
MapReduce
The Programming Model and Practice

Jerry Zhao
Technical Lead
Jelena Pjesivac-Grbovic
Software Engineer

Tutorials, June 19th 2009

Yet another MapReduce tutorial?

Some tutorials you might have seen:
Introduction to MapReduce Programming Model
Hadoop Map/Reduce Programming Tutorial
and more.

What makes this one different:
Some complex "realistic" MapReduce examples
Brief discussion of trade-offs between alternatives
Google MapReduce implementation internals, tuning tips

About this presentation

Edited collaboratively on Google Docs for domains

http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://www.google.com/search?q=MapReduce+tutorial
http://docs.google.com/
http://www.google.com/apps/

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
Usability

What is MapReduce?

A programming model for large-scale distributed data
processing

Simple, elegant concept
Restricted, yet powerful programming construct
Building block for other parallel programming tools
Extensible for different applications

Also an implementation of a system to execute such
programs

Take advantage of parallelism
Tolerate failures and jitters
Hide messy internals from users
Provide tuning knobs for different applications

Programming Model

Inspired by Map/Reduce in functional programming
languages, such as LISP from 1960's, but not equivalent

http://www.cs.vu.nl/%7Eralf/MapReduce/

MapReduce Execution Overview

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
Usability

From "MapReduce: simplified data processing on large clusters"

Use of MapReduce inside Google

Stats for Month Aug.'04 Mar.'06 Sep.'07

Number of jobs
Avg. completion time (secs)
Machine years used

29,000
634
217

171,000
874

2,002

2,217,000
395

11,081
Map input data (TB)
Map output data (TB)
reduce output data (TB)
Avg. machines per job

3,288
758
193
157

52,254
6,743
2,970

268

403,152
34,774
14,018

394

Unique implementations
Mapper
Reducer

395
269

1958
1208

4083
2418

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

MapReduce inside Google

Googlers' hammer for 80% of our data crunching
Large-scale web search indexing
Clustering problems for Google News
Produce reports for popular queries, e.g. Google Trend
Processing of satellite imagery data
Language model processing for statistical machine
translation
Large-scale machine learning problems
Just a plain tool to reliably spawn large number of tasks

e.g. parallel data backup and restore

The other 20%? e.g. Pregel

http://www.google.com
http://news.google.com
http://www.google.com/trends
http://maps.google.com
http://translate.google.com
http://translate.google.com
https://www.google.com/adsense
http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html

Use of MR in System Health Monitoring
Monitoring service talks to every
server frequently
Collect

Health signals
Activity information
Configuration data

Store time-series data forever
Parallel analysis of repository data

MapReduce/Sawzall

Investigating System Health Issues

Case study
Higher DRAM errors observed in a new GMail cluster
Similar servers running GMail elsware not affected

Same version of the software, kernel, firmware, etc.
Bad DRAM is the initial culprit

... but that same DRAM model was fairly healthy elsewhere
Actual problem: bad motherboard batch

Poor electrical margin in some memory bus signals
GMail got more than its fair share of the bad batch
Analysis of this batch allocated to other services confirmed the
theory

Analysis possible by having all relevant data in one place
and processing power to digest it

MapReduce is part of the infrastructure

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
Usability

Application Examples

Word count and frequency in a large set of documents
Power of sorted keys and values
Combiners for map output

Computing average income in a city for a given year
Using customized readers to

Optimize MapReduce
Mimic rudimentary DBMS functionality

Overlaying satellite images
Handling various input formats using protocol bufers

Word Count Example

Input: Large number of text documents
Task: Compute word count across all the document

Solution

Mapper:
For every word in a document output (word, "1")

Reducer:
Sum all occurrences of words and output (word, total_count)

Word Count Solution

//Pseudo-code for "word counting"
map(String key, String value):
 // key: document name,
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");
reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int word_count = 0;
 for each v in values:
 word_count += ParseInt(v);
 Emit(key, AsString(word_count));

No types, just strings*

http://code.google.com/apis/protocolbuffers/

Word Count Optimization: Combiner

Apply reduce function to map output before it is sent to
reducer

Reduces number of records outputted by mapper!

Word Frequency Example

Input: Large number of text documents
Task: Compute word frequency across all the document

Frequency is calculated using the total word count

A naive solution with basic MapReduce model requires
two MapReduces

MR1: count number of all words in these documents
Use combiners

MR2: count number of each word and divide it by the total
count from MR1

Word Frequency Example

Can we do better?
Two nice features of Google's MapReduce
implementation

Ordering guarantee of reduce key
Auxiliary functionality: EmitToAllReducers(k, v)

A nice trick: To compute the total number of words in all
documents

Every map task sends its total world count with key ""
to ALL reducer splits
Key "" will be the first key processed by reducer

Sum of its values → total number of words!

Word Frequency Solution:
Mapper with Combiner

map(String key, String value):
 // key: document name, value: document contents
 int word_count = 0;
 for each word w in value:
 EmitIntermediate(w, "1");
 word_count++;
 EmitIntermediateToAllReducers("", AsString(word_count));

combine(String key, Iterator values):
 // Combiner for map output
 // key: a word, values: a list of counts
 int partial_word_count = 0;
 for each v in values:
 partial_word_count += ParseInt(v);
 Emit(key, AsString(partial_word_count));

Word Frequency Solution: Reducer

reduce(String key, Iterator values):
 // Actual reducer
 // key: a word
 // values: a list of counts
 if (is_first_key):
 assert("" == key); // sanity check
 total_word_count_ = 0;
 for each v in values:
 total_word_count_ += ParseInt(v)
 else:
 assert("" != key); // sanity check
 int word_count = 0;
 for each v in values:
 word_count += ParseInt(v);
 Emit(key, AsString(word_count / total_word_count_));

Application Examples

Word frequency in a large set of documents
Power of sorted keys and values
Combiners for map output

Computing average income in a city for a given year
Using customized readers to

Optimize MapReduce
Mimic rudimentary DBMS functionality

Overlaying satellite images
Handling various input formats using protocol bufers

Average Income In a City

SSTable 1: (SSN, {Personal Information})
123456:(John Smith;Sunnyvale, CA)
123457:(Jane Brown;Mountain View, CA)
123458:(Tom Little;Mountain View, CA)

SSTable 2: (SSN, {year, income})
123456:(2007,$70000),(2006,$65000),(2005,$6000),...
123457:(2007,$72000),(2006,$70000),(2005,$6000),...
123458:(2007,$80000),(2006,$85000),(2005,$7500),...

Task: Compute average income in each city in 2007

Note: Both inputs sorted by SSN

Average Income in a City Basic Solution
Mapper 1a:

Input: SSN → Personal Information
Output: (SSN, City)

Mapper 1b:
Input: SSN → Annual Incomes
Output: (SSN, 2007 Income)

Reducer 1:
Input: SSN → {City, 2007 Income}

Output: (SSN, [City, 2007 Income])

Mapper 2:
Input: SSN → [City, 2007 Income]

Output: (City, 2007 Income)

Reducer 2:
Input: City → 2007 Incomes

Output: (City, AVG(2007 Incomes))

Average Income in a City Basic Solution
Mapper 1a:

Input: SSN → Personal Information
Output: (SSN, City)

Mapper 1b:
Input: SSN → Annual Incomes
Output: (SSN, 2007 Income)

Reducer 1:
Input: SSN → {City, 2007 Income}

Output: (SSN, [City, 2007 Income])

Mapper 2:
Input: SSN → [City, 2007 Income]

Output: (City, 2007 Income)

Reducer 2:
Input: City → 2007 Incomes

Output: (City, AVG(2007 Incomes))

Average Income in a Joined Solution

Mapper:
Input: SSN → Personal Information and Incomes

Output: (City, 2007 Income)

Mapper 1b:
Input: SSN → Annual Incomes
Output: (SSN, 2007 Income)

Reducer
Input: City → 2007 Income

Output: (City, AVG(2007 Incomes))

Application Examples

Word frequency in a large set of documents
Power of sorted keys and values
Combiners for map output

Computing average income in a city for a given year
Using customized readers to

Optimize MapReduce
Mimic rudimentary DBMS functionality

Overlaying satellite images
Handling various input formats using protocol bufers

Stitch Imagery Data for Google Maps

A simplified version could be:
Imagery data from different content providers

Different formats
Different coverages
Different timestamps
Different resolutions
Different exposures/tones

Large amount to data to be processed
Goal: produce data to serve a "satellite" view to users

Stitch Imagery Data Algorithm

1. Split the whole territory into "tiles" with fixed location IDs
2. Split each source image according to the tiles it covers

3. For a given tile, stitch contributions from different sources,
based on its freshness and resolution, or other preference

4. Serve the merged imagery data for each tile, so they can be
loaded into and served from a image server farm.

Using Protocol Buffers
to Encode Structured Data

Open sourced from Google, among many others:
http://code.google.com/p/protobuf/

It supports C++, Java and Python.
A way of encoding structured data in an efficient yet extensible
format. e.g. we can define

Google uses Protocol Buffers for almost all its internal RPC
protocols, file formats and of course in MapReduce.

message Tile {
 required int64 location_id = 1;
 group coverage {
 double latitude = 2;
 double longitude = 3;
 double width = 4; // in km
 double length = 5; // in km
 }
 required bytes image_data = 6; // Bitmap Image data
 required int64 timestamp = 7;
 optional float resolution = 8 [default = 10];
 optinal string debug_info = 10;
}

http://code.google.com
http://code.google.com/p/protobuf/

Stitch Imagery Data Solution: Mapper
map(String key, String value):
 // key: image file name
 // value: image data
 Tile whole_image;

 switch (file_type(key)):
 FROM_PROVIDER_A: Convert_A(value, &whole_image);
 FROM PROVIDER_B: Convert_B(...);
 ...

 // split whole_image according to the grid into tiles
 for each Tile t in whole_image

 string v;
 t.SerializeToString(&v);
 EmitIntermediate(IntToStr(t.location_id(),v);

Stitch Imagery Data Solution: Reducer

reduce(String key, Iterator values):
 // key: location_id,
 // values: tiles from different sources

 sort values according v.resolution() and v.timestamp();

 Tile merged_tile;
 for each v in values:
 overlay pixels in v to merged_tile based on
 v.coverage();

 Normalize merged_tile to be the serve tile size;

 Emit(key, ProtobufToString(merged_tile));

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
Usability

Distributed Computing Landscape

Dimensions to compare Apples and Oranges
Data organization
Programming model
Execution model
Target applications
Assumed computing environment
Overall operating cost

My Basket of Fruit

Nutritional Information of My Basket

MPI MapReduce DBMS/SQL
What they are A general parrellel

programming paradigm
A programming paradigm
and its associated execution
system

A system to store, manipulate
and serve data.

Programming Model Messages passing between
nodes

Restricted to Map/Reduce
operations

Declarative on data
query/retrieving;
Stored procedures

Data organization No assumption "files" can be sharded Organized datastructures

Data to be manipulated Any k,v pairs: string/protomsg Tables with rich types

Execution model Nodes are independent Map/Shuffle/Reduce
Checkpointing/Backup
Physical data locality

Transaction
Query/operation optimization
Materialized view

Usability Steep learning curve*;
difficult to debug

Simple concept
Could be hard to optimize

Declarative interface;
Could be hard to debug in
runtime

Key selling point Flexible to accommodate
various applications

Plow through large amount
of data with commodity
hardware

Interactive querying the data;
Maintain a consistent view
across clients

See what others say: [1], [2], [3]

http://code.google.com/p/protobuf/
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-continued.html
http://database.cs.brown.edu/projects/mapreduce-vs-dbms/

Taste Them with Your Own Grain of Salt

Dimensions to choose between Apples and Oranges for an
application developer:

Target applications
Complex operations run frequently v.s. one time plow
Off-line processing v.s. real-time serving

Assumed computing environment
Off-the-shelf, custom-made or donated
Formats and sources of your data

Overall operating cost
Hardware maintenance, license fee
Manpower to develop, monitor and debug

http://www.nsf.gov/cise/clue/index.jsp

Existing MapReduce and Similar Systems
Google MapReduce

Support C++, Java, Python, Sawzall, etc.
Based on proprietary infrastructures

GFS(SOSP'03), MapReduce(OSDI'04) , Sawzall(SPJ'05), Chubby
(OSDI'06), Bigtable(OSDI'06)
and some open source libraries

Hadoop Map-Reduce
Open Source! (Kudos to Doug and the team.)
Plus the whole equivalent package, and more

HDFS, Map-Reduce, Pig, Zookeeper, HBase, Hive
Used by Yahoo!, Facebook, Amazon and Google-IBM NSF cluster

Dryad

Proprietary, based on Microsoft SQL servers
Dryad(EuroSys'07), DryadLINQ(OSDI'08)
Michael's Dryad TechTalk@Google (Nov.'07)

And others

http://research.google.com/roundtable/MR.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/sawzall.html
http://labs.google.com/papers/chubby.html
http://labs.google.com/papers/chubby.html
http://labs.google.com/papers/bigtable.html
http://code.google.com/
http://hadoop.apache.org/core/
http://www.nsf.gov/cise/clue/index.jsp
http://research.microsoft.com/en-us/projects/Dryad/
http://www.youtube.com/watch?v=WPhE5JCP2Ak
http://research.microsoft.com/en-us/projects/dryadlinq/dryadlinq.pdf
http://www.youtube.com/watch?v=WPhE5JCP2Ak
http://en.wikipedia.org/wiki/MapReduce

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
Usability

Google Computing Infrastructure

Infrastructure must support
Diverse set of applications

Increasing over time
Ever-increasing application usage
Ever-increasing computational requirements
Cost effective

Data centers
Google-specific mechanical, thermal and electrical design
Highly-customized PC-class motherboards
Running Linux
In-house management & application software

http://www.google.com/corporate/green/datacenters/step3.html
http://www.google.com/corporate/green/datacenters/step1.html

Sharing is the Way of Life

+ Batch processing
(MapReduce, Sazwall)

Major Challenges

To organize the world’s information and make it universally
accessible and useful.

Failure handling
Bad apples appear now and there

Scalability
Fast growing dataset
Broad extension of Google services

Performance and utilization
Minimizing run-time for individual jobs
Maximizing throughput across all services

Usability
Troubleshooting
Performance tuning
Production monitoring

Failures in Literature

LANL data (DSN 2006)
Data collected over 9 years
Covered 4750 machines and 24101 CPUs
Distribution of failures

Hardware ~ 60%, Software ~
20%, Network/Environment/Humans ~ 5%, Aliens ~ 25%*
Depending on a system, failures occurred between
once a day to once a month

Most of the systems in the survey were the cream of the crop at
their time

PlanetLab (SIGMETRICS 2008 HotMetrics Workshop)
Average frequency of failures per node in a 3-months period

Hard failures: 2.1
Soft failures: 41
Approximately failure every 4 days

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1633514
http://portal.acm.org/citation.cfm?id=1453178

Failures in Google Data Centers

DRAM errors analysis (SIGMETRICS 2009)
Data collected over 2.5 years
25,000 to 70,000 errors per billion device hours per Mbit

Order of magnitude more than under lab conditions
8% of DIMMs affected by errors
Hard errors are dominant cause of failure

Disk drive failure analysis (FAST 2007)
Annualized Failure Rates vary from 1.7% for one year old
drives to over 8.6% in three year old ones
Utilization affects failure rates only in very old and very old
disk drive populations
Temperature change can cause increase in failure rates
but mostly for old drives

http://research.google.com/pubs/pub35162.html
http://research.google.com/pubs/pub35162.html

Failures in Google

Failures are a part of everyday life
Mostly due to the scale and shared environment

Sources of job failures
Hardware
Software
Preemption by a more important job
Unavailability of a resource due to overload

Failure types
Permanent
Transient

Different Failures Require Different Actions

Fatal failure (the whole job dies)
Simplest case around :)
You'd prefer to resume computation rather than recompute

Transient failures
You'd want your job to adjust and finish when
issues resolve

Program hangs.. forever.
Define "forever"
Can we figure out why?
What to do?

"It's-Not-My-Fault" failures

MapReduce: Task Failure

Recover from Task Failure by Re-
execution

Recover by Checkpointing Map Output

MapReduce: Master Failure

Master as a Single Point of Failure

Resume from Execution Log on GFS

MapReduce: Slow Worker/Task

Handle Unfixable Failures

Input data is in a partially wrong format or is corrupted
Data is mostly well-formatted, but there are instances where
your code crashes
Corruptions happen rarely, but they are possible at scale

Your application depends on an external library which you
do not control

Which happens to have a bug for a particular, yet very rare,
input pattern

What would you do?
Your job is critical to finish as soon as possible
The problematic records are very rare
IGNORE IT!

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability

Some techniques and tuning tips
Dealing with stragglers

Usability

Performance and Scalability of
MapReduce

Terasort and Petasort with MapReduce in Nov 2008
Not particularly representative for production MRs
An important benchmark to evaluate the whole stack
Sorted 1TB (as 10 billion 100-byte uncompressed text)
on 1,000 computers in 68 seconds
Sorted 1PB (10 trillion 100-byte records) on 4,000
computers in 6 hours and 2 minutes

With Open-source Hadoop in May 2009 (TechReport)
Terasort: 62 seconds on 1460 nodes
Petasort: 16 hours and 15 minutes on 3658 nodes

http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop_sorts_a_petabyte_in_162.html
http://developer.yahoo.com/blogs/hadoop/Yahoo2009.pdf

Built up on Great Google Infrastructure

Google MapReduce is built upon an set of high
performance infrastructure components:

Google file system (GFS) (SOSP'03)
Chubby distributed lock service (OSDI'06)
Bigtable for structured data storage (OSDI'06)
Google cluster management system
Powerful yet energy efficient* hardware and finetuned
platform software
Other house-built libraries and services

http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/chubby.html
http://labs.google.com/papers/bigtable.html
http://research.google.com/archive/googlecluster.html
http://www.google.com/corporate/green/datacenters/

Take Advantage of Locality Hints from
GFS

Files in GFS
Divided into chunks (default 64MB)
Stored with replications, typical r=3
Reading from local disk is much faster and cheaper
than reading from a remote server

MapReduce uses the locality hints from GFS
Try to assign a task to a machine with a local copy of
input
Or, less preferable, to a machine where a copy
stored on a server on the same network switch
Or, assign to any available worker

Tuning Task Granularity

Questions often asked in production:
How many Map tasks I should split my input into?
How many Reduce splits I should have?

Implications on scalability
Master has to make O(M+R) decisions
System has to keep O(M*R) metadata for distributing
map output to reducers

To balance locality, performance and scalability

By default, each map task is 64MB (== GFS chunksize)
Usually, #reduce tasks is a small multiple of #machine

More on Map Task Size

Small map tasks allow fast failure recovery
Define "small": input size, output size or processing time

Big map tasks may force mappers to read from
multiple remote chunkservers

Too many small map shards might lead to excessive
overhead in map output distribution

Reduce Task Partitioning Function

It is relatively easy to control Map input granularity
Each map task is independent

For Reduce tasks, we can tweak the partitioning function
instead.

Reduce key Reduce
input size

*.blogspot.com 82.9G

cgi.ebay.com 58.2G

profile.myspace.com 56.3G
yellowpages.superpages.com 49.6G

www.amazon.co.uk 41.7G

average reduce input size for a given
key

300K

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability

Dealing with stragglers
Usability

Dealing with Reduce Stragglers

Many reason leads to stragglers but reducing is inherently
expensive:

Reducer retrieves data remotely from many servers
Sorting is expensive on local resources
Reducing usually can not start until Mapping is done

Re-execution due to machine failures could double the
runtime.

Dealing with Reduce Stragglers

Technique 1:
Create a backup instance as early and as necessary as
possible

Steal Reduce Input for Backups
Technique 2:
Retrieving map output and sorting are expensive, but we
can transport the sorted input to the backup reducer

Reduce Task Splitting

Technique 3:
Divide a reduce task into smaller ones to take advantage of
more parallelism.

Tutorial Overview

MapReduce programming model
Brief intro to MapReduce
Use of MapReduce inside Google
MapReduce programming examples
MapReduce, similar and alternatives

Implementation of Google MapReduce
Dealing with failures
Performance & scalability
(Operational) Usability

monitoring, debugging, profiling, etc.

Tools for Google MapReduce

Local run mode for debugging/profiling MapReduce
applications

Status page to monitor and track progress of MapReduce
executions, also

Email notification
Replay progress postmortem

Distributed counters used by MapReduce library and
application for validation, debugging and tuning

System invariant
Performance profiling

MapReduce Counters

Light-weighted stats with only "increment" operations
per task counters: contributed by each M/R task

only counted once even there are backup instances
per worker counters: contributed by each worker
process

aggregated contributions from all instances
Can be easily added by developers

Examples:
num_map_output_records == num_reduce_input_records
CPU time spend in Map() and Reduce() functions

MapReduce Development inside Google

Support C++, Java, Python, Sawzall, etc.

Nurtured greatly by Google engineer community

Friendly internal user discussion groups
Fix-it! instead of complain-about-it! attitude
Users contribute to both the core library and contrib

Thousands of Mapper Reducer implementations
Tens of Input/Output formats
Endless new ideas and proposals

Summary

MapReduce is a flexible programming framework for
many applications through a couple of restricted Map()
/Reduce() constructs

Google invented and implemented MapReduce around
its infrastructure to allow our engineers scale with the
growth of the Internet, and the growth of Google
products/services

Open source implementations of MapReduce, such as
Hadoop are creating a new ecosystem to enable large
scale computing over the off-the-shelf clusters

So happy MapReducing!

Thank you!

