
Building transcribed speech corpora quickly and cheaply for many languages

Thad Hughes, Kaisuke Nakajima, Linne Ha, Atul Vasu, Pedro Moreno, Mike LeBeau

Google Research, USA
{thadh,kaisuke,linne,atulvasu,pedro,mlebeau}@google.com

Abstract
We present a system for quickly and cheaply building tran-
scribed speech corpora containing utterances from many speak-
ers in a variety of acoustic conditions. The system consists of
a client application running on an Android mobile device with
an intermittent Internet connection to a server. The client ap-
plication collects demographic information about the speaker,
fetches textual prompts from the server for the speaker to read,
records the speaker’s voice, and uploads the audio and associ-
ated metadata to the server. The system has so far been used
to collect over 3000 hours of transcribed audio in 17 languages
around the world.
Index Terms: speech corpora, speech recognition, internation-
alization

1. Introduction
Transcribed speech corpora are the lifeblood of systems used to
construct acoustic models, but recording and transcribing new
speech corpora can be time consuming and expensive. When
training acoustic models, researchers often rely on well-known
corpora such as those developed by the Linguistic Data Con-
sortium, such as Switchboard[1]. However, pre-existing cor-
pora have certain disadvantages; some were recorded over tele-
phony channels with low quality audio, some lack a diverse vo-
cabulary, and some are expensive or have restrictive licenses.
Pre-existing corpora often don’t match real-world usage con-
ditions, from the utterances, to the microphones, to the back-
ground noise. Additionally, no large, transcribed speech corpus
exists for many of the world’s languages. It is therefore some-
times necessary to construct a new transcribed speech corpus.

In the past, constructing a large transcribed speech corpus
was time consuming and expensive. If new speech is recorded,
speakers must be recruited and somehow brought into the vicin-
ity of audio recording equipment. Often telephones are used
as relatively ubiquitous recording devices conveniently located
near the speakers, but telephony channels have acoustic limi-
tations and telephones are not always available in remote ar-
eas. Using portable voice recorders is another option, but these
devices can’t easily associate metadata with each utterance,
so bookkeeping must be done by hand. In many cases, the
recorded speech must also be transcribed by human listeners,
which is labor intensive and often error prone.

Our system solves many of these problems and makes col-
lecting large, transcribed speech corpora relatively quick and
easy. Like [2], we use commodity mobile phones running
the Android platform to record and store many hours of high-
quality read speech in various recording environments, which
provides a better match to the acoustic conditions encountered
in real-life usage. The phones also associate metadata with each
recorded utterance, such as information about the speaker and
recording environment, and the prompt the speaker was asked

to read, thus automatically associating a transcript with each
utterance. An arbitrarily large number of phones can be used si-
multaneously to parallelize the data collection effort while eas-
ily keeping track of associated metadata. Finally, the phones
can use their networking capabilities to automatically send the
utterances and metadata stored on each phone to a centralized
storage location for later use. These advantages have drastically
reduced the cost of speech data collection and corpus construc-
tion, and thereby assisted with our efforts to internationalize
speech technology.

The remainder of this paper will describe in detail the sys-
tem and our experiences using it to build speech corpora. Sec-
tion 2 describes the architecture of the client and server compo-
nents of the system, section 3 describes how we use it to collect
data, and section 4 describes some characteristics of the corpora
we have constructed.

2. System architecture
The system has a client/server architecture, where the client ap-
plication is designed for mobile devices running Google’s An-
droid platform [4] and the server handles HTTP requests from
the client. To enable usage in places without Internet connec-
tivity, such as remote areas or developing countries, the client
only requires intermittent connections to the server to download
prompts and upload recorded utterances.

2.1. Client system

The client is what speakers use to read prompts and record their
voices. It is a standard Android application, which means that
it can be installed and run on any mobile phone device that uses
the Android platform, such as the Android G1 and the Nexus
One.

2.1.1. User interface

The user interface (UI) is session-based. When a speaker begins
a session, they are presented with an initial screen to collect
metadata relevant to the session, which the user may decline to
provide. The UI, shown in figure 1a, currently collects metadata
containing these fields:

• The acoustic environment (indoors, outdoors, in an auto-
mobile, level of background noise)

• Speaker’s gender

• Speaker’s age, grouped into decades

• Speaker’s accent

• A user name to identify the session

Additionally, the application also automatically tags each ses-
sion with this information:

• Current date and time

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

1914



(a) The initial screen, presented
to the user at the beginning of
each session to collect infor-
mation about demographics and
acoustic conditions.

(b) The recording screen, which
gives realtime feedback about au-
dio levels and allows the user to
skip prompts or mark them as of-
fensive.

Figure 1: The client UI running on the Google Nexus One.

• Telephone’s hardware version and Android OS version

• Telephone’s IMEI number (a globally unique identifier
for the mobile device)

• Geographic location as determined by the phone’s GPS

This information is associated with every utterance recorded
during the current session.

Once the speaker presses the Continue button on the session
metadata screen, they see the main recording screen, shown in
figure 1b. The top portion of the screen prompts the user with
a short phrase of text to read. (These textual prompts have been
downloaded from the server as described in section 2.1.2.) At
the bottom of the screen, there is a horizontal bar that displays
the current audio volume level sampled by the device, which
is updated in real-time to help the speaker position the device
and speak at an appropriate volume level. When the speaker is
ready, they click the Record button to begin recording, speak
the prompt text, and then click the Record button again to ter-
minate recording. The speaker can then play back the recorded
utterance, and when satisfied, continue to the next prompt.

Sometimes, the speaker might not understand or prefer not
to say the text presented in the prompt. The text might be in a
language that the speaker doesn’t understand, it may use words
or URLs that the speaker doesn’t know, or it might contain of-
fensive content. For example, many English speakers might
not feel comfortable reading the text “nvidia geforce fx 5200.”
Whenever the speaker wants to skip an unknown prompt, they
can do so by pressing the button marked with a question mark
(?). If the speaker feels the prompt is offensive, they can mark
it as such by pressing the red crossed-out circle button (W). In
either case, the prompt is skipped, the server is notified of the
user’s action, and the user is presented with the next prompt.

The UI is optimized to allow a speaker to rapidly record
many prompts in succession, which is important for maximiz-
ing the speaker’s time before they become fatigued or bored. In
particular, once the speaker is comfortable using the program,
they can activate the Auto-advance checkbox, which causes the
application to automatically continue to the next prompt and be-
gin recording when the speaker presses the button to terminate

the current utterance. This means that the speaker is only re-
quired to press a single button per utterance, making it possible
to advance through the utterances rapidly.

The client application keeps track of how many utterances
have been recorded during the session, and when the required
number, typically several hundred, has been recorded, the user
is notified and the session is ended.

2.1.2. Client implementation

The client, diagrammed in figure 2, is a standard Android appli-
cation written in Java that uses Android’s raw audio recording
and playback APIs to collect audio and standard Java APIs to
communicate with the server and read and write the SD card.
The client requires Android platform release 1.5 (Cupcake) [4]
or later, because this release added the raw audio recording and
playback APIs used by the application.

As soon as the recording screen has been shown to the
speaker, the program immediately begins recording audio and
never stops, whether or not the user has actually initiated record-
ing. This allows the onscreen audio volume display to be up-
dated in real-time, showing the current ambient volume level
before actual recording begins. When the speaker presses
the Record button to initiate and terminate an utterance, the
program stores the recorded audio to a file, including audio
recorded 0.5 seconds before initiation and after termination
of recording. This enables the device to record the ambient
noise surrounding the speaker’s utterance, and to ensure that the
speaker’s utterance is not accidentally truncated. The sampling
format and rate default to 16-bit linear, 16kHz monaural audio
but are fully configurable.

The client makes use of the phone’s SD card to store in-
formation and minimize the necessity of server communication.
When the program is first run in a particular language, the client
downloads a large list of textual prompts for the speaker to read
and stores them in a text file on the SD card for later use.

The SD card is also used to store the audio recordings made
by a speaker until they can be uploaded to the server. When a
speaker finishes recording a prompt, the audio is written to a
file, along with the relevant metadata for that utterance, includ-
ing the prompt which the speaker read. Android SD cards are
typically at least 1 GB and hold over 8 hours of 16-bit, 16kHz
monaural audio, meaning that the program can be used for an
entire day without communicating with the server.

The Android version of the client is actually the third gen-
eration client we developed to collect these kinds of speech
corpora, as earlier versions were written for iPhone and Black-
Berry. Key features of the Android client that made it more
successful than earlier versions are its ability to operate offline
and the ability for a speaker to quickly move through many ut-
terances using the Auto-advance mode.

2.2. Server application

The server supplies the client with text prompts and receives
and aggregates recorded utterances and associated metadata
from the client through an HTTP interface. The server is im-
plemented in Java, and also supports authentication to pre-
vent unauthorized users from accessing prompts or uploading
recordings.

Whenever the client application needs more text prompts
for the user to read, it sends the server an HTTP request, that in-
cludes a parameter for the language of the prompts. The server
responds with text containing several prompts, one on each line.
The server constructs the list of prompts sent to the client by

1915



Record
Activity

Listener

Circular byte buffer

User

AudioRecord

android.media.AudioRecord

ServerStub

Server

 SD card

Mic

A
ud

io
(
b
y
t
e
[
]
)

Utterances
(HTTP)

Prompts
(HTTP)

Prompts
java.io.File*Stream

Utterances
java.nio.channels

Figure 2: The client implementation.

randomly sampling from a large pre-defined list of prompts in
the specified language. There are no provisions to eliminate du-
plicates prompts, so they sometimes occur.

The server receives recordings from the client via HTTP
POST requests. The utterance metadata is sent using parameters
in the HTTP request, and the accompanying audio is sent in the
body of the request. When the server has received the entire
utterance, it stores the utterance and the associated metadata
into a central repository and informs the client that the utterance
can safely be deleted from its SD card.

3. Data collection
3.1. Prompt preparation

The server must be configured with a large list of text prompts
for the speakers to read. To generate these lists we used a sam-
ple of common typed Google search queries, and in some in-
stances an additional set of phrases in the target language. For
each target language, we used a statistical language classifier
and information about the user’s locale settings to find common
Google search queries in that language. We then removed mis-
spelled words and pornographic terms from the list. Finally,
the remaining queries were sampled uniformly and become the
prompts given to speakers.

There are significant reasons for using web queries to
prompt speakers. Most importantly, we used these corpora to
train initial acoustic models for Google search by voice[3], and
we expect that typed and spoken web queries would have simi-
lar distributions. A related advantage is that the web query data
contains many modern words, such as “pokemon” and “open-
vpn,” that are not present in standard pronunciation lexicons.
Having users read these words can give us an idea about how
they are actually pronounced, as discussed in section 4.3.

One drawback of using web queries as prompts is that
speakers will sometimes be given prompts they don’t under-
stand and make speaking errors when reading them. A com-
mon issue was foreign words in the prompt list. Sometimes this
was desirable; English speakers, for example, often say foreign
phrases such as “bon appétit.” But the prompt lists also con-
tained lesser known foreign words which were either mispro-
nounced or skipped by speakers. The distribution of typed and
spoken search queries can also be different; for example, En-
glish words comprise about 15% of typed Chinese web queries,
but a much smaller percentage of spoken queries. It seems that

users in some locales are more comfortable typing English than
speaking it.

3.2. Audio recording in the field

The system is ideal for research purposes because it can cap-
ture rich data in a variety of environments. Before a phone is
ready for field use, it must be configured for a particular lan-
guage and environment. We use Android’s locale settings to set
the phone’s UI language, and a Preferences screen in the client
application controls the prompt language, the number of record-
ings for each session, and the number of cached prompts. Some-
times it is useful to lower the number of recordings per session
to capture a more diverse group of speakers and accents while
using less of each speaker’s time. When recording in environ-
ments without Internet connectivity, it is important to pre-fetch
a larger number of prompts onto the SD card.

Once the phones are configured, a single session of 500 ut-
terances takes an average of 30 minutes of recording time in
Auto-advance mode, and can be completed in as few as 20 min-
utes if the speaker reads quickly. Educating the speaker ahead
of time can speed up the process. We walk the speaker through
recording the first prompt manually, and then play back the
recording to make sure the speaker is engaged in each step. The
speaker then activates Auto-advance mode once they feel com-
fortable with the process.

Using one device, it is possible to record 8,000 utterances
per day. To record sessions in real-life operating conditions,
such as outdoors, on the street or even in a public transportation
station, it is essential to have extra batteries and a fully-loaded
SD card because the G1’s battery lasts about 3 hours under con-
stant use. Disengaging the device’s radio and exiting unneces-
sary applications helps extend the battery life.

3.3. Crowd-sourcing

The system’s ease of use and comparatively inexpensive set-
up make it possible for a large number of unskilled people to
collect speech data in parallel. In many locales, we engaged
university students, working relatively independently in the tra-
dition of census takers and surveyors, to execute the data collec-
tion. The students set a target number of speakers with certain
demographic and recording environment distributions and were
able to leverage their social networking communities to recruit
speakers. Hiring university students can also be efficient in that
they are often just entering the work force and many are edge
technology users requiring less technical support.

4. Corpus characteristics
The speech corpora collected so far using the system have sev-
eral common characteristics. The utterances are fairly short,
typically just a few words, and they are surrounded by a margin
of background noise at the beginning and end. Each utterance is
annotated with metadata about the speaker as described in sec-
tion 1a. And finally, each utterance is also annotated with the
prompt given to the speaker to read, which we use as a transcript
when training acoustic models.

4.1. Speaker errors

Speakers do not always read the prompt text perfectly during
a recording session. There are occasional speaking errors and
repetitions, extraneous comments, and errors using the UI. This
means that the prompt text is only an approximation of the ac-

1916



Error
category Rate German example

Misread 3.5% “fasanerie” → ”fanasierie”
Side-

speech/noise 2.5% Coughing, extra commentary
“scheffler” → “quatsch scheffler”

Restart 2.0% “fm09” → ”f m oh- f m null neun”
Truncation 1.5% “kinoprogram” → “-gram”

Empty 0.5% “konstanz” → “ ”

Table 1: Categories of errors made by German speakers.
Around 10% of utterances contain a speaking error, which com-
pares favorably with the error rate achieved using human tran-
scribers.

tual transcript. To estimate the rate of these kinds of errors, we
hand-transcribed a random sample of German recordings, with
the results shown in table 1. Approximately 10% of the utter-
ances contain some sort of discrepancy between the prompt text
and what was actually spoken, which is less than the typical er-
ror rate of human transcribers. Therefore, we made no special
provisions to deal with the erroneously pronounced utterances
when training our acoustic models, although about 2% of them
are discarded automatically from the training process because
the Viterbi forced alignment algorithm fails to find an appropri-
ate alignment.

4.2. Evaluating recognition performance

We collect the speech corpora to train acoustic models, so it is
natural try to understand the quality of these corpora for that
purpose. However, in many cases, we don’t have another tran-
scribed corpus against which we can evaluate the acoustic mod-
els trained with the new corpus. To better understand the quality
of the data collected, we split the new corpus into training and
testing sets containing 80% and 20% of the data, respectively.
We group the utterances by session prior to splitting them to
ensure that no speaker is present in both the training and test
sets.

Figure 3 shows a normalized histogram of the sentence ac-
curacy of the trained acoustic model on both the training and
test data. Naturally, the model performs better on the training
data, where sessions with higher accuracy are more common.
However, the histogram also reveals that the acoustic model
performs very poorly even on some training sessions. Deeper
investigation reveals that these sessions had very low signal-to-
noise ratios or suffered from systematic user errors.

The metadata associated with each utterance allows us to
analyze how various factors affect recognition performance.
The most significant factor affecting performance is the acoustic
environment in which the recordings were made. Sentence ac-
curacy on the test set can be as much as 50% worse for recording
environments with persistent sources of non-stationary noise,
such as inside noisy restaurants or with music or TV in the back-
ground.

4.3. Identifying incorrect lexicon entries

The prompts our speakers recorded contain many modern words
that are not present in standard lexicons. Our recognizer
generates pronunciations for these words using letter-to-sound
rules, which do not always work properly for words such as
“pokemon” or “openvpn.” We do not have tools to automat-
ically fix incorrect pronunciations, but we were able to semi-

Figure 3: Histogram showing the per-session sentence recogni-
tion accuracy of the training and test data.

automatically identify them by running a maximum likelihood
trained recognizer on the training data and searching for words
that were consistently misrecognized; we found that MMI was
able to compensate for a significant percentage of the incor-
rect pronunciations in the lexicon, making it harder to identify
the incorrect pronunciations. More work remains to automate
the process of learning pronunciations from spoken examples
of words.

5. Conclusions
Our system has proven to be a very efficient tool for building
corpora in a variety of languages. We have already used it for
several languages, and have only just begun to tap into the vari-
ous ways that the data can be utilized and analyzed.

6. Acknowledgements
The authors would like to thank Vivek Kumar, Martin Jansche,
Amir Mane, Gummi Hafsteinsson, Dave Burke, Bill Byrne,
Mike Schuster, Trausti Kristjansson, Pankaj Risbood, Etienne
Barnard, and Alta de Waal for contributing to this project.

7. References
[1] Godfrey, John J., and Hollman, Edward, “Switchboard-

1 Release 2”, Linguistic Data Consortium, Philadelphia,
1997.

[2] T. Hazen, E. Weinstein, R. Kabir, A. Park, and B. Heisele.
Multi-Modal Face and Speaker Identification on a Hand-
held Device. In Proceedings, Workshop on Multimodal
User Authentication (MMUA) 2003, pp. 113-120, Decem-
ber 2003, Santa Barbara, CA, USA.

[3] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C.
Chelba, M. Cohen, M. Kamvar, and B. Strope, “Google
Search by Voice: A case study,” in Visions of Speech:
Exploring New Voice Apps in Mobile Environments, Call
Centers and Clinics, A. Neustein, Ed. Springer, 2010 (in
press).

[4] ”Android 1.5 Platform”, Google, Mountain View, CA. On-
line: http://developer.android.com/sdk/android-1.5.html,
accessed on 26 Mar 2010.

1917


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Pedro J. Moreno
	----------

