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ABSTRACT

Today’s web services are dominated by TCP flows so short

that they terminate a few round trips after handshaking; this

handshake is a significant source of latency for such flows. In

this paper we describe the design, implementation, and de-

ployment of the TCP Fast Open protocol, a new mechanism

that enables data exchange during TCP’s initial handshake.

In doing so, TCP Fast Open decreases application network

latency by one full round-trip time, decreasing the delay ex-

perienced by such short TCP transfers.

We address the security issues inherent in allowing data

exchange during the three-way handshake, which we miti-

gate using a security token that verifies IP address owner-

ship. We detail other fall-back defense mechanisms and ad-

dress issues we faced with middleboxes, backwards compat-

ibility for existing network stacks, and incremental deploy-

ment. Based on traffic analysis and network emulation, we

show that TCP Fast Open would decrease HTTP transaction

network latency by 15% and whole-page load time over 10%

on average, and in some cases up to 40%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network Com-

munications; C.2.2 [Network Protocols]: TCP/IP

General Terms

Design, Performance, Reliability, Security

1. INTRODUCTION

While web pages have grown significantly in recent years,

network protocols have not scaled with them. Today’s pages

are on average over 300KB each, but most web objects are

relatively small, with mean and median sizes of 7.3KB and
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2.4KB respectively [25]. As a result of the preponderance of

small objects in large pages, web transfer latency has come

to be dominated by both the round-trip time (RTT) between

the client and server and the number of round trips required

to transfer application data. The RTT of a web flow largely

comprises two components: transmission delay and propa-

gation delay. Though network bandwidth has grown substan-

tially over the past two decades thereby significantly reduc-

ing transmission delays, propagation delay is largely con-

strained by the speed of light and therefore has remained un-

changed. Thus reducing the number of round trips required

for the transfer of a web object is the most effective way to

improve the latency of web applications [14, 18, 28, 31].

Today’s TCP standard permits data exchange only after

the client and server perform a handshake to establish a con-

nection. This introduces one RTT of delay for each connec-

tion. For short transfers such as those common today on the

web, this additional RTT is a significant portion of the flows’

network latency [29]. One solution to this problem is to reuse

connections for later requests (e.g. HTTP persistent connec-

tions [24]). This approach, while widely used, has limited

utility. For example, the Chrome browser keeps idle HTTP

1.1 TCP connections open for several minutes to take advan-

tage of persistent connections; despite this over one third of

the HTTP requests it makes use new TCP connections. A re-

cent study on a large CDN showed that on average only 2.4

HTTP requests were made per TCP connection [10]. This is

due to several reasons as we describe in Section 2.

We find that the performance penalty incurred by a web

flow due to its TCP handshake is between 10% and 30% of

the latency to serve the HTTP request, as we show in detail in

Section 2. To reduce or eliminate this cost, a simple solution

is to exchange data during TCP’s initial handshake (e.g. an

HTTP GET request / response in SYN packets). However,

a straightforward implementation of this idea is vulnerable

to denial-of-service (DoS) attacks and may face difficulties

with duplicate or stale SYNs. To avoid these issues, several

TCP mechanisms have been proposed to allow data to be in-

cluded in the initial handshake; however, these mechanisms

were designed with different goals in mind, and none enjoy

wide deployment due to a variety of compatibility and/or se-

curity issues [11, 12, 16].
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Figure 1: TCP handshake time as a percentage of total

HTTP request latency for Google.com. For the “All Req”

category, handshake time is amortized over all HTTP re-

quests for the Google service in question.

In this paper we propose a new TCP mechanism called

TCP Fast Open (TFO) that enables data to be exchanged

safely during TCP’s initial handshake. At the core of TFO

is a security cookie that is used by the server to authenticate

a client that is initiating a TFO connection. We describe the

details of TFO, including how it exchanges data during the

handshake, the protocol used for TFO cookies, and socket

API extensions to enable TFO. In addition, we analyze the

security of TFO and examine both the potential for new se-

curity vulnerabilities and their mitigation. We also describe

our implementation of TFO in the Linux kernel and in the

Chrome web browser and present the performance gains we

see in our testbed experiments. Finally we examine deploy-

ment issues and related approaches.

2. MOTIVATION

Latency and page load time are important factors that in-

fluence user satisfaction with a website. Even small improve-

ments in latency lead to noticeable increases in site visits

and user satisfaction, and result in higher revenues [3, 6,

5]. While it is well known that small objects dominate web

flows today, we sought to better understand the actual perfor-

mance characteristics of today’s flows and the performance

bottlenecks they experience. To do so, we analyzed both

Google web server logs and Chrome browser statistics to

demonstrate that TCP’s handshake is a key performance bot-

tleneck for modern web transfers. Our intent is to highlight

this practical problem through the analysis of large scale data

and to estimate the potential benefits of TFO.

2.1 Google Server Logs Analysis

We begin by analyzing latency data from Google web

server logs to study the impact of TCP’s handshake on user-

perceived HTTP request latency. We sampled a few billion

HTTP requests (on port 80) to Google servers world-wide

over 7 consecutive days in June 2011. These included re-

quests to multiple Google services such as search, email, and

photos. For each sampled request, we measured the latency

from when the first byte of the request is received by the

server to when the entire response is acknowledged. If the re-

quest is the first one of the TCP connection, this latency also

includes the TCP handshake time since the browser needs

to wait for the handshake to complete before sending the re-

quest. Note that our latency calculation includes both server

processing time and network transfer time.

We define requests sent on new TCP connections as cold

requests and those that reuse TCP connections as warm re-

quests. We segregate requests by service and compute the

fraction of time spent on TCP handshakes for cold requests.

Similarly, we compute the amortized cost of TCP handshakes

over both cold and warm requests for each service. The re-

sults shown in Figure 1 indicate that TCP handshakes ac-

count for 8% to 28% of the latency of cold requests for most

services. Even the amortized cost for handshakes accounts

for 5-7% of latency across both cold and warm requests, in-

cluding photo services where the average response size is

hundreds of kilobytes. (The only exception is Gmail because

it downloads javascript upon a cold request and reuses the

same connection for many subsequent warm requests.)

The cost of TCP handshakes is surprisingly high given

that 92% of the requests that we see use HTTP/1.1 which

supports persistent HTTP connections. Moreover, Google

web servers keep idle connections open for several minutes.

In theory, most requests should reuse existing TCP connec-

tions to minimize the penalty of a TCP handshake, but our

analysis indicates this may not be happening. In order to

understand if this problem persists for other web sites and

what its cause(s) might be, next we analyze statistics from

the Chrome web browser.

2.2 Chrome Browser Statistics

We processed Chrome browser statistics for 28 consecu-

tive days in 2011; these only cover Chrome users who have

opted into statistics collection and only contain anonymized

data such as latency statistics. The statistics do however cover

requests to all websites and not just Google services. Across

billions of sampled HTTP latency records, we found that

over 33% of requests made by Chrome are sent on newly

created TCP connections even though it uses HTTP 1.1 per-

sistent connections. The restricted effectiveness of persistent

connections is due to several factors. Browsers today often

open tens of parallel connections to accelerate page down-

loads, which limits connection reuse. Domain sharding or

the placement of resources on different domains by content

providers to increase parallelism in loading web pages also

exacerbates this issue. In general, hosts and middle-boxes

(NATs) also terminate idle TCP connections to minimize

resource usage. The middle-box issue may be partly miti-

gated by using TCP keepalive probes, but this could be pro-
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Figure 2: CDF of the HTTP transaction network latency

for Chrome Windows users. The Y-axis is the cumulative

distribution of HTTP requests in percentiles. “Cold Req”

and “Cold Req no Hsk (sim)” refer to requests that need

to open new TCP connections, but the latter excludes

TCP connect time. “All Req” refers to all requests, in-

cluding both HTTP and HTTPS.

hibitively power hungry on mobile devices [32]. Major mo-

bile browsers close idle connections after mere seconds to

conserve power.

To understand the latency impact of waiting for TCP’s

handshake to complete before transferring data, we plot the

distribution of HTTP transaction network latency for cold

requests and all requests in Figure 2. We measured network

transaction latency from the time the browser schedules a re-

quest to the time it receives the entire response. If the browser

does not have an idle TCP connection available to serve the

request, it attempts to open a TCP connection. Thus TCP’s

handshake time is included in the network latency. Chrome

also has a limit of 6 parallel connections per domain.

Figure 2 reveals that cold requests are often over 50%

slower when compared to all requests in the same percentile.

For example, the median latencies of cold requests and all

requests are 549ms and 308ms, respectively. Many factors

including DNS lookup, TCP slow-start, SSL handshake, and

TCP handshake, may contribute to this slowdown. To isolate

the cost of the TCP handshake, we plot network transaction

latencies of cold requests excluding TCP handshake time.1

This simulated distribution, labeled as “Cold Req no Hsk” in

the figure, suggests that TCP handshake accounts for up to

25% of the latency between the 10th and 90th percentiles.

Thus the results of our analysis of both Google server logs

and Chrome browser statistics suggest that sending an HTTP

request and response during a TCP handshake can signifi-

cantly improve HTTP transaction performance.2

1We measure TCP handshake time by the time it takes to finish the
connect() system call in Chrome.
2We note that our estimates from Google server logs (which con-

3. DESIGN

Our measurement results support the notion that eliminat-

ing one round trip from a web flow can provide immediate,

measurable performance gains. However, it may be instruc-

tive to first consider the constraints we designed within and

the assumptions we made while working on TCP Fast Open.

3.1 Context and Assumptions

The current TCP specification actually allows a client to

include data in its SYN packet when initiating connections to

servers, but forbids the servers from delivering the data to ap-

plications until the 3-way handshake (3WHS) completes [7].

Suppose for the moment that we were to remove this re-

striction, and simply enable ordinary TCP-based client ap-

plications to send HTTP GET requests in TCP SYN packets

and servers to respond with data in their TCP SYN-ACK

packets. While this would trivially meet the needs of TCP

Fast Open, it would open the protocol up to a straightfor-

ward denial-of-service attack of both the server and arbitrary

hosts: an attacker or set of attackers could send HTTP GET

requests to a server while spoofing the source address of a

victim host, thereby causing the server both to perform po-

tentially expensive request processing and to send a poten-

tially large response to a victim host. Thus we must build

security mechanisms into TFO to protect both the server and

other hosts from such attacks.

Our goal in designing TCP Fast Open was to enable each

end of a TCP connection to safely transmit and process any

received data while the 3WHS is still in progress. However,

there are several other constraints that we kept in mind and

assumptions that we were forced to make. For example, the

TCP initial handshake is designed to deal with delayed or

duplicate SYN packets received by a server and to prevent

such packets from creating unnecessary new connections on

the server; server applications are notified of new connec-

tions only when the first ACK is received from the client.

We found that to manage stale or duplicate SYN packets

would add significant complexity to our design, and thus

we decided to accept old SYN packets with data in some

rare cases; this decision restricts the use of TFO to applica-

tions that are tolerant to duplicate connection / data requests.

Since a wide variety of applications can tolerate duplicate

SYN packets with data (e.g. those that are idempotent or per-

form query-style transactions), we believe this constitutes an

appropriate tradeoff.

Similarly, we make several assumptions about the setting

in which TFO is deployed. We assume that servers cannot

maintain permanent or semi-permanent per-client state since

this may require too much server memory, and that servers

may be behind load balancers or other such network devices.

A stateless-server design is more desirable in this setting as

it keeps state-management complexity to a minimum.

cern only requests for google.com) and Chrome browser statistics
(which are across the web) differ likely because Google has a lower
RTT and processing time than many other websites.



We also assume that servers cannot perform any opera-

tions to support TFO that are not reasonable to implement

on the kernel’s critical path (e.g. symmetric cryptography is

possible, but asymmetric is not). We assume that clients are

willing to install new software to support TFO and that small

changes to applications are acceptable. Finally, we assume

that it is acceptable to leverage other security mechanisms

within a server’s domain (if needed) in concert with TFO to

provide the required security guarantees.

3.2 Design Overview

Our primary goal in the design of TFO is to prevent the

source-address spoofing attack mentioned above. To prevent

this attack, we use a security “cookie”. A client that wishes

to use TFO requests a cookie—an opaque bytestring—from

the server in a regular TCP connection with the TFO TCP

option included, and uses that cookie to perform fast open in

subsequent connections to the same server. Figure 3 shows

the usage of TFO. We begin by listing the steps a client per-

forms to request a TFO cookie:

1. The client sends a SYN packet to the server with a Fast

Open Cookie Request TCP option.

2. The server generates a cookie by encrypting the client’s

IP address under a secret key. The server responds to

the client with a SYN-ACK that includes the generated

Fast Open Cookie in a TCP option field.

3. The client caches the cookie for future TFO connec-

tions to the same server IP.

To use the fast open cookie that it received from a server, the

client performs the following steps:

1. The client sends a SYN with the cached Fast Open

cookie (as a TCP option) along with application data.

2. The server validates the cookie by decrypting it and

comparing the IP address or by re-encrypting the IP

address and comparing against the received cookie.

(a) If the cookie is valid, the server sends a SYN-

ACK that acknowledges the SYN and the data.

The data is delivered to the server application.

(b) Otherwise, the server drops the data, and sends

a SYN-ACK that only acknowledges the SYN se-

quence number. The connection proceeds through

a regular 3WHS.

3. If the data in the SYN packet was accepted, the server

may transmit additional response data segments to the

client before receiving the first ACK from the client.

4. The client sends an ACK acknowledging the server

SYN. If the client’s data was not acknowledged, it is

retransmitted with the ACK.

5. The connection then proceeds like a normal TCP con-

nection.

3.3 Cookie Design

The TFO cookie is an encrypted data string that is used

to validate the IP ownership of the client. The server is re-

sponsible for generation and validation of TFO cookies. The

client or the active-open end of a connection simply caches

TFO cookies and returns these cookies to the server on sub-

sequent connection initiations. The server encrypts the source

IP address of the SYN packet sent by the client and gener-

ates a cookie of length up to 16 bytes. The encryption and

decryption / validation operations are fast, comparable to the

regular processing time of SYN or SYN-ACK packets.

Without the secret key used by the server upon cookie

generation to encrypt the client’s IP address, the client can-

not generate a valid cookie. If the client were able to gener-

ate a valid cookie this would constitute a break of the under-

lying block cipher used for encryption. The server periodi-

cally revokes cookies it granted earlier by rotating the secret

key used to generate them. This key rotation prevents ma-

licious parties from harvesting many cookies over time for

use in a coordinated attack on the server. Also, since client

IP addresses may change periodically (e.g. if the client uses

DHCP), revoking cookies granted earlier prevents a client

from mounting an attack in which it changes its IP address

but continues to spoof its old IP address in order to flood the

new host that has that old address.

3.4 Security Considerations

TFO’s goal is to allow data exchange during TCP’s ini-

tial handshake while avoiding any new security vulnerabili-

ties. Next we describe the main security issues that arise with

TFO and how we mitigate them.

3.4.1 SYN Flood / Server Resource Exhaustion

If the server were to always allow data in the SYN packet

without any form of authentication or other defense mech-

anisms, an attacker could flood the server with spurious re-

quests and force the server to spend CPU cycles processing

these packets. Such an attack is typically aimed at forcing

service failure due to server overload.

As noted earlier, TFO cookie validation is a simple oper-

ation that adds very little overhead on modern processors. If

the cookies presented by the attacker are invalid, the data in

the SYN packets is not accepted. Such connections fall back

on regular TCP 3WHS and thus the server can be defended

by existing techniques such as SYN cookies [19].

If the cookies that the attacker presents are valid—and

note that any client can get a cookie from the server—then

the server is vulnerable to resource exhaustion since the con-

nections are accepted, and could consume significant CPU

and memory resources on the server once the application is

notified by the network stack. Thus it is crucial to restrict

such damage.

To this end, we leverage a second mechanism: the server

maintains a counter of total pending TFO connection re-

quests either on a per service port basis or for the server
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Figure 3: TFO connection overview

as a whole. This counter represents TFO connections that

have been accepted by the server but that have not been mi-

grated to the fully-established TCP state, which occurs only

after receiving the first ACK from the peer (completion of

3WHS). When the number of pending TFO connections ex-

ceeds a certain threshold (that is administratively set), the

server temporarily disables TFO and any incoming TFO re-

quests fall back on regular 3WHS. This allows the usual

SYN flood defense techniques [19] to prevent further dam-

age until the pending TFO requests falls below the threshold.

This limit makes it possible for an attacker to overflow the

limit and temporarily disable TFO on the server, but we be-

lieve that this is unlikely to be of interest to an attacker since

this would only disable the TFO “fast path” while leaving

the service intact.

There is another subtle but important difference between

TFO and a regular TCP handshake. When SYN flood attacks

originally broke out in the late 1990s, they were aimed at

overflowing the short SYN backlog queues on servers that

were used to store information about incoming connection

requests until the completion of 3WHS. In such an attack,

the attacker sends a stream of SYN packets with spoofed

source IP addresses until this SYN queue fills up. This causes

new SYN packets to be dropped, resulting in service dis-

ruption. The attacker typically uses spoofed source IP ad-

dresses that are non-responsive; otherwise, the SYN-ACK

would trigger a TCP RST from the host whose IP has been

spoofed. The TCP RST packet would terminate the con-

nection request on the server and free up the SYN queue,

thereby defeating the attack.

With TFO, such RST packets from spoofed hosts would

fuel the damage since the RST will terminate the pending

TFO request on the server, allowing another spoofed TFO

connection request to be accepted. To defend against this,

any pending TFO connections that get terminated by a RST

should continue to be counted against the threshold for pend-

ing TFO connections described previously until a timeout

period has passed.

3.4.2 Amplified Reflection Attack

While regular TCP restricts the response from a server to

just one SYN-ACK packet, TFO allows the server to send a

stream of data packets following the SYN-ACK to the source

IP address of the SYN packet. If not for the TFO cookie, this

could be used by an attacker to mount an amplified reflection

attack against any victim of choice.



As mentioned in the previous section, the number of pend-

ing TFO connections on the server has a system limit, so

the server is protected from resource exhaustion beyond the

limit. This system limit also bounds the damage that an at-

tacker can cause through reflection from that server. How-

ever, the attacker can still create a reflection attack from a

large number of servers to a single victim host as follows.

First, the attacker has to steal or otherwise obtain a valid

cookie from the target victim. This likely requires the at-

tacker to compromise or collude with the victim host or net-

work. If the victim host is already compromised, the attacker

would likely have little value in mounting a reflection at-

tack against the host itself, but the attacker might still be in-

terested in mounting the attack to disrupt the compromised

host’s network. The stolen cookie is valid for a single server,

so the attacker has to steal valid cookies from a large num-

ber of servers and use them before they expire to cause a

noticeable impact on the compromised host’s network.

We argue that if the attacker has already compromised the

target network or host, then the attacker could directly start

flooding the network from the compromised host without the

use of a reflection attack. If servers still want to mitigate such

an attack, one possible defense is to wait for the 3WHS to

complete before sending data to the client. The server would

still accept data in the SYN packet and allow the application

to process it, but would make sure it is a valid connection—

that is, 3WHS completes before sending the response to the

client. For many applications this modification would yield

little slowdown versus standard TFO as server processing

time is often greater than the RTT of the connection.

3.5 Handling Duplicate SYN Segments

The current TCP standard allows SYNs to carry data but

forbids delivering the data to the application until the con-

nection handshake is completed in order to handle duplicate

SYNs. Although TFO does not retransmit SYNs with data,

it’s possible that the network duplicates SYN packets with

data, causing the data to be replayed at the server. Suppose

a TFO client sends a SYN with data and actively closes the

connection before the duplicate SYN arrives at the server.

The server, being passively closed, does not retain any state

about the closed connection, so accepts the duplicate SYN

and processes (replays) the data. If the duplicate is gener-

ated within a 2MSL timeout, the server is likely to termi-

nate the connection after receiving an RST since the client

would process the server’s SYN/ACK in the TIME WAIT

state. Nevertheless, the request will have been replayed.

One heuristic to address this is to extend the LAST ACK

state for 2MSL duration at the server (the passive close side)

after receiving the final ACK from the client. This prevents

some delayed duplicate packets from reaching the server ap-

plication. Applications that are particularly intolerant to du-

plicate transactions, such as credit card transactions or bank-

ing applications, already have application-level measures to

ensure idempotence. Alternatively, they can use a nonce to

sd = socket(...);

bind(sd, ...);

int tfo_opt = 1;

setsockopt(sd, SOL_TCP, TCP_LISTEN_TFO,

(void*)&tfo_opt, 4);

listen(sd, ...);

Figure 4: Server application sample code.

ensure that a transaction occurs only once. This challenge al-

ready exists today in another form: users often click refresh

in web browsers if a page does not load quickly, resulting in

duplicate transactions.

3.6 API Changes

One of our design goals was to avoid changes to socket

libraries and to reuse existing APIs as much as possible. This

minimizes changes to applications that wish to use TFO and

poses less of a deployment hurdle.

The server-side API to use TFO is extremely simple. A

server application enables TFO for incoming connections to

a listening socket simply by enabling a new socket option.

Figure 4 shows sample code to enable TFO on the server.

The remaining socket calls (i.e. listen(), accept(),

send(), recv(), etc.) remain unchanged.

On the client side, using TFO requires the application to

provide a destination IP address and port number, as well as

the data to send. The sendto() and sendmsg() system

calls already provide such an interface; we extend them for

use with TFO. When these system calls are used on a regu-

lar TCP socket, the destination address is ignored and they

behave just like a send() call. When the new TFO flag is

set, these calls are modified to initiate a TFO connection.

If the TFO cookie for the destination IP address is avail-

able, a SYN packet with the cookie and data is sent to initiate

the TFO connection; the network stack handles this decision

without the application’s intervention. If the cookie is not

available, it falls back on a regular TCP three-way handshake

and the data is queued up for transmission when the 3WHS

is completed. The SYN packet in this case also includes a

TCP option requesting a TFO cookie from the server for

later use. In general, the use and handling of TFO cookies

is done by the networking stack and is completely transpar-

ent to the application. Therefore no API is needed to expose

them. After the first sendmsg() or sendto() call, the

rest of the socket calls from the application are unmodified.

The modified sendto() and sendmsg() calls return

the number of bytes of data queued up in the kernel or sent

in the SYN packet. They can be used with blocking or non-

blocking sockets and their return values upon error are a

combination of the error messages returned by send() and



sd = socket(...);

char msg[16] = "Hello TFO World";

send_len = sendto(sd, msg, 15, MSG_TFO,

server_addr, addr_len);

Figure 5: Client application sample code. The

sendto() call with MSG TFO flag combines

connect() and send() functionalities.

connect(). Figure 5 shows sample code that a client ap-

plication can use to connect to a server using TFO.

Besides these, one could imagine additional less critical

APIs that could be provided to expose TFO information re-

lated to the connection, such as whether a connection was

opened through a regular handshake or TFO, and whether a

TFO attempt to a server succeeded; APIs to set TFO secret

keys and flush the TFO cache might also prove useful.

The TFO cookie handling is transparent to applications

and the cookies received by a client from a server are not

directly readable by applications unless they have root priv-

ileges to sniff packets on the client. This prevents malicious

sites from using simple browser hacks to trick users by mak-

ing connections to other websites and stealing those TFO

cookies for mounting an amplified reflection attack.

4. DEPLOYABILITY

Given that the main goal of TFO is improving the perfor-

mance of short transfers such as the retrieval of web objects,

being compatible with today’s network architecture is key.

Thus we designed TFO for incremental deployment. In do-

ing so, we enabled it to gracefully fall back on standard TCP

to ensure that current and future TCP connections can pro-

ceed in response to unexpected network events. In this sec-

tion, we discuss the challenges of incremental deployability

and our responses to these challenges.

4.1 New TCP options / data in SYN

Our primary deployment concern with TFO is regarding

how Internet routers, middle-boxes, end-hosts, and other en-

tities will handle new types of TCP packets such as those

with new TCP options, SYN packets with data, and the like,

as such packets are unusual in today’s networks. One study

found that some middle-boxes and hosts drop packets with

unknown TCP options [23]. A more recent study found that

0.015% of the top 10,000 websites do not respond with a

SYN-ACK after receiving a SYN with a non-standard or

new TCP option [15]. Another study found that 6% of probed

paths on the Internet drop SYN packets containing data [22].

If a SYN packet with TCP Fast Open option set does not

elicit a response within the timeout period (regardless of

where it is dropped), we simply retransmit the SYN with-

out any data or non-standard TCP options. In doing so, TFO

falls back on a regular TCP 3WHS and connectivity with

the server is not lost. The client also caches the RTT to the

server in its cookie cache and sets the SYN retransmit time-

out to 1.5 × RTT , thereby reducing the ordinarily longer

SYN timeout. If TFO fails repeatedly to a given server, the

client remembers the server’s IP address and disables TFO

for that server in the future.

4.2 Server Farms

Given that many large web services place servers in server

farms, another point of concern for us is how TFO would be

used at such data centers. A common setup for server farms

is for many servers to be behind a load balancer, sharing the

same server IP. Client TCP connections are load balanced to

different physical hosts, often without any stored state about

previous connections from the same client IP. Clients cache

the TFO cookie based on a server’s IP; TFO connections

from a particular client might be load balanced to a physical

server different from the one that granted the TFO cookie.

We use TFO in this setting by sharing a common secret key

(used for encrypting and decrypting TFO cookies) among

all the servers in the server farm. Secret key updates to the

servers are made at about the same time on all the servers.

4.3 Network Address Translation (NAT)

Network Address Translation (NAT) is another challenge

for TFO. Hosts behind a single NAT sharing the same public

IP address are granted the same cookie for the same server;

nevertheless, the clients can all still use TFO. However some

carrier-grade NAT configurations use different public IP ad-

dresses for new TCP connections from the same client. In

such cases, the TFO cookies cached by the client would not

be valid and the server would fall back on a regular 3WHS

and reject any data in the SYN packet. Despite this, since

the server would reply with an ordinary SYN-ACK, the use

of TFO in this scenario would not cause any latency penalty

versus an ordinary TCP connection.

4.4 TCP Option Space

The availability of TCP option space in the SYN and SYN-

ACK packets is an issue since many options are negotiated in

these packets. We analysed the connections seen at Google’s

web servers and found that over 99% of incoming client con-

nections had sufficient option space to accommodate a TFO

cookie option with an 8 or 16 byte cookie in the SYN pack-

ets. Therefore, this is unlikely to be a concern for web traffic.

If other types of traffic use certain long TCP options (e.g.

the TCP MD5 option), and space is insufficient in the TCP

options field to accommodate the TFO cookie, the connec-

tion can safely fall back on regular 3WHS.

5. IMPLEMENTATION

We implemented TCP Fast Open in the Linux 2.6.34 ker-

nel and are in the early stages of deploying it across Google.

The entire kernel patch is about 2000 lines of code with



about 400 lines used for the client side TFO cookie cache.

We also coordinated with the developers of Chrome to im-

plement TFO support within the browser.

5.1 Kernel support

While the Linux TCP stack required fairly deep modi-

fication, a key aspect to both the design and implementa-

tion of TFO is that it does not affect TCP congestion con-

trol. That is, since congestion control only takes place after

TCP’s handshake completes, and TFO is only in use during

the handshake, the two are entirely separate. Thus we did not

have to modify any code relating to congestion control in the

Linux kernel. Also note that the maximum number of data

segments that a server can send before getting acknowledge-

ments from the client is dictated by the initial congestion

window and receiver window, but that neither of these values

are affected by TFO. Our modifications included alterations

to incoming packet handling in the LISTEN, SYN SENT,

and SYN RCVD states and to the routines that transmit TCP

packets (to include appropriate options as required for TFO).

Our implementation uses a fixed size, 8 byte TFO cookie.

We use the 128-bit (16 byte) AES block cipher implemen-

tation available in the Linux Kernel CryptoAPI to encrypt

each client IP value; we truncate the result to 8 bytes to gen-

erate the cookie. We pad IPv4 client IP addresses with zeros

to create a 16 byte IP value while IPv6 addresses are used

in full. To validate the cookie contained within an incoming

TFO request, the server recomputes the 8 byte cookie value

based upon the incoming source IP address and compares

it to the cookie included by the client. The cookie genera-

tion and validation operations add cryptographic processing

overhead on the server. Many modern processors include

AES instructions in hardware and a single CPU core can

support tens of thousands of 16-byte AES encryptions per

second [20]. This is greater than the connection acceptance

rate of many modern servers, and the processing overhead

for this cryptographic operation is only a small fraction of

typical connection processing time.

For the cookie cache—which is used by client hosts’ net-

work stacks—we implemented a simple LRU policy that

caches cookies, RTT, and MSS by server IP. While we found

that this policy worked well, this cache replacement policy

is not in any way tied to the protocol.

5.2 Application support

Only small changes are required in user level applications.

Server side applications need just a single additional line of

code: a call to setsockopt() to set the TFO socket op-

tion for the listen socket. Client side applications must re-

place connect() and the first send() call with a single

call to sendto() with the appropriate flags. In addition to

using TCP Fast Open within our own custom socket pro-

grams, the Chrome web browser was also modified to use

TFO, as was the web server with which we performed tests.

6. EVALUATION

In this section we evaluate the performance improvement

conferred by TCP Fast Open in two contexts. First, we mea-

sure the whole-page download gains seen by a TFO-enabled

Chrome browser visiting popular websites. Second, we mea-

sure the more surprising performance benefits of TFO on the

server side.

6.1 Whole Page Download Performance

The primary goal of TFO is to eliminate one RTT of extra

latency, thereby improving the performance of short flows.

This is particularly important for cold HTTP requests. In

Section 2, we estimated, based upon Chrome browser statis-

tics, that TFO could improve HTTP transaction latency by

up to 25%. Here we ask a more general question: how much

does TFO speed up whole-page downloads? Unfortunately,

this question does not have a straightforward answer. On av-

erage, major web pages consist of 44 resources distributed

across 7 different domains [25], and modern browsers have

complex scheduling routines to fetch these resources using

multiple parallel TCP connections.

First, we benchmarked several popular websites from the

Alexa top 500 websites list [1]. The testbed for these ex-

periments consists of a single machine (Intel Core 2 Quad

CPU 2.4GHz, 8GB RAM) that runs our TFO-enabled Linux

kernel and Chrome browser. We used the Google web page

replay tool to benchmark the web page download latency

for TFO-enabled Chrome and for standard Chrome [4]. The

page replay tool has two modes: record and replay. In record

mode, the tool passively records all DNS and TCP traffic

sent from and received by the browser into a local database.

In replay mode, the tool runs a DNS server on the local ma-

chine and redirects the browser’s HTTP requests to the local

proxy run by the tool. The replay can also leverage dum-

mynet to emulate different network delays, bandwidths, and

random packet loss [26]. All connections during replay use

the loopback interface with a reduced MTU of 1500 bytes.

In our experiment, we emulated a broadband user with

4Mbps downlink and 256Kbps uplink bandwidth and with

a 128KB buffer; this is a popular configuration as found by

Netalyzer [21]. First, we used the tool to record the home

pages of Amazon.com, the New York Times, the Wall Street

Journal, and the Wikipedia page for TCP3. We then replayed

each web page 20 times with and without TFO support in

Chrome, and did so with three different RTTs: 20ms, 100ms,

and 200ms. Therefore, for each page we gathered 120 sam-

ples. For each replay we performed a cold start of the browser

and used a new user configuration folder (with an empty

cache) to avoid caching effects and persistent connections to

the replay tool’s proxy. Since all connections use the loop-

back interface, the TFO-enabled browser always has a valid

TFO cookie and thus sends the cold HTTP requests in the

SYN packet.

3http://en.wikipedia.org/wiki/Transmission Control Protocol



Page RTT(ms) PLT : non-TFO (s) PLT : TFO (s) Improv.

amazon.com

20 1.54 1.48 4%

100 2.60 2.34 10%

200 4.10 3.66 11%

nytimes.com

20 3.70 3.56 4%

100 4.59 4.30 6%

200 6.73 5.55 18%

wsj.com

20 5.74 5.48 5%

100 7.08 6.60 7%

200 9.46 8.47 11%

TCP wikipedia page

20 2.10 1.95 7%

100 3.49 2.92 16%

200 5.15 3.03 41%

Table 1: Average page load time (PLT) in seconds for various pages for an emulated residential broadband user with

a 4Mbps/256Kbps link. In all tests, the standard deviations of the PLT are within 5% of the average except for ama-

zon.com with 20ms RTT (7%).

Thus for each replay with TFO-enabled browsing, we em-

ulated a user with an empty browser cache visiting the web-

site with TFO-enabled servers. For each page, the browser

reports the page load time (PLT) that is measured from when

the browser starts processing the URL until the browser on-

load event begins [30].4 The PLT includes HTTP redirects,

accessing the local cache, DNS lookups, HTTP transactions,

and processing the root document. The results of the re-

plays are shown in Table 1. As expected, TFO improves

the PLT when the RTT is high for all the sites we tested.

When the RTT is small and the network delay is only a

small fraction of PLT, the resource processing time would

exceed network time, so the gains from TFO are expected

to be small. But even for pages heavy on content and with

short emulated RTT (i.e. 20ms), TFO accelerates PLT by

4–5%. Conversely, for simpler pages such as wikipedia, the

browser spends most of its time waiting for network trans-

fers rather than processing the retrieved content, and thus

TFO offers significant improvements of 16% and 41% with

100ms and 200ms RTTs respectively. The 200ms RTT fig-

ures roughly correspond to the expected performance on mo-

bile devices since mobile RTTs are typically on the order of

100–200ms [27].

6.2 Server performance

To measure the impact of TFO on the server, we wrote a

client program that generates HTTP 1.0 requests at a con-

stant rate to an Apache server and fetches a 5KB web page.

We used client and server machines with configurations sim-

ilar to that in Section 6.1 and connected them through a

Gigabit Ethernet switch; the RTT between them was about

100µs. We limited the server machine to only use one CPU

core and measured the CPU utilization using OProfile to

4To extract the PLT from Chrome, we opened the browser’s
javascript console and entered “performance.timing.loadEventEnd
- performance.timing.navigationStart”.
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evaluate the overhead added by cookie generation/validation

operations and other TFO related processing. At each re-

quest rate, we measured the average CPU utilization across

four 5 minute long trials for regular TCP and TFO. Figure 6

shows that server CPU utilization is nearly the same with and

without TFO—in fact the CPU utilization was marginally

lower when using TFO between 2000 and 5000 requests

per second. We attribute this to the fewer packets that the

server has to process when TFO is enabled as the request is

included in the SYN packet. The AES encryption function

used for cookie validation accounted for less than 0.3% of

CPU utilization even at 6000 requests per second.

To further stress the connection setup process, we created

another client load generator that repeatedly makes TFO con-

nections to the server and requests the default Apache home

page. This server response fits within a single response packet

thereby making the connection handshake a significant frac-

tion of the entire connection. The client program operates in



a closed loop and maintains one outstanding request to the

server at any time; it creates a new connection to the server

and sends another request as soon as it receives one com-

plete HTTP response. With regular TCP, the server was able

to sustain an average rate of 2876.4 transactions per second.

Surprisingly, with the use of TFO, the server’s sustained rate

rose to 3548.7 transactions per second. This result is likely

due to several factors: (1) one RTT saved per request, (2)

fewer CPU cycles spent by the server to process each re-

quest (as the request is received in the SYN packet itself),

and (3) one system call saved per request on the client.

7. DISCUSSION

Over the past year that we have spent discussing, design-

ing, and implementing TCP Fast Open we have considered

several alternative approaches to the design of TFO cookies,

to the semantics of TFO, and to server-side attack mitiga-

tion. Here we consider those approaches and discuss their

benefits and drawbacks.

7.1 One Time Cookies

To prevent attacks in which a host reuses a cookie or cook-

ies that it collects either legitimately or illegitimately, next

we discuss an alternative design approach that we consid-

ered but ultimately did not implement (largely to keep the

mechanism as simple as possible). In this approach, each

TCP Fast Open cookie is valid for only one Fast Open. A

client that wants to do more than one Fast Open must request

more cookies to perform those subsequent Fast Opens. All

open TCP connections (regardless of how they were opened)

would have a limitation that they can only issue one Fast

Open cookie for the lifetime of the connection, and that a

cookie cannot be issued until the server has received at least

one ACK from the client—this maintains a one-to-one rela-

tionship between the number of currently valid cookies is-

sued for a client-server pair and the number of TCP hand-

shakes the pair have completed at some time.

Thus, a client host would a) open a connection with a nor-

mal three-way handshake, b) request a one-time Fast Open

cookie, c) proceed as usual with the connection and eventu-

ally close it, d) open a new connection using its Fast Open

cookie, and e) request a new cookie during this new connec-

tion. Clients that wish to open parallel TFO connections to

a server would acquire multiple cookies to the same server

across multiple regular TCP handshakes. In the (client) ker-

nel, this approach would change the abstraction slightly, from

a one-to-one mapping from server IP to cookie to a set map-

ping of server IP to a set of cookies; this change would not

affect applications.

To implement one-time cookies, the zero-padding used

for IPv4 addresses would be replaced by a 64-bit unsigned

integer counter during cookie computation, thus the cookie

would be the encryption of the concatenation of the server

IP, client IP, and counter. This ensures that each cookie is

unique, even for the same client-server pair. In this design,

there need only be one counter per server, which is incre-

mented whenever a Fast Open cookie is issued to any host.

There are several methods that could be used to prevent

cookie reuse. Standalone servers would keep a lookup table

to make sure that a cookie isn’t reused in some small time

window (e.g. a few minutes), and if it is, the server would

fall back on a normal handshake. For servers behind load

balancers, the load balancers could either do the same or, al-

ternatively, could always hash the cookie value consistently

to a destination backend server, thereby ensuring that if a

cookie is reused then the same server will receive the du-

plicate requests, so the client(s) will be caught. If no load

balancer modification is possible—as may be the case for

large production web services—two options are possible: a)

the service simply allows for a cookie to be reused n times

where n is the number of servers behind a load balancer or

b) the servers behind a load balancer periodically exchange

information about recently seen cookies.

While this one-time cookie approach is more complex, it

may have the benefit of thwarting some amplification and re-

source exhaustion attacks. Standalone servers or server farms

with load balancers modified as described above would also

have another benefit of providing TCP’s usual semantics and

not be exposed to the duplicate SYN issue since the cookie

in a duplicate SYN would be rejected.

7.2 Data after SYN

Some applications may require the transmission of initial

data requests that cannot fit in a single packet. Thus the room

provided by TFO in the SYN packet may be insufficient. Our

TFO protocol design can easily support transmission of ad-

ditional data packets following a TFO-enabled SYN packet

(before receiving a SYN-ACK from the server). However

these data packets would have the ACK flag unset since the

initial sequence number of the server is unknown until the re-

ceipt of the SYN-ACK. Our experiments revealed that Inter-

net paths originating at several major ISPs drop data packets

without the ACK flag. In order to not introduce any addi-

tional deployment constraints, we decided to disallow data

packets sent by the client following a TFO-enabled SYN

packet. This effectively limits the amount of data to be sent

by the client during 3WHS to a single MSS; all this data

must fit within the initial SYN packet. This is sufficient for

many client applications such as HTTP web requests. The

server is not limited in this way, and thus will be able to send

up to what the advertised receive window in the client’s SYN

packet and TCP’s initial congestion window allow.

7.3 Server side TFO cache

TFO includes a counter of total pending TFO connection

requests on a per service port basis or for the whole server.

Therefore it is possible for an attacker to force the server

to disable TFO for all clients by flooding the server with

spurious TFO requests using a cookie it obtained itself or

using a stolen cookie from a compromised host.



The server can avoid disabling TFO for all clients by main-

taining a small cache of recently received TFO connection

requests from different client IP addresses. For each client IP

address in the cache, the server stores the number of pending

TFO connection requests from the client IP. If the pending

TFO requests from a particular client IP exceeds the admin-

istratively set threshold, the server can selectively disable

TFO for just that client IP address. The cache can store, for

example, 10,000 client IP addresses using a modest amount

of memory. The cache uses an LRU replacement policy.

The server would still have to maintain the global or lis-

tener port-level accounting to serve as the final defense, but

smaller thresholds may be used for individual client IP ad-

dresses. This is because a large number of compromised

hosts can mount a coordinated attack in which they over-

flow the server-side cache and thus the cache entries replaced

are those with the client IP addresses of other compromised

hosts which are also flooding the server with spurious re-

quests. Each client IP does not exceed the IP-level pend-

ing request threshold before its entry gets evicted from the

cache, but it soon sends more spurious requests and is added

to the cache again with its pending-requests counter reset.

The server side cache increases the number of valid cookies

that the attacker must steal to disable TFO for everyone, but

does not completely eliminate the possibility.

8. RELATED WORK

Several instances of prior work aim to improve TCP per-

formance by directly eliminating the three-way handshake,

or more generally by designing server-stateless extensions.

Here we attempt to place TCP Fast Open in context and

compare the design tradeoffs that motivated prior work and

motivate our work.

TCP Extensions for Transactions (T/TCP), among its other

features, bypasses TCP’s connection handshake, and thus

shares both the goals and the challenges of TFO [16]. T/TCP

focuses its effort on combating old or duplicate SYNs, and

does not aim to mitigate security vulnerabilities introduced

by bypassing 3WHS. Its TAO option and connection count

add complexity and require the server to keep state per re-

mote host, while still leaving it open for attack. It is possible

for an attacker to fake a congestion control value that will

pass the TAO test. Ultimately its scheme is insecure, as dis-

cussed by prior analyses [9, 8].

As we noted earlier, our focus with TFO is on its security

and practicality, and thus we made the design decision to al-

low old, duplicate SYN packets with data. We believe this

approach strikes the right balance, and makes TFO much

simpler and more appealing to TCP implementers and ap-

plication writers. While TFO’s vulnerability to SYN flood

attacks is no different from unmodified TCP, the damage an

attacker can inflict upon the server may be much worse, and

thus deserves careful consideration. Numerous prior studies

discuss approaches to mitigating ordinary SYN flood attacks

(that is, floods of SYNs without data) [19]. However, none

of these approaches, from stateless solutions such as SYN-

cookies to stateful solutions such as SYN Caches, can pre-

serve data sent along with SYNs while providing an effective

defense. Thus we concluded that the best defense is simply

to disable TFO when a host is suspected to be under a SYN

flood attack (e.g. when the SYN backlog is filled). Once TFO

is disabled, normal SYN flood defenses can be employed.

Like TFO, TCPCT also allows SYN and SYN-ACK pack-

ets to carry data, though TCPCT is primarily designed to

eliminate server state during the initial handshake and to de-

fend from spoofed DoS attacks [11]. Therefore, TCPCT and

TFO are designed to meet different needs and are not directly

comparable. A TCPCT-enabled server does not keep any

connection state during TCP’s initial handshake, and thus the

server-side application must consume the data in the SYN

and immediately produce the response data to be included in

SYN-ACK. Otherwise, the application’s response is forced

to wait until the handshake completes. This approach also

constrains the application’s response size to only one packet.

By contrast, TFO allows the server to respond to data during

the handshake even after the SYN-ACK is sent.

A recent proposal, Rapid-Restart [12], was proposed after

the TFO IETF draft and has similar goals. Rapid-Restart is

based on TCPCT; both the server and the client cache TCP

control blocks after a connection is terminated, deviating

from TCPCT’s original design goal of saving server mem-

ory. The client sends a SYN with data and the previously

stored TCPCT cookie. The server accepts the connection if

the cookie and the IP match its cached copies. Rapid-Restart

does not scale because it requires per-connection state at

the server. Moreover, Rapid-Restart cannot be used in server

farms because connection state is retained only by the server

that processed the last connection from the client, and a sub-

sequent connection from that client may be directed to a dif-

ferent server in the farm unless the load balancer is modified.

More recently Zhou et al. proposed ASAP which pro-

vides a solution to reduce DNS and eliminate TCP hand-

shake latency [33]. It employs public-key certificates issued

by a provenance verifier and signed by clients to ensure au-

thenticity of requests to a server. In doing so, it offers more

generality at the expense of computational overhead and in-

cremental deployability.

Since none of the proposals we have discussed above are

deployed, browser vendors have developed their own fea-

ture - “PRECONNECT” to avoid TCP handshake latency.

Chrome and Internet Explorer 9 maintain a history of the do-

mains for frequently visited web pages. The browsers then

speculatively pre-open TCP connections to these domains

before the user initiates any requests for them. Tests show

this feature improves overall page load time by 6-10% for

the top 35 websites [2, 13]. The downside of this approach is

that it wastes server and network resources by initiating and

maintaining idle connections due to mis-speculation; the hit

rate for these mechanisms is fairly low. TFO offers similar

performance improvement without the added overhead.



9. SUMMARY

To improve the performance of short transfers, we pro-

posed TCP Fast Open (TFO), which enables data to be ex-

changed safely during TCP’s initial handshake. Our analysis

of both Google server logs and Chrome browser statistics

shows that handshaking has become a performance bottle-

neck for web transfers. TFO enables applications to decrease

request latency by one round-trip time while avoiding se-

vere security ramifications. At the core of TFO is a security

cookie issued by the server to authenticate clients that ini-

tiate TFO connections. We believe that this cookie mecha-

nism provides an acceptable defense against potential denial

of service attacks. TFO is also designed to fall back grace-

fully on regular TCP handshaking as needed.

Our goal—of including data in TCP SYN and SYN-ACK

packets—is not novel. The TCP standard already allows it,

but forbids the receiver from processing the data until the

handshake completes. Several recent proposals achieve sim-

ilar goals to TFO but have not seen wide deployment. The

main contribution of TFO is the simplicity of its design, al-

lowing rapid and incremental deployment while maintaining

reasonable defense against denial-of-service attacks. We be-

lieve TFO interoperates well with existing TCP implemen-

tations, middle-boxes, server farms, and legacy server and

client applications.

We have implemented TFO in the Linux kernel and shown

that it imposes minimal performance overhead for clients

and servers, with significant latency improvement for short

transfers. Our analysis and testbed results show that TFO can

improve single HTTP request latency by over 10% and the

overall page load time from 4% to 40%. We have submitted

an Internet draft to the IETF [17] and are in the process of

deploying TFO on Google servers. We are also publishing

our implementation for inclusion in the Linux kernel.
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