimum
OS level of 8.0:

Make/Model Qty State Action

Nexus 5 10 Incompatible, not upgradeable Replace w/Pixel 2

Nexus 6P 40 Incompatible, upgradeable Upgrade to Android 8.1

Google Pixel 80 Compatible Re-enroll device

Google Pixel 2 10 New Devices Distribute via
Zero-touch

Note that even though the above example calls for replacement of Nexus 5 devices, they don’t
have to be changed right away. Recall from the section on cap-and-grow that an organization
has the option of waiting for a device refresh or some other event to migrate these users.

Android Enterprise Recommended Devices

When purchasing new devices, consider devices that are Android Enterprise Recommended.
Devices in the Enterprise Recommended program meet an elevated set of hardware and feature
requirements validated by Google in order to ensure a consistent and robust enterprise
experience.

Recommended devices and information about the program can be found on the
Enterprise Recommended page: https://www.android.com/enterprise/recommended/

Note that the Enterprise Recommended program is optional. The absence of a device from the
program does not imply that it lacks advanced features. Compatible devices from OEMs that
have opted not to join the program can be found in the Android Device Catalog.

https://www.android.com/enterprise/recommended/

The Android Device Catalog lists all devices that are minimally compatible with Android
Enterprise, including those in the Enterprise Recommended program. You can use it to ensure
that devices in your existing fleet will be able to run Android Enterprise or to search for devices
that contain specific features.

See the Android Device Catalog page for more information:
https://www.android.com/enterprise/device-catalog/

Examples
Sales Ltd.

Mgmt.
Mode

Work Profile

Apps Name Hosting
Method

Access Mandatory? Package Name

Gmail Google
Play

Public Y com.google.an
droid.gm

Features Description Feature OS

Business data needs to be
password protected

Device
security
challenge

5.0+

Need to be able to erase business
data on device

Wipe and
lock

5.0+

Needs VPN configuration Managed
configuration

5.0+

https://www.android.com/enterprise/device-catalog/
http://com.google.android.gm/
http://com.google.android.gm/

management

Lock down GPS Location
sharing
management

5.0+

Set custom user icons Enterprise
customizatio
n

7.0+

Business contact info should be
visible when receiving calls

Cross-profile
contact
management

7.0+

Minimum
OS

7.0

Identity
Model

Google Accounts

Device
Strategy

Make
and
Model

OS
Version

Qty Max
Version

Strategy

Nexus
5

5.0 5 6.0.1 Age out

Nexus
5

6.0.1 10 6.0.1 Replace

Bank Corp.

Mgmt.
Mode

Fully managed device

Apps Name Hosting
Method

Access Mandatory? Package
Name

 Gmail Google
Play

Public N com.googl
e.android.g
m

 Client-
Secure

Self-
hosted

Private Y com.bankc
orp.clients
ec

Features Description Feature OS

 Lock corporate data if device
compliance not met

Compliance
enforcement

5.0+

 Need app scanning against harmful
apps

SafetyNet
support

ANY

 Strong password complexity Advanced
passcode
management

5.0+

 Need client certificates Certificate
management

5.0+

 Disable screen capture Screen
capture

5.0+

management

 Configuration WiFi SSIDs WiFi
configuration
management

6.0+

 Control app permissions Runtime
permission
policy
management

6.0+

 Ability to request device logs
remotely

Remote
debugging

7.0+

 Custom lock-screen message Lock screen
messages

7.0+

Min. OS 7.0

Identity
Model

Google Play Accounts

Device
Strategy

Make
and
Model

OS
Version

Qty Max Version Strategy

 Google
Pixel

8 50 9.0 Re-enroll

Signage LLC

Mgmt.
Mode

Fully managed device

Apps Name Hosting
Method

Access Mandatory? Package
Name

 Airport
Mapper

Custom
side-loaded

Private Y com.sig
nage.air
map

Features Description Feature OS

 Lock down config settings on device Lock task
mode
management

6.0+

 Configure WiFi network WiFi
configuration
management

6.0+

 Lock to AirportMapper app only Lock task
mode
management

6.0+

 Remote swapping of the locked app Lock task
mode
management

6.0+

Min. OS 6.0

Identity
Model

Google Play Accounts

Device
Strategy

Make
and
Model OS Version Qty Max Version Strategy

Nexus
10 4.2 100 5.1 Replace

Proof of Concept
With the Android Enterprise requirements documented, we are now ready to set up a test
instance and start our proof-of-concept deployment.

● EMM instance created

● Network configured

● Apps migrated

● Policy groups created

● Android Enterprise features configured

● Features tested and confirmed by use case owner

● Device setup walkthrough completed and documented

The goal of this section is to set up the Android Enterprise instance, implement the features
required for your use cases, verify that the features are working as intended, and begin user
setup documentation. There is no need to create a separate tracker for verifying features here.
It’s sufficient to take the documentation generated in the requirements mapping phase and
simply check them off.

Earlier in the guide we suggested separating each use case into separate deployments. Since
there is only one production EMM instance, we will be consolidating them here.

This stage differs from the previous ones in that there are two pieces of documentation that are
created. However, only one is passed on to the next and final stage:

● Feature verification checklist: This is a master worksheet where features are verified by
the owners defined in the analysis phase for each use case. This document does not
need to get passed into the next stage.

● User setup documentation: In the final step of this stage, a walkthrough is done where a
device is taken from setup though configuration as an end-user would. It’s an opportune
time to begin documentation that will eventually be passed to device users.

The POC dependency diagram will look like this:

Complete a Proof-of-Concept

We summarize the steps needed to conduct a proof-of-concept:

1. Set up deployment infrastructure

a. Create an EMM instance (Consult EMM documentation)

b. Configure network

2. Set up user apps

3. Create policy groups in EMM console

4. Configure Android Enterprise features for each EMM policy group

5. Test and confirm features in every EMM policy group

6. Complete a device setup walkthrough for each use case

7. Document setup steps

Infrastructure

EMM Instance

Consult EMM documentation for instructions on how to set up an Android Enterprise instance
for the POC. Steps here can vary. In some instances, a virtual machine will have to be created to
host the new instance. In others it's simply a push button in the console UI.

Certificates and VPN

In most instances, certificate and VPN infrastructure is already set up and configuration is done
separately from Android Enterprise. If not, make sure any general configuration is complete
before configuring EMM policy groups.

Note that some VPN clients are configured via managed configuration:
https://developer.android.com/work/managed-configurations

https://developer.android.com/work/managed-configurations

Firewall

Android devices generally do not require inbound ports opened on the network in order to
function correctly. However there are a number of outbound connections that administrators
should be aware of when setting up their network environments for Android Enterprise.

This list is not exhaustive and is subject to change. It covers known endpoints for current and
past versions of enterprise management APIs. Please note that the majority of these are not
browsable. Thus, you can safely block port 80 for these URLs (they are all behind SSL).

The rules contained here apply regardless of whether your EMM solution is implemented using
the Play EMM API or Android Management API.

Note that OEMs often have their own hosts that need to be reached in order for their devices to
function properly. Please contact your OEM for any additional ports that may be required.

Devices

Destination Host Ports Purpose

play.google.com
android.com
google-analytics.com
googleusercontent.com
*gstatic.com
*gvt1.com
*.ggpht.com
dl.google.com
dl-ssl.google.com
android.clients.google.com
*gvt2.com
*gvt3.com

TCP/443
TCP,UDP/5228-5
230

Google Play and updates

gstatic.com,
googleusercontent.com -
contains User Generated
Content (e.g. app icons in the
store)

*gvt1.com, *.ggpht,
dl.google.com,
dl-ssl.google.com,
android.clients.google.com -
Download apps and updates,
Play Store APIs

gvt2.com and gvt3.com are
used for Play connectivity
monitoring for diagnostics.

https://developers.google.com/android/work/play/emm-api/
https://developers.google.com/android/management/

*.googleapis.com TCP/443 EMM/Google APIs/PlayStore
APIs

accounts.google.com
accounts.google.[country]

TCP/443 Authentication
For accounts.google.[country],
use your local top-level domain
for [country]. For example, for
Australia use
accounts.google.com.au, and
for United Kingdom use
accounts.google.co.uk.

gcm-http.googleapis.com
gcm-xmpp.googleapis.com
android.googleapis.com

TCP/443,5228-52
30,5235,5236

Google Cloud Messaging (e.g.
EMM Console <-> DPC
communication, like pushing
configs)

fcm.googleapis.com
fcm-xmpp.googleapis.com

TCP/443,5228-52
30

Firebase Cloud Messaging (e.g.
Find My Device, EMM Console
<-> DPC communication, like
pushing configs)

pki.google.com
clients1.google.com

TCP/443 Certificate Revocation list
checks for Google-issued
certificates

clients2.google.com
clients3.google.com
clients4.google.com
clients5.google.com
clients6.google.com

TCP/443 Domains shared by various
Google backend services such
as crash reporting, Chrome
Bookmark Sync, time sync
(tlsdate), and many others

omahaproxy.appspot.com

TCP/443 Chrome updates

android.clients.google.com TCP/443 CloudDPC download URL used

 in NFC provisioning

connectivitycheck.android.c
om
www.google.com

TCP/443 Connectivity check prior to
CloudDPC v470
Android connectivity check
starting with N MR1 requires
https://www.google.com/gener
ate_204 to be reachable, or for
the given WiFi network to point
to a reachable PAC file.

Consoles

If an EMM console is located on-premise, the destinations below need to be reachable from the
network in order to create a Managed Google Play Enterprise and to access the Managed
Google Play iFrame. Google has made the Managed Play iFrame available to EMM developers in
order to simplify search and approval of apps.

Destination Host Ports Purpose

play.google.com TCP/443 Google Play Store
Play Enterprise sign-up

fonts.googleapis.com
*.gstatic.com
*.googleusercontent.com

TCP/443 Google fonts
User Generated Content (e.g.
app icons in the store)

accounts.youtube.com
accounts.google.com

TCP/443 Account Authentication

cri.pki.goog
ocsp.pki.goog

TCP/443 Certificate Validation

https://www.google.com/generate_204
https://www.google.com/generate_204
https://developers.google.com/android/work/play/emm-api/managed-play-iframe
https://developers.google.com/android/work/play/emm-api/managed-play-iframe

apis.google.com TCP/443 GCM and other Google web
services

ogs.google.com TCP/443 iFrame UI elements

notifications.google.com TCP/443 Desktop/Mobile Notifications

Static IP Addresses

Google doesn't provide specific IPs, so you should allow your firewall to accept outgoing
connections to all IP addresses contained in the IP blocks listed in Google's ASN of 15169 listed
here.

Note that IPs of Google peers and edge nodes are not listed in the AS15169 blocks.
See peering.google.com for more information about Google’s Edge Network.

Set up User Apps

This section focuses on app migration strategies when hosting on Google Play. Hosting
internally or on alternative app stores is not recommended. Consult EMM documentation for
instructions on hosting apps outside of Google Play.

1. Follow the instructions for getting started with Managed Google Play here:
https://support.google.com/googleplay/work/answer/6138458?hl=en

2. Refer to documentation created in the “App Migration Strategy” section in the
Requirements Mapping phase for each app.

3. If the app is free and available on Google Play publicly

a. Sign in to the Managed Google Play console with the enterprise administrator
account. The administrator account is the one used to create the enterprise from
the EMM-initiated sign-up process or the managed Google Play console:
http://play.google.com/work

https://bgp.he.net/AS15169#_prefixes
https://peering.google.com/#/
https://support.google.com/googleplay/work/answer/6138458?hl=en
http://play.google.com/work

i. Note that most major EMMs have implemented the Managed Google Play
iFrame. If this is true for your EMM, you can skip this step and manage
apps directly from your console:
https://developers.google.com/android/work/play/emm-api/managed-pl
ay-iframe

b. Search for, and click the app you’d like to approve

c. Click Approve

d. To accept the app permissions on behalf of your company, click Approve

e. Click Done

4. If the app is private

a. Refer to the unique APK name created in your app documentation

b. Register as a developer in the Google Play console:
https://play.google.com/apps/publish/signup/

c. Follow instructions for publishing private apps here:
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic
=6145152

5. Custom apps

a. Register as a developer in the Google Play console if you have not done so
already: https://play.google.com/apps/publish/signup/

i. Note that most major EMMs have implemented the Managed Google Play
iFrame. If this is true for your EMM, you can skip this step and manage
apps directly from your console:
https://developers.google.com/android/work/play/emm-api/managed-pl
ay-iframe

b. Refer to the unique APK name created in your app documentation

c. Locate the source code for the app for the app and ensure it meets the minimum
requirements for target API level:
https://developer.android.com/distribute/best-practices/develop/target-sdk

d. Follow the same instructions for publishing private apps:
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic
=6145152

6. Manage app permissions

a. Instructions located here:
https://support.google.com/googleplay/work/answer/6137917?hl=en&ref_topic
=6137710

https://developers.google.com/android/work/play/emm-api/managed-play-iframe
https://developers.google.com/android/work/play/emm-api/managed-play-iframe
https://play.google.com/apps/publish/signup/
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic=6145152
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic=6145152
https://play.google.com/apps/publish/signup/
https://developers.google.com/android/work/play/emm-api/managed-play-iframe
https://developers.google.com/android/work/play/emm-api/managed-play-iframe
https://developer.android.com/distribute/best-practices/develop/target-sdk
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic=6145152
https://support.google.com/googleplay/work/answer/6145139?hl=en&ref_topic=6145152
https://support.google.com/googleplay/work/answer/6137917?hl=en&ref_topic=6137710
https://support.google.com/googleplay/work/answer/6137917?hl=en&ref_topic=6137710

Policy Groups and Feature Setup

Refer back to the feature requirements documentation generated in the previous migration
stage. EMMs usually provide a way to create policy groupings. Policies are applied to the group
and then users and devices are assigned to those groups. At this time you should create a
group for each use case collected.

For each Android Enterprise feature listed in the groups:

1. Consult EMM documentation for how to configure the named Android Enterprise feature
in your console

2. If the feature is not available, you will have to find an alternative feature as a workaround

3. If no workaround exists, open a feature request on your EMM support portal

4. Apply any managed configurations to apps pushed to your groups if necessary. You can
read about managed configurations here:
https://developer.android.com/work/managed-configurations

5. If certificate and VPN settings are applied at the app level, configure them now

Feature Testing

1. Create a checklist in a spreadsheet with columns for Android Enterprise Feature, Owner,
and results.

2. Copy the requirements listed in the Feature Requirement Mapping phase

3. For each requirement listed

a. Test the feature

b. Get verification from the owner of this use case that the feature works as
expected

4. If the feature does not work as expected, revisit the feature detail page for a workaround
or alternatively consult your EMM provider for assistance or feature requests

5. Repeat each step for at least one device from the inventory collected

Walkthrough and Setup Documentation

Once all features are tested and verified, complete a device setup walkthrough as would be
experienced by an end user. This will act as a final end-to-end test before production
deployment. As the walkthrough is completed, document the instructions and take screenshots.
This document can then be distributed to users later.

https://developer.android.com/work/managed-configurations

Deployment
Theory and planning is now over, time to deploy! In this section we explore how to roll out and
prepare your users for migration.

Key Milestones

● IT Staff migrated

● Use case deployment order established

● Android Champions and messaging platform chosen

● Rollout strategy set (ie: cap and grow vs big bang)

● User documentation complete

● New devices ordered

Migrate Today

Start with yourself, IT staff, Android champions, and advanced users. Document these initial
experiences and watchpoints.

Production Rollout

Make a list of use cases and potential departments or user groups to roll out to. Evaluate which
would be the least disruptive. You should try to limit the scope of disruption when there’s more
uncertainty. This can mean choosing to roll out to the smallest group of users first. This can
also mean to initiate the deployment with a larger staff but one that is more comfortable with
change.

Adapt your rollout plan based on user feedback. Modify apps and services per user group to
deliver the best tools for each employee or business unit if need be.

Android Champions

When evaluating which use cases to roll out to first, consider targeting individual users who are
eager testers, tech savvy and can deal with disruption, or even just fans of Android. Successful

migrations take into account user sentiment early in the process and communicate change
effectively to ensure user buy-in.

Successful deployments designate Android Champions to help service users migrating onto the
new platform.

You can also leverage the champions to create a community to enable collaboration and
proactive communications to users.

Evaluation

Allow a reasonable amount of time between migrating different groups of users. There are
some events like app updates, app configuration changes, and security updates that don’t
happen frequently enough to accurately gauge their behavior in production.

Monitor OS, security patch, and application versions to identify risks and areas for improvement.

Documentation

A tedious but critical practice in successful DA migrations has been good user documentation.
A step-by-step guide with screenshots on what users need to do is highly suggested if you want
to enable users to migrate devices themselves. Some organizations even create short
instructional videos.

Highlight what the user needs to know to get started and build from there. Consider holding
in-person and online training sessions or webinars to enable users and minimize support costs.

Another option is to document only instructions on how to use a device once it’s been migrated.
This allows users to get a peek at what’s coming and to know what to expect. Communicate
early and often via multiple channels, to ensure the message reaches critical mass.

Cap-and-grow

A popular rollout strategy has been to get all your production systems for Android Enterprise
tested and ready but only complete device migration later. In this scenario, legacy devices
continue to be used but any new devices added will be managed under modern methods. We
covered the cap-and-grow concept briefly in the device strategy section of the requirements
gathering phase.

Note that in many cases, a separate EMM instance may not be necessary. Some EMMs support
legacy Android management and Android Enterprise simultaneously. Here are some examples
of where the cap-and-grow strategy may be used:

● An auto manufacturer has decided that they want to move to Android Enterprise but
would have to replace a third of their device fleet. The devices that are not compatible
are older devices that will be refreshed soon anyway. The organization decides that they
will move all their compatible devices to Android Enterprise first and only begin moving
users with incompatible devices in a year once the devices are due for a refresh.

● A retail organization has decided to move to Android Enterprise and has done a device
analysis and found that all their devices are compatible. Great! However, they do not
have the resources to migrate any user devices immediately. The organization decides
that they will set up their Android Enterprise instance but only move devices when their
users bring devices in for maintenance.

● An employment temp agency wants to move to Android Enterprise but there is a lot of
user and device turnover. Since the agency knows that all of their device fleet will be
back through IT support within a year, they don’t migrate any users at all and simply put
new users under Android Enterprise when they start.

There are many valid reasons why an organization may not or cannot move to modern
management right away but this is not a barrier to planning your move to Android Enterprise.

Field Migration

Field migrations are particularly challenging. Even with good documentation, if a user misses or
otherwise bungles a deployment step, they may be left with no local IT staff to help them. A
suggested strategy here is to provision the devices and then ship them out to the user. They
are then only responsible for enrolling with their credentials.

The ideal option is to mandate zero-touch enabled devices. Users here cannot escape device
provisioning and can simply reset if something goes wrong to start the process over.

In-house and Rip-and-Replace Provisioning

Some organizations decide to migrate devices over to Android Enterprise all at once within their
support or IT organizations. There are a few considerations that need to be taken if you decide
to do this.

● This option is usually cost prohibitive for larger organizations both in time and resources
associated with replacing many devices at once. We recommend this option if no others
are available. Consider working with a trusted managed services provider instead.

● There is a limit to the number of devices that can be registered with a single Managed
Google Play account. There are two types of these accounts that can be created by your
EMM

○ User account - Provides a single user access to managed Google Play from all
their devices with a maximum of 10 devices

○ Device account - Provides access to managed Google Play from a single device.
Used in dedicated device use cases

○ More information can be found in the Play EMM API developer pages:
https://developers.google.com/android/work/play/emm-api/user-accounts

● You must ensure critical web endpoints aren’t blocked on your network. We touch on this
in the Infrastructure section of this guide

● We highly recommend using the new Zero-touch enrollment for provisioning devices if
available and if deploying into fully managed device mode

