TCP Fast Open

Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain

Google

sivasankar@cs.ucsd.edu, {ycheng, hkchu, arvind}@google.com

ABSTRACT

Today’s web services are dominated by TCP flows so short
that they terminate a few round trips after handshaking; this
handshake is a significant source of latency for such flows. In
this paper we describe the design, implementation, and de-
ployment of the TCP Fast Open protocol, a new mechanism
that enables data exchange during TCP’s initial handshake.
In doing so, TCP Fast Open decreases application network
latency by one full round-trip time, decreasing the delay ex-
perienced by such short TCP transfers.

We address the security issues inherent in allowing data
exchange during the three-way handshake, which we miti-
gate using a security token that verifies IP address owner-
ship. We detail other fall-back defense mechanisms and ad-
dress issues we faced with middleboxes, backwards compat-
ibility for existing network stacks, and incremental deploy-
ment. Based on traffic analysis and network emulation, we
show that TCP Fast Open would decrease HTTP transaction
network latency by 15% and whole-page load time over 10%
on average, and in some cases up to 40%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network Com-
munications; C.2.2 [Network Protocols]: TCP/IP

General Terms

Design, Performance, Reliability, Security

1. INTRODUCTION

While web pages have grown significantly in recent years,
network protocols have not scaled with them. Today’s pages
are on average over 300KB each, but most web objects are
relatively small, with mean and median sizes of 7.3KB and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM CoNEXT 2011, December 6-9 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

Barath Raghavan

ICSI
barath@icsi.berkeley.edu

2.4KB respectively [25]. As a result of the preponderance of
small objects in large pages, web transfer latency has come
to be dominated by both the round-trip time (RTT) between
the client and server and the number of round trips required
to transfer application data. The RTT of a web flow largely
comprises two components: transmission delay and propa-
gation delay. Though network bandwidth has grown substan-
tially over the past two decades thereby significantly reduc-
ing transmission delays, propagation delay is largely con-
strained by the speed of light and therefore has remained un-
changed. Thus reducing the number of round trips required
for the transfer of a web object is the most effective way to
improve the latency of web applications [14, 18, 28, 31].

Today’s TCP standard permits data exchange only after
the client and server perform a handshake to establish a con-
nection. This introduces one RTT of delay for each connec-
tion. For short transfers such as those common today on the
web, this additional RTT is a significant portion of the flows’
network latency [29]. One solution to this problem is to reuse
connections for later requests (e.g. HTTP persistent connec-
tions [24]). This approach, while widely used, has limited
utility. For example, the Chrome browser keeps idle HTTP
1.1 TCP connections open for several minutes to take advan-
tage of persistent connections; despite this over one third of
the HTTP requests it makes use new TCP connections. A re-
cent study on a large CDN showed that on average only 2.4
HTTP requests were made per TCP connection [10]. This is
due to several reasons as we describe in Section 2.

We find that the performance penalty incurred by a web
flow due to its TCP handshake is between 10% and 30% of
the latency to serve the HTTP request, as we show in detail in
Section 2. To reduce or eliminate this cost, a simple solution
is to exchange data during TCP’s initial handshake (e.g. an
HTTP GET request / response in SYN packets). However,
a straightforward implementation of this idea is vulnerable
to denial-of-service (DoS) attacks and may face difficulties
with duplicate or stale SYNs. To avoid these issues, several
TCP mechanisms have been proposed to allow data to be in-
cluded in the initial handshake; however, these mechanisms
were designed with different goals in mind, and none enjoy
wide deployment due to a variety of compatibility and/or se-
curity issues [11, 12, 16].

30 ‘ ‘
Cold Req ZZZZ2a
% All Req mm
< 25
&
S 20 7
<
s 15 %
3
g
= 10
o
)
0 | vava)

Search Image Map Photos Gmail
thumbs tiles

Figure 1: TCP handshake time as a percentage of total
HTTP request latency for Google.com. For the “All Req”
category, handshake time is amortized over all HTTP re-
quests for the Google service in question.

In this paper we propose a new TCP mechanism called
TCP Fast Open (TFO) that enables data to be exchanged
safely during TCP’s initial handshake. At the core of TFO
is a security cookie that is used by the server to authenticate
a client that is initiating a TFO connection. We describe the
details of TFO, including how it exchanges data during the
handshake, the protocol used for TFO cookies, and socket
API extensions to enable TFO. In addition, we analyze the
security of TFO and examine both the potential for new se-
curity vulnerabilities and their mitigation. We also describe
our implementation of TFO in the Linux kernel and in the
Chrome web browser and present the performance gains we
see in our testbed experiments. Finally we examine deploy-
ment issues and related approaches.

2. MOTIVATION

Latency and page load time are important factors that in-
fluence user satisfaction with a website. Even small improve-
ments in latency lead to noticeable increases in site visits
and user satisfaction, and result in higher revenues [3, 6,
5]. While it is well known that small objects dominate web
flows today, we sought to better understand the actual perfor-
mance characteristics of today’s flows and the performance
bottlenecks they experience. To do so, we analyzed both
Google web server logs and Chrome browser statistics to
demonstrate that TCP’s handshake is a key performance bot-
tleneck for modern web transfers. Our intent is to highlight
this practical problem through the analysis of large scale data
and to estimate the potential benefits of TFO.

2.1 Google Server Logs Analysis

We begin by analyzing latency data from Google web
server logs to study the impact of TCP’s handshake on user-
perceived HTTP request latency. We sampled a few billion

HTTP requests (on port 80) to Google servers world-wide
over 7 consecutive days in June 2011. These included re-
quests to multiple Google services such as search, email, and
photos. For each sampled request, we measured the latency
from when the first byte of the request is received by the
server to when the entire response is acknowledged. If the re-
quest is the first one of the TCP connection, this latency also
includes the TCP handshake time since the browser needs
to wait for the handshake to complete before sending the re-
quest. Note that our latency calculation includes both server
processing time and network transfer time.

We define requests sent on new TCP connections as cold
requests and those that reuse TCP connections as warm re-
quests. We segregate requests by service and compute the
fraction of time spent on TCP handshakes for cold requests.
Similarly, we compute the amortized cost of TCP handshakes
over both cold and warm requests for each service. The re-
sults shown in Figure 1 indicate that TCP handshakes ac-
count for 8% to 28% of the latency of cold requests for most
services. Even the amortized cost for handshakes accounts
for 5-7% of latency across both cold and warm requests, in-
cluding photo services where the average response size is
hundreds of kilobytes. (The only exception is Gmail because
it downloads javascript upon a cold request and reuses the
same connection for many subsequent warm requests.)

The cost of TCP handshakes is surprisingly high given
that 92% of the requests that we see use HTTP/1.1 which
supports persistent HTTP connections. Moreover, Google
web servers keep idle connections open for several minutes.
In theory, most requests should reuse existing TCP connec-
tions to minimize the penalty of a TCP handshake, but our
analysis indicates this may not be happening. In order to
understand if this problem persists for other web sites and
what its cause(s) might be, next we analyze statistics from
the Chrome web browser.

2.2 Chrome Browser Statistics

We processed Chrome browser statistics for 28 consecu-
tive days in 2011; these only cover Chrome users who have
opted into statistics collection and only contain anonymized
data such as latency statistics. The statistics do however cover
requests to all websites and not just Google services. Across
billions of sampled HTTP latency records, we found that
over 33% of requests made by Chrome are sent on newly
created TCP connections even though it uses HTTP 1.1 per-
sistent connections. The restricted effectiveness of persistent
connections is due to several factors. Browsers today often
open tens of parallel connections to accelerate page down-
loads, which limits connection reuse. Domain sharding or
the placement of resources on different domains by content
providers to increase parallelism in loading web pages also
exacerbates this issue. In general, hosts and middle-boxes
(NATs) also terminate idle TCP connections to minimize
resource usage. The middle-box issue may be partly miti-
gated by using TCP keepalive probes, but this could be pro-

100
90
80
70
60
50
40

Cold Req

30

20 /

10 Cold Req no Hsk (sim) -
All Req —+—

0.1 1 10

Network Transaction Latency [s]

Figure 2: CDF of the HTTP transaction network latency
for Chrome Windows users. The Y-axis is the cumulative
distribution of HTTP requests in percentiles. “Cold Req”
and ““Cold Req no Hsk (sim)” refer to requests that need
to open new TCP connections, but the latter excludes
TCP connect time. “All Req” refers to all requests, in-
cluding both HTTP and HTTPS.

hibitively power hungry on mobile devices [32]. Major mo-
bile browsers close idle connections after mere seconds to
conserve power.

To understand the latency impact of waiting for TCP’s
handshake to complete before transferring data, we plot the
distribution of HTTP transaction network latency for cold
requests and all requests in Figure 2. We measured network
transaction latency from the time the browser schedules a re-
quest to the time it receives the entire response. If the browser
does not have an idle TCP connection available to serve the
request, it attempts to open a TCP connection. Thus TCP’s
handshake time is included in the network latency. Chrome
also has a limit of 6 parallel connections per domain.

Figure 2 reveals that cold requests are often over 50%
slower when compared to all requests in the same percentile.
For example, the median latencies of cold requests and all
requests are 549ms and 308ms, respectively. Many factors
including DNS lookup, TCP slow-start, SSL handshake, and
TCP handshake, may contribute to this slowdown. To isolate
the cost of the TCP handshake, we plot network transaction
latencies of cold requests excluding TCP handshake time.!
This simulated distribution, labeled as “Cold Req no Hsk” in
the figure, suggests that TCP handshake accounts for up to
25% of the latency between the 10th and 90th percentiles.

Thus the results of our analysis of both Google server logs
and Chrome browser statistics suggest that sending an HTTP
request and response during a TCP handshake can signifi-
cantly improve HTTP transaction performance.’

"We measure TCP handshake time by the time it takes to finish the
connect () system call in Chrome.
“We note that our estimates from Google server logs (which con-

3. DESIGN

Our measurement results support the notion that eliminat-
ing one round trip from a web flow can provide immediate,
measurable performance gains. However, it may be instruc-
tive to first consider the constraints we designed within and
the assumptions we made while working on TCP Fast Open.

3.1 Context and Assumptions

The current TCP specification actually allows a client to
include data in its SYN packet when initiating connections to
servers, but forbids the servers from delivering the data to ap-
plications until the 3-way handshake (3WHS) completes [7].
Suppose for the moment that we were to remove this re-
striction, and simply enable ordinary TCP-based client ap-
plications to send HTTP GET requests in TCP SYN packets
and servers to respond with data in their TCP SYN-ACK
packets. While this would trivially meet the needs of TCP
Fast Open, it would open the protocol up to a straightfor-
ward denial-of-service attack of both the server and arbitrary
hosts: an attacker or set of attackers could send HTTP GET
requests to a server while spoofing the source address of a
victim host, thereby causing the server both to perform po-
tentially expensive request processing and to send a poten-
tially large response to a victim host. Thus we must build
security mechanisms into TFO to protect both the server and
other hosts from such attacks.

Our goal in designing TCP Fast Open was to enable each
end of a TCP connection to safely transmit and process any
received data while the 3WHS is still in progress. However,
there are several other constraints that we kept in mind and
assumptions that we were forced to make. For example, the
TCP initial handshake is designed to deal with delayed or
duplicate SYN packets received by a server and to prevent
such packets from creating unnecessary new connections on
the server; server applications are notified of new connec-
tions only when the first ACK is received from the client.
We found that to manage stale or duplicate SYN packets
would add significant complexity to our design, and thus
we decided to accept old SYN packets with data in some
rare cases; this decision restricts the use of TFO to applica-
tions that are tolerant to duplicate connection / data requests.
Since a wide variety of applications can tolerate duplicate
SYN packets with data (e.g. those that are idempotent or per-
form query-style transactions), we believe this constitutes an
appropriate tradeoff.

Similarly, we make several assumptions about the setting
in which TFO is deployed. We assume that servers cannot
maintain permanent or semi-permanent per-client state since
this may require too much server memory, and that servers
may be behind load balancers or other such network devices.
A stateless-server design is more desirable in this setting as
it keeps state-management complexity to a minimum.

cern only requests for google.com) and Chrome browser statistics
(which are across the web) differ likely because Google has a lower
RTT and processing time than many other websites.

We also assume that servers cannot perform any opera-
tions to support TFO that are not reasonable to implement
on the kernel’s critical path (e.g. symmetric cryptography is
possible, but asymmetric is not). We assume that clients are
willing to install new software to support TFO and that small
changes to applications are acceptable. Finally, we assume
that it is acceptable to leverage other security mechanisms
within a server’s domain (if needed) in concert with TFO to
provide the required security guarantees.

3.2 Design Overview

Our primary goal in the design of TFO is to prevent the
source-address spoofing attack mentioned above. To prevent
this attack, we use a security “cookie”. A client that wishes
to use TFO requests a cookie—an opaque bytestring—from
the server in a regular TCP connection with the TFO TCP
option included, and uses that cookie to perform fast open in
subsequent connections to the same server. Figure 3 shows
the usage of TFO. We begin by listing the steps a client per-
forms to request a TFO cookie:

1. The client sends a SYN packet to the server with a Fast
Open Cookie Request TCP option.

2. The server generates a cookie by encrypting the client’s
IP address under a secret key. The server responds to
the client with a SYN-ACK that includes the generated
Fast Open Cookie in a TCP option field.

3. The client caches the cookie for future TFO connec-
tions to the same server IP.

To use the fast open cookie that it received from a server, the
client performs the following steps:

1. The client sends a SYN with the cached Fast Open
cookie (as a TCP option) along with application data.

2. The server validates the cookie by decrypting it and
comparing the IP address or by re-encrypting the IP
address and comparing against the received cookie.

(a) If the cookie is valid, the server sends a SYN-
ACK that acknowledges the SYN and the data.
The data is delivered to the server application.

(b) Otherwise, the server drops the data, and sends
a SYN-ACK that only acknowledges the SYN se-
quence number. The connection proceeds through
aregular 3WHS.

3. If the data in the SYN packet was accepted, the server
may transmit additional response data segments to the
client before receiving the first ACK from the client.

4. The client sends an ACK acknowledging the server
SYN. If the client’s data was not acknowledged, it is
retransmitted with the ACK.

5. The connection then proceeds like a normal TCP con-
nection.

3.3 Cookie Design

The TFO cookie is an encrypted data string that is used
to validate the IP ownership of the client. The server is re-
sponsible for generation and validation of TFO cookies. The
client or the active-open end of a connection simply caches
TFO cookies and returns these cookies to the server on sub-
sequent connection initiations. The server encrypts the source
IP address of the SYN packet sent by the client and gener-
ates a cookie of length up to 16 bytes. The encryption and
decryption / validation operations are fast, comparable to the
regular processing time of SYN or SYN-ACK packets.

Without the secret key used by the server upon cookie
generation to encrypt the client’s IP address, the client can-
not generate a valid cookie. If the client were able to gener-
ate a valid cookie this would constitute a break of the under-
lying block cipher used for encryption. The server periodi-
cally revokes cookies it granted earlier by rotating the secret
key used to generate them. This key rotation prevents ma-
licious parties from harvesting many cookies over time for
use in a coordinated attack on the server. Also, since client
IP addresses may change periodically (e.g. if the client uses
DHCP), revoking cookies granted earlier prevents a client
from mounting an attack in which it changes its IP address
but continues to spoof its old IP address in order to flood the
new host that has that old address.

3.4 Security Considerations

TFO’s goal is to allow data exchange during TCP’s ini-
tial handshake while avoiding any new security vulnerabili-
ties. Next we describe the main security issues that arise with
TFO and how we mitigate them.

3.4.1 SYN Flood / Server Resource Exhaustion

If the server were to always allow data in the SYN packet
without any form of authentication or other defense mech-
anisms, an attacker could flood the server with spurious re-
quests and force the server to spend CPU cycles processing
these packets. Such an attack is typically aimed at forcing
service failure due to server overload.

As noted earlier, TFO cookie validation is a simple oper-
ation that adds very little overhead on modern processors. If
the cookies presented by the attacker are invalid, the data in
the SYN packets is not accepted. Such connections fall back
on regular TCP 3WHS and thus the server can be defended
by existing techniques such as SYN cookies [19].

If the cookies that the attacker presents are valid—and
note that any client can get a cookie from the server—then
the server is vulnerable to resource exhaustion since the con-
nections are accepted, and could consume significant CPU
and memory resources on the server once the application is
notified by the network stack. Thus it is crucial to restrict
such damage.

To this end, we leverage a second mechanism: the server
maintains a counter of total pending TFO connection re-
quests either on a per service port basis or for the server

Client

Client caches cookie
for this server IP

SYN + ACK

Data in the SYN packet
also ACKed by server

ACK

connection

... regular TCP connection to
request cookie for future use

SYN + TFO cookie + data

... continues like regular TCP

Server

Generates cookie by
encrypting client IP

Validates client TFO cookie +
accepts connection + data is
made available to application

i More data packets sent
! to client while handshake
1 isin progress

Figure 3: TFO connection overview

as a whole. This counter represents TFO connections that
have been accepted by the server but that have not been mi-
grated to the fully-established TCP state, which occurs only
after receiving the first ACK from the peer (completion of
3WHS). When the number of pending TFO connections ex-
ceeds a certain threshold (that is administratively set), the
server temporarily disables TFO and any incoming TFO re-
quests fall back on regular 3WHS. This allows the usual
SYN flood defense techniques [19] to prevent further dam-
age until the pending TFO requests falls below the threshold.
This limit makes it possible for an attacker to overflow the
limit and temporarily disable TFO on the server, but we be-
lieve that this is unlikely to be of interest to an attacker since
this would only disable the TFO “fast path” while leaving
the service intact.

There is another subtle but important difference between
TFO and a regular TCP handshake. When SYN flood attacks
originally broke out in the late 1990s, they were aimed at
overflowing the short SYN backlog queues on servers that
were used to store information about incoming connection
requests until the completion of 3WHS. In such an attack,
the attacker sends a stream of SYN packets with spoofed
source [P addresses until this SYN queue fills up. This causes

new SYN packets to be dropped, resulting in service dis-
ruption. The attacker typically uses spoofed source IP ad-
dresses that are non-responsive; otherwise, the SYN-ACK
would trigger a TCP RST from the host whose IP has been
spoofed. The TCP RST packet would terminate the con-
nection request on the server and free up the SYN queue,
thereby defeating the attack.

With TFO, such RST packets from spoofed hosts would
fuel the damage since the RST will terminate the pending
TFO request on the server, allowing another spoofed TFO
connection request to be accepted. To defend against this,
any pending TFO connections that get terminated by a RST
should continue to be counted against the threshold for pend-
ing TFO connections described previously until a timeout
period has passed.

3.4.2 Amplified Reflection Attack

While regular TCP restricts the response from a server to
just one SYN-ACK packet, TFO allows the server to send a
stream of data packets following the SYN-ACK to the source
IP address of the SYN packet. If not for the TFO cookie, this
could be used by an attacker to mount an amplified reflection
attack against any victim of choice.

As mentioned in the previous section, the number of pend-
ing TFO connections on the server has a system limit, so
the server is protected from resource exhaustion beyond the
limit. This system limit also bounds the damage that an at-
tacker can cause through reflection from that server. How-
ever, the attacker can still create a reflection attack from a
large number of servers to a single victim host as follows.

First, the attacker has to steal or otherwise obtain a valid
cookie from the target victim. This likely requires the at-
tacker to compromise or collude with the victim host or net-
work. If the victim host is already compromised, the attacker
would likely have little value in mounting a reflection at-
tack against the host itself, but the attacker might still be in-
terested in mounting the attack to disrupt the compromised
host’s network. The stolen cookie is valid for a single server,
so the attacker has to steal valid cookies from a large num-
ber of servers and use them before they expire to cause a
noticeable impact on the compromised host’s network.

We argue that if the attacker has already compromised the
target network or host, then the attacker could directly start
flooding the network from the compromised host without the
use of areflection attack. If servers still want to mitigate such
an attack, one possible defense is to wait for the 3WHS to
complete before sending data to the client. The server would
still accept data in the SYN packet and allow the application
to process it, but would make sure it is a valid connection—
that is, 3WHS completes before sending the response to the
client. For many applications this modification would yield
little slowdown versus standard TFO as server processing
time is often greater than the RTT of the connection.

3.5 Handling Duplicate SYN Segments

The current TCP standard allows SYNSs to carry data but
forbids delivering the data to the application until the con-
nection handshake is completed in order to handle duplicate
SYNs. Although TFO does not retransmit SYNs with data,
it’s possible that the network duplicates SYN packets with
data, causing the data to be replayed at the server. Suppose
a TFO client sends a SYN with data and actively closes the
connection before the duplicate SYN arrives at the server.
The server, being passively closed, does not retain any state
about the closed connection, so accepts the duplicate SYN
and processes (replays) the data. If the duplicate is gener-
ated within a 2MSL timeout, the server is likely to termi-
nate the connection after receiving an RST since the client
would process the server’s SYN/ACK in the TIME WAIT
state. Nevertheless, the request will have been replayed.

One heuristic to address this is to extend the LAST_ACK
state for 2MSL duration at the server (the passive close side)
after receiving the final ACK from the client. This prevents
some delayed duplicate packets from reaching the server ap-
plication. Applications that are particularly intolerant to du-
plicate transactions, such as credit card transactions or bank-
ing applications, already have application-level measures to
ensure idempotence. Alternatively, they can use a nonce to

sd = socket(...);
bind(sd, ...);

int tfo_opt = 1;
setsockopt (sd, SOL_TCP, TCP_LISTEN_TFO,
(voidx)&tfo_opt, 4);

listen(sd, ...);

Figure 4: Server application sample code.

ensure that a transaction occurs only once. This challenge al-
ready exists today in another form: users often click refresh
in web browsers if a page does not load quickly, resulting in
duplicate transactions.

3.6 API Changes

One of our design goals was to avoid changes to socket
libraries and to reuse existing APIs as much as possible. This
minimizes changes to applications that wish to use TFO and
poses less of a deployment hurdle.

The server-side API to use TFO is extremely simple. A
server application enables TFO for incoming connections to
a listening socket simply by enabling a new socket option.
Figure 4 shows sample code to enable TFO on the server.
The remaining socket calls (i.e. 1isten(), accept (),
send (), recv (), etc.) remain unchanged.

On the client side, using TFO requires the application to
provide a destination IP address and port number, as well as
the data to send. The sendto () and sendmsg () system
calls already provide such an interface; we extend them for
use with TFO. When these system calls are used on a regu-
lar TCP socket, the destination address is ignored and they
behave just like a send () call. When the new TFO flag is
set, these calls are modified to initiate a TFO connection.

If the TFO cookie for the destination IP address is avail-
able, a SYN packet with the cookie and data is sent to initiate
the TFO connection; the network stack handles this decision
without the application’s intervention. If the cookie is not
available, it falls back on a regular TCP three-way handshake
and the data is queued up for transmission when the 3WHS
is completed. The SYN packet in this case also includes a
TCP option requesting a TFO cookie from the server for
later use. In general, the use and handling of TFO cookies
is done by the networking stack and is completely transpar-
ent to the application. Therefore no API is needed to expose
them. After the first sendmsg () or sendto () call, the
rest of the socket calls from the application are unmodified.

The modified sendto () and sendmsg () calls return
the number of bytes of data queued up in the kernel or sent
in the SYN packet. They can be used with blocking or non-
blocking sockets and their return values upon error are a
combination of the error messages returned by send () and

sd = socket(...);
char msg[l6] = "Hello TFO World";

send_len = sendto(sd, msg, 15, MSG_TFO,
server_addr, addr_len);

Figure 5: Client application sample code. The
sendto() call with MSG.TFO flag combines
connect () and send () functionalities.

connect (). Figure 5 shows sample code that a client ap-
plication can use to connect to a server using TFO.

Besides these, one could imagine additional less critical
APIs that could be provided to expose TFO information re-
lated to the connection, such as whether a connection was
opened through a regular handshake or TFO, and whether a
TFO attempt to a server succeeded; APIs to set TFO secret
keys and flush the TFO cache might also prove useful.

The TFO cookie handling is transparent to applications
and the cookies received by a client from a server are not
directly readable by applications unless they have root priv-
ileges to sniff packets on the client. This prevents malicious
sites from using simple browser hacks to trick users by mak-
ing connections to other websites and stealing those TFO
cookies for mounting an amplified reflection attack.

4. DEPLOYABILITY

Given that the main goal of TFO is improving the perfor-
mance of short transfers such as the retrieval of web objects,
being compatible with today’s network architecture is key.
Thus we designed TFO for incremental deployment. In do-
ing so, we enabled it to gracefully fall back on standard TCP
to ensure that current and future TCP connections can pro-
ceed in response to unexpected network events. In this sec-
tion, we discuss the challenges of incremental deployability
and our responses to these challenges.

4.1 New TCP options/data in SYN

Our primary deployment concern with TFO is regarding
how Internet routers, middle-boxes, end-hosts, and other en-
tities will handle new types of TCP packets such as those
with new TCP options, SYN packets with data, and the like,
as such packets are unusual in today’s networks. One study
found that some middle-boxes and hosts drop packets with
unknown TCP options [23]. A more recent study found that
0.015% of the top 10,000 websites do not respond with a
SYN-ACK after receiving a SYN with a non-standard or
new TCP option [15]. Another study found that 6% of probed
paths on the Internet drop SYN packets containing data [22].

If a SYN packet with TCP Fast Open option set does not
elicit a response within the timeout period (regardless of
where it is dropped), we simply retransmit the SYN with-
out any data or non-standard TCP options. In doing so, TFO

falls back on a regular TCP 3WHS and connectivity with
the server is not lost. The client also caches the RTT to the
server in its cookie cache and sets the SYN retransmit time-
out to 1.5 x RTT, thereby reducing the ordinarily longer
SYN timeout. If TFO fails repeatedly to a given server, the
client remembers the server’s IP address and disables TFO
for that server in the future.

4.2 Server Farms

Given that many large web services place servers in server
farms, another point of concern for us is how TFO would be
used at such data centers. A common setup for server farms
is for many servers to be behind a load balancer, sharing the
same server IP. Client TCP connections are load balanced to
different physical hosts, often without any stored state about
previous connections from the same client IP. Clients cache
the TFO cookie based on a server’s IP; TFO connections
from a particular client might be load balanced to a physical
server different from the one that granted the TFO cookie.
We use TFO in this setting by sharing a common secret key
(used for encrypting and decrypting TFO cookies) among
all the servers in the server farm. Secret key updates to the
servers are made at about the same time on all the servers.

4.3 Network Address Translation (NAT)

Network Address Translation (NAT) is another challenge
for TFO. Hosts behind a single NAT sharing the same public
IP address are granted the same cookie for the same server;
nevertheless, the clients can all still use TFO. However some
carrier-grade NAT configurations use different public IP ad-
dresses for new TCP connections from the same client. In
such cases, the TFO cookies cached by the client would not
be valid and the server would fall back on a regular 3WHS
and reject any data in the SYN packet. Despite this, since
the server would reply with an ordinary SYN-ACK, the use
of TFO in this scenario would not cause any latency penalty
versus an ordinary TCP connection.

4.4 TCP Option Space

The availability of TCP option space in the SYN and SYN-
ACK packets is an issue since many options are negotiated in
these packets. We analysed the connections seen at Google’s
web servers and found that over 99% of incoming client con-
nections had sufficient option space to accommodate a TFO
cookie option with an 8 or 16 byte cookie in the SYN pack-
ets. Therefore, this is unlikely to be a concern for web traffic.

If other types of traffic use certain long TCP options (e.g.
the TCP MDS5 option), and space is insufficient in the TCP
options field to accommodate the TFO cookie, the connec-
tion can safely fall back on regular 3WHS.

S. IMPLEMENTATION

We implemented TCP Fast Open in the Linux 2.6.34 ker-
nel and are in the early stages of deploying it across Google.
The entire kernel patch is about 2000 lines of code with

about 400 lines used for the client side TFO cookie cache.
We also coordinated with the developers of Chrome to im-
plement TFO support within the browser.

5.1 Kernel support

While the Linux TCP stack required fairly deep modi-
fication, a key aspect to both the design and implementa-
tion of TFO is that it does not affect TCP congestion con-
trol. That is, since congestion control only takes place after
TCP’s handshake completes, and TFO is only in use during
the handshake, the two are entirely separate. Thus we did not
have to modify any code relating to congestion control in the
Linux kernel. Also note that the maximum number of data
segments that a server can send before getting acknowledge-
ments from the client is dictated by the initial congestion
window and receiver window, but that neither of these values
are affected by TFO. Our modifications included alterations
to incoming packet handling in the LISTEN, SYN_SENT,
and SYN_RCVD states and to the routines that transmit TCP
packets (to include appropriate options as required for TFO).

Our implementation uses a fixed size, 8 byte TFO cookie.
We use the 128-bit (16 byte) AES block cipher implemen-
tation available in the Linux Kernel CryptoAPI to encrypt
each client IP value; we truncate the result to 8 bytes to gen-
erate the cookie. We pad IPv4 client IP addresses with zeros
to create a 16 byte IP value while IPv6 addresses are used
in full. To validate the cookie contained within an incoming
TFO request, the server recomputes the 8 byte cookie value
based upon the incoming source IP address and compares
it to the cookie included by the client. The cookie genera-
tion and validation operations add cryptographic processing
overhead on the server. Many modern processors include
AES instructions in hardware and a single CPU core can
support tens of thousands of 16-byte AES encryptions per
second [20]. This is greater than the connection acceptance
rate of many modern servers, and the processing overhead
for this cryptographic operation is only a small fraction of
typical connection processing time.

For the cookie cache—which is used by client hosts’ net-
work stacks—we implemented a simple LRU policy that
caches cookies, RTT, and MSS by server IP. While we found
that this policy worked well, this cache replacement policy
is not in any way tied to the protocol.

5.2 Application support

Only small changes are required in user level applications.
Server side applications need just a single additional line of
code: a call to setsockopt () to set the TFO socket op-
tion for the listen socket. Client side applications must re-
place connect () and the first send () call with a single
call to sendto () with the appropriate flags. In addition to
using TCP Fast Open within our own custom socket pro-
grams, the Chrome web browser was also modified to use
TFO, as was the web server with which we performed tests.

6. EVALUATION

In this section we evaluate the performance improvement
conferred by TCP Fast Open in two contexts. First, we mea-
sure the whole-page download gains seen by a TFO-enabled
Chrome browser visiting popular websites. Second, we mea-
sure the more surprising performance benefits of TFO on the
server side.

6.1 Whole Page Download Performance

The primary goal of TFO is to eliminate one RTT of extra
latency, thereby improving the performance of short flows.
This is particularly important for cold HTTP requests. In
Section 2, we estimated, based upon Chrome browser statis-
tics, that TFO could improve HTTP transaction latency by
up to 25%. Here we ask a more general question: how much
does TFO speed up whole-page downloads? Unfortunately,
this question does not have a straightforward answer. On av-
erage, major web pages consist of 44 resources distributed
across 7 different domains [25], and modern browsers have
complex scheduling routines to fetch these resources using
multiple parallel TCP connections.

First, we benchmarked several popular websites from the
Alexa top 500 websites list [1]. The testbed for these ex-
periments consists of a single machine (Intel Core 2 Quad
CPU 2.4GHz, 8GB RAM) that runs our TFO-enabled Linux
kernel and Chrome browser. We used the Google web page
replay tool to benchmark the web page download latency
for TFO-enabled Chrome and for standard Chrome [4]. The
page replay tool has two modes: record and replay. In record
mode, the tool passively records all DNS and TCP traffic
sent from and received by the browser into a local database.
In replay mode, the tool runs a DNS server on the local ma-
chine and redirects the browser’s HTTP requests to the local
proxy run by the tool. The replay can also leverage dum-
mynet to emulate different network delays, bandwidths, and
random packet loss [26]. All connections during replay use
the loopback interface with a reduced MTU of 1500 bytes.

In our experiment, we emulated a broadband user with
4Mbps downlink and 256Kbps uplink bandwidth and with
a 128KB buffer; this is a popular configuration as found by
Netalyzer [21]. First, we used the tool to record the home
pages of Amazon.com, the New York Times, the Wall Stree