Platform-independent static
binary code analysis using a meta-
assembly language

O .
Overview O

The REIL Language

Abstract Interpretation
MonoREIL

Motivation

Bugs are getting harder to find

Defensive side (most notably Microsoft) has
invested a lot of money in a , bugocide”

Concerted effort: Lots of manual code auditing
aided by static analysis tools

Phoenix RDK: Includes ,lattice based” analysis
framework to allow pluggable abstract
interpretation in the compiler

Motivation

Offense needs automated tools if they want to
avoid being sidelined

Offensive static analysis: Depth vs. Breadth

Offense has no source code, no Phoenix RDK,
and should not depend on Microsoft

We want a static analysis framework for
offensive purposes

Overview

The REIL Language

Abstract Interpretation

MonoREIL

T
i

REIL

Reverse Engineering Intermediate Language
Platform-Independent meta-assembly language

Specifically made for static code analysis of
binary files

Can be recovered from arbitrary native
assembly code

— Supported so far: x86, PowerPC, ARM

T
i

Advantages of REIL

Very small instruction set (17 instructions)
Instructions are very simple

Operands are very simple

Free of side-effects

Analysis algorithms can be written in a
platform-independent way

— Great for security researchers working on more
than one platform

LI
o[
T 1'

Creation of REIL code

* |[nput: Disassembled Function
— x86, ARM, PowerPC, potentially others

* Each native assembly instruction is translated to
one or more REIL instructions

e QOutput: The original function in REIL code

=
SEC|
3 Example
«—
597DAS3E00: and eax, 65535, tl
597DA53E0l: and esi, 65535, t3
597DA53E02: and tl, 32768, t4
597DA5S3E03: and t3, 32768, t5
— 597DA5S3E04: sub tl, t3, t6
. 597DA53E05: and t6, 32768, t7
597DAS1B netapi32.xpsp3.dll: :sub_59'7DA51B 597DA53E06: bsh t7, -15, SF
597DAL3E cmp word ax, word si S97DRS3E0T7: xor t4, t3, t8
) - 597DA53E08: xor td, t7, t9
597DA541]z CS:l-:-Cl_E S7DDE3D 597DA53E09: and t8, t9, tl0
597DA53EOA: bsh tl0, -15, OF
— 597DAS3E0R: and t6, 65536, t1l
597DA53E0C: bsh tll, -16, CF
597DA53E0D: and t6, 65535, tl12
597DAS3EOE: bisz tl2, , ZF
597DA54100: jcco ZF, , 1501419581

I

Design Criteria

* Simplicity
* Small number of instructions

— Simplifies abstract interpretation (more later)
* Explicit flag modeling

— Simplifies reasoning about control-flow

* Explicit load and store instructions
* No side-effects

REIL Instructions

e One Address
— Source Address * 0x100 + n
— Easy to map REIL instructions back to input code

* One Mnemonic
* Three Operands
— Always

* An arbitrary amount of meta-data
— Nearly unused at this point

LI
off
Lk 1'

REIL Operands

* All operands are typed
— Can be either registers, literals, or sub-addresses
— No complex expressions

* All operands have a size
— 1 byte, 2 bytes, 4 bytes, ...

LI
off
Lk 1'

The REIL Instruction Set

 Arithmetic Instructions
— ADD, SUB, MUL, DIV, MOD, BSH

 Bitwise Instructions
— AND, OR, XOR

e Data Transfer Instructions
— LDM, STM, STR

LI
off
Lk 1'

The REIL Instruction Set

e Conditional Instructions
— BISZ, JCC

e Other Instructions
— NOP, UNDEF, UNKN

* |nstruction set is easily extensible

LI
off

3 REIL Architecture

* Register Machine

— Unlimited number of registers t,, t,, ...
— No explicit stack

e Simulated Memory

— Infinite storage

— Automatically assumes endianness of the source
platform

Limitations of REIL

Does not support certain instructions (FPU,
MMX, Ring-0, ...) yet

Can not handle exceptions in a platform-
independent way

Can not handle self-modifying code
Does not correctly deal with memory selectors

Overview

The REIL Language

Abstract Interpretation
MonoREIL

Abstract Interpretation

Theoretical background for most code analysis

Developed by Patrick and Rhadia Cousot around
1975-1977

Formalizes ,static abstract reasoning about
dynamic properties”
Huh ?

A lot of the literature is a bit dense for many
security practitioners

Abstract Interpretation

We want to make statements about programs

Example: Possible set of values for variable x at
a given program point p

In essence: For each point p, we want to find
Ko € P(States)
Problem: P(States) is a bit unwieldly

Problem: Many questions are undecidable
(where is the w*nker that yells , halting
problem®) ?

LI
ak
T 1'

C|

Dealing with unwieldy stuff

5

* Reason about something simpler:

Abstraction

P(States)
P(States) <

> D

Concretisation

 Example: Values vs. Intervals

5

T
i

Lattices

In order for this to work, D must be structurally
similar to P(States)

P(States) supports intersection and union

You can check for inclusion (contains, does not
contain)

You have an empty set (bottom) and
,everything” (top)

off

i

Lattices

* A lattice is something like a generalized
powerset

* Example lattices: Intervals, Signs, P(Registers),
mod p

22

Dealing with halting

Original program consists of p, ... p, program
points

Each instruction transforms a set of states into a
different set of states

P, ... P, are mappings P(States) — P(States)
Specify p;...p,:D—>D
This yields us p: D" — D"

Dealing with halting

We cheat: Let D be finite =» D" is finite

Make sure that P is monotonous (like this talk)
Begin with initial state |

Calculate p(l)

Calculate p(p(l))

Eventually, you reach p"(1)=p""(I)

You are done — read off the results and see if
your question is answered

LI
o[
T 1'

Theory vs. practice

* Alot of the academic focus is on proving
correctness of the transforms

P(States) T > P(States)
P
D > D

* As practitioner we know that p, is probably not
fully correctly specified

* We care much more about choosing and
constructing a D so that we get the results we need

Overview

The REIL Language

Abstract Interpretation
MonoREIL

MonoREIL

You want to do static analysis

You do not want to write a full abstract
interpretation framework

We provide one: MonoREIL

A simple-to-use abstract interpretation
framework based on REIL

LI
off
Lk 1'

What does it do ?

* You give it
— The control flow graph of a function (2 LOC)
— A way to walk through the CFG (1 + n LOC)
— The lattice D (15 + n LOC)

 Lattice Elements
* A way to combine lattice elements

— The initial state (12 + n LOC)
— Effects of REIL instructions on D (50 + n LOC)

How does it work?

Fixed-point iteration until final state is found
Interpretation of result

— Map results back to original assembly code

Implementation of MonoREIL already exists
Usable from Java, ECMAScript, Python, Ruby

Overview

The REIL Language

Abstract Interpretation
MonoREIL

LI
o[
T 1'

Register Tracking

* First Example: Simple
* Question: What are the effects of a register on
other instructions?

* Useful for following register values

Register Tracking

* Demo

LI
o[
T 1'

Register Tracking

e Lattice: For each instruction, set of influenced
registers, combine with union

* |nitial State
— Empty (nearly) everywhere
— Start instruction: { tracked register }

* Transformations for MNEM op1, op2, op3

— If op1 or op2 are tracked =» op3 is tracked too
— Otherwise: op3 is removed from set

LI
o[
T 1'

Negative indexing

* Second Example: More complicated

e Question: Is this function indexing into an array
with a negative value ?

* This gets a bit more involved

LI
off
Lk 1'

Negative indexing

* Simple intervals alone do not help us much

How would you model a situation where
— A function gets a structure pointer as argument

— The function retrieves a pointer to an array from an
array of pointers in the structure

— The function then indexes negatively into this array

Uh. Ok.

Abstract locations

For each instruction, what are the contents of the
registers ? Let’s slowly build complexity:

If eax contains arg_4, how could this be modelled ?
— eax = *(esp.in + 8)

If eax containsarg 4+47?

— eax = *(esp.in + 8) + 4

If eax can contain arg_4+4, arg_4+8, arg_4+16,
arg 4+20°7

— eax = *(esp.in + 8) + [4, 20]

LI
o[
T 1'

Abstract locations

* |f eax can contain arg_4+4, arg 8+16 ?
— eax = *(esp.in + [8,12]) + [4,16]
* |f eax can contain any element from

—arg 4->mem|0] to arg_4->mem|[10], incremented
once, how do we model this ?

— eax = *(*(esp.in + [8,8]) + [4, 44]) + [1,1]
e OK. An abstract location is a base value and a

list of intervals, each denoting memory
dereferences (except the last)

Range Tracking

eax.in + [a, b] + [0, 0]

]
i

eax.in + a eax.in+b

i

38

Range Tracking

eax + [a, b] + [c, d] + [0, 0]

eax +a

Dals ¥ Eel. "9t 4

[eax+a]+c [eax+a]+d [eax+a+4]+c [eax+a+4]+d [eax+b]+c [eax+b]+d
39

LI
o[
T 1'

Range Tracking

* Lattice: For each instruction, a map:
Register |] Aloc — Aloc

e |nitial State

— Empty (nearly) everywhere
— Start instruction: { reg -> reg.in + [0,0] }

* Transformations
— Complicated. Next slide.

LI
o[
T 1'

Range Tracking

* Transformations
— ADD/SUB are simple: Operate on last intervals
— STM op4, , 0p;

* |If op, or op; not in our input map M skip
* Otherwise, M[M[op,] | = op,
— LDM op,, , op;
* |If op, or op; is not in our input map M skip
* M[op; | =M[op,]
— Others: Case-specific hacks

LI
off
Lk 1'

Range Tracking

e Where is the meat ?

* Real world example: Find negative array
indexing

42

LI
o[

E MS08-67

Function takes in argument to a buffer
Function performs complex pointer arithmetic

Attacker can make this pointer arithmetic go
bad

The pointer to the target buffer of a wcscpy will

be decremented beyond the beginning of the
buffer

o MS08-67

 Michael Howard‘s Blog:

— “In my opinion, hand reviewing this code and
successfully finding this bug would require a great deal
of skill and luck. So what about tools? It's very difficult
to design an algorithm which can analyze C or C++ code
for these sorts of errors. The possible variable states
grows very, very quickly. It's even more difficult to take
such algorithms and scale them to non-trivial code
bases. This is made more complex as the function
accepts a highly variable argument, it's not like the
argument is the value 1, 2 or 3! Our present toolset
does not catch this bug.”

LI
Ol

‘ MS08-67 ©

* Michael is correct

— He has to defend all of Windows

— His ,regular” developers have to live with the
results of the automated tools

— His computational costs for an analysis are gigantic
— His developers have low tolerance for false positives

LI
off
Lk 1'

MS08-67

e Attackers might have it easier
— They usually have a much smaller target
— They are highly motivated: | will tolerate 100 false
positives for each ,,real” bug
* | can work through 20-50 a day

* A week for a bug is still worth it

— False positive reduction is nice, but if | have to read
100 functions instead of 20000, | have already
gained something

MS08-67

* Demo

of

' Limitations and assumptions

5

* Limitations and assumptions

— The presented analysis does not deal with aliasing
— We make no claims about soundness
— We do not use conditional control-flow information
— We are still wrestling with calling convention issues
— The important bit is not our analysis itself — the

important part is MonoREIL

— Analysis algorithms will improve over time — laying

the foundations was the boring part

T
i

Status

Abstract interpretation framework available in
BinNavi

Currently x86

In April (two weeks !): PPC and ARM

— Was only a matter of adding REIL translators

Some example analyses:

— Register tracking (lame, but useful !)
— Negative array indexing (less lame, also useful !)

T
i

Outlook

Deobfuscation through optimizing REIL
More precise and better static analysis

Register tracking etc. release in April (two
weeks !)

Negative array indexing etc. release in October

Attempting to encourage others to build their
own lattices

LI
o[

—

Related work ?

 Julien Vanegue / ERESI team (EKOPARTY)
* Tyler Durden’s Phrack 64 article

* Principles of Program Analysis
(Nielson/Nielson/Hankin)

* University of Wisconsin WISA project
* Possibly related: GrammaTech CodeSurfer x86

Questions ?

(Good Bye, Canada)

52

