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Abstract

We introduce traits. js, a small, portable trait composition library for Javascript.
Traits are a more robust alternative to multiple inheritance and enable object
composition and reuse. traits. js is motivated by two goals: first, it is an ex-
periment in using and extending Javascript’s recently added meta-level object
description format. By reusing this standard description format, traits.js
can be made more interoperable with similar libraries, and even with built-in
primitives. Second, traits.js makes it convenient to create “high-integrity”
objects whose integrity cannot be violated by clients, an important property
when web content is composed from mutually suspicious scripts. We describe
the design of traits.js and provide an operational semantics for TRAITS-JS, a
minimal calculus that models the core functionality of the library.
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1. Introduction

We introduce traits.js, a small, standards-compliant trait composition
library for ECMAScript 5, the latest standard of Javascript. Traits are a more
robust alternative to classes with multiple inheritance.

A common pattern in Javascript is to add (“mixin”) the properties of one ob-
ject to another object. traits. js provides a few simple functions for performing
this pattern safely as it will detect, propagate and report conflicts (name clashes)
created during a composition. While such a library is certainly useful, it is by no
means novel. Because of Javascript’s flexible yet low-level object model, libraries
that add class-like abstractions with mixin- or trait-like capabilities abound (e.g.
Prototype’s Class.create, jQuery’s jQuery.extend, MooTools mixins, YUI’s
Y.augment, Dojo’s dojo.mixin, ...). What sets traits.js apart?

Traits, not mixins. Most of the aforementioned libraries provide support for
mixins, not traits. They mostly build upon Javascript’s flexible object
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model which allows objects to be augmented at runtime with new prop-
erties. However, if the target of a mixin operation already contains a
method that is mixed-in, the existing method is mostly simply overrid-
den. As explained in section 3, traits support explicit conflict resolution
to make object composition more robust.

Standard object representation format. traits. js represents traits in terms
of a new meta-level object description format, introduced in the latest EC-
MAScript 5th edition (ES5) [1]. The use of such a standard format, rather
than inventing an ad hoc representation, allows higher interoperability
with other libraries that use this format, including the built-in functions
defined by ES5 itself. We briefly describe ES5’s new object-description
API in the following Section. We show how this standard object descrip-
tion format lends itself well to extensions of Javascript object semantics,
while remaining interoperable with other libraries.

Support for high-integrity instances. traits. js facilitates the creation of
so-called “high-integrity” objects. By default, Javascript objects are ex-
tremely dynamic: clients can add, remove and assign to any property,
and are even allowed to rebind the this pseudovariable in an object’s
methods to arbitrary other objects. While this flexibility is often an as-
set, in the context of cooperation between untrusted scripts it is a liabil-
ity. ECMAScript 5 introduces a number of primitives that enable high-
integrity objects, yet not at all in a convenient manner. An explicit goal
of traits. js is to make it as convenient to create high-integrity objects
as it is to create Javascript’s standard, dynamic objects.

Minimal. traits. js introduces just the necessary features to create, combine
and instantiate traits. It does not add the concept of a class to Javascript,
but rather reuses Javascript functions for the roles traditionally attributed
to classes. Inspired by the first author’s earlier work [2], a class in this
library is just a function that returns new trait instances.

This work is an extension of our earlier paper on traits.js [3]. This paper
adds a calculus and accompanying operational semantics that precisely captures
the semantics of trait composition in traits.js (cf. Section 7).

Availability. traits. js can be downloaded from www.traitsjs.org and runs
in all major browsers and in server-side Javascript environments, like node. js.

2. ECMAScript 5

Before introducing traits.js proper, we briefly touch upon a number of
features introduced in the most recent version of ECMAScript. Understanding
these features is key to understanding traits. js.



Property Descriptors. ECMAScript 5 defines a new object-manipulation API
that provides more fine-grained control over the nature of object properties [1].
In Javascript, objects are records of properties mapping names (strings) to val-
ues. A simple two-dimensional point whose y-coordinate always equals the
x-coordinate can be defined as:

var point = {
x: b,
get y() { return this.x; },
toString: function() { return ’[Point '+this.x+']’; }

h

ECMAScript 5 distinguishes between two kinds of properties. Here, x is a
data property, mapping a name to a value directly. y is an accessor property,
mapping a name to a “getter” and/or a “setter” function. The expression
point.y implicitly calls the getter function.

ECMAScript 5 further associates with each property a set of attributes. At-
tributes are meta-data that describe whether the property is writable (can be
assigned to), enumerable (whether it appears in for-in loops) or configurable
(whether the property can be deleted and whether its attributes can be modi-
fied). The following code snippet shows how these attributes can be inspected
and defined:

var pd = Object.getOwnPropertyDescriptor(point, 'x’);
// pd =A{

//  wvalue: 5,

// writable: true,

//  enumerable: true,

//  configurable : true

//}

Object.defineProperty(point, 'z’, {
get: function() { return this.x; },
enumerable: false,
configurable: true

b

The pd object and the third argument to def ineProperty are called property
descriptors. These are objects that describe properties of objects. Data property
descriptors declare a value and a writable property, while accessor property
descriptors declare a get and/or a set property.

The Object.create function can be used to generate new objects based on a
set of property descriptors directly. Its first argument specifies the prototype of
the object to be created (every Javascript object forwards requests for properties
it does not know to its prototype). Its second argument is an object mapping
property names to property descriptors. This object, which we will refer to
as a property descriptor map, describes both the properties and the meta-data
(writability, enumerability, configurability) of the object to be created. Armed
with this knowledge, we could have also defined the point object explicitly as:




// Object. prototype is the ’root’ prototype
var point = Object.create(Object.prototype, {
x: { value: 5,
enumerable: true,
writable: true,
configurable: true },
y: { get: function() { return this.x; },
enumerable: true,
configurable: true },
toString: { value: function() {...},
enumerable: true,
writable: true,
configurable: true }

b

Tamper-proof Objects. ECMAScript 5 supports the creation of tamper-proof
objects that can protect themselves from modifications by client objects. Ob-
jects can be made mon-extensible, sealed or frozen. A non-extensible object
cannot be extended with new properties. A sealed object is a non-extensible
object whose own (non-inherited) properties are all non-configurable. Finally,
a frozen object is a sealed object whose own properties are all non-writable.
The call Object.freeze(obj) freezes the object obj. As we will describe in
Section 6, traits.js supports the creation of such tamper-proof objects.

Bind. A common pitfall in Javascript relates to the peculiar binding rules for
the this pseudovariable in methods [4]. For example:

var obj = {
x:1,
m: function() { return this.x; }
h
var meth = obj.m; // grab the method as a function
meth(); // ‘this’ keyword will refer to the global object

Javascript methods are simply functions stored in objects. When calling a
method obj.m(), the method’s this pseudovariable is bound to obj, as ex-
pected. However, when accessing a method as a property obj.m and storing it
in a variable meth, as is done in the above example, the function loses track of
its this-binding. When it is subsequently called as meth(), this is bound to
the global object by default, returning the wrong value for this.x.

There are other ways for the value of this to be rebound. Any object can
call a method with an explicit binding for this, by invoking meth.call(obj).
While that solves the problem in this case, unfortunately, in general, malicious
clients can use the call primitive to confuse the original method by binding
its this pseudovariable to a totally unrelated object. To guard against such
this-rebinding, whether by accident or by intent, one can use the ECMAScript
5 bind method, as follows:



obj.m = obj.m.bind(obj); // fizes m’s this—binding to obj
var meth = obj.m;
meth(); // returns 1 as expected

Now m can be selected from the object and passed around as a function,
without fear of accidentally having its this rebound to the global object, or
any other random object.

3. Traits

Traits were originally defined as “composable units of behavior” [5, 6]:
reusable groups of methods that can be composed together to form a class.
Trait composition can be thought of as a more robust alternative to multiple
inheritance. Traits may provide and require a number of methods. Required
methods are like abstract methods in OO class hierarchies: their implementation
should be provided by another trait or class.

The main difference between traits and alternative composition techniques
such as multiple inheritance and mixin-based inheritance [7] is that upon trait
composition, name conflicts (a.k.a. name clashes) should be explicitly resolved
by the composer. This is in contrast to multiple inheritance and mixins, which
define various kinds of linearization schemes that impose an implicit precedence
on the composed entities, with one entity overriding all of the methods of another
entity. While such systems often work well in small reuse scenarios, they are not
robust: small changes in the ordering of classes/mixins somewhere high up in the
inheritance/mixin chain may impact the way name clashes are resolved further
down the inheritance/mixin chain [8]. In addition, the linearization imposed by
multiple inheritance or mixins precludes a composer to give precedence to both
a method m1 from one class/mixin A and a method m2 from another class/mixin
B: either all of A’s methods take precedence over B, or all of B’s methods take
precedence over A.

Traits allow a composer to resolve name clashes in the combined components
by either excluding a method from all but one of the components or by explicitly
choosing the method of one of the components, thus implicitly overriding the
other components’ method. In addition, the composer may define an alias for a
method, allowing the composer to refer to the original method even if its original
name was excluded or overridden.

Name clashes that are never explicitly resolved will eventually lead to a
composition error. Depending on the language, this composition error may be
a compile-time error, a runtime error when the trait is composed, or a runtime
error when a conflicting name is invoked on a trait instance.

Trait composition is declarative in the sense that the ordering of composed
traits does not matter. In other words, unlike mixin-based or multiple inher-
itance, trait composition is commutative and associative. This tremendously
reduces the cognitive burden of reasoning about deeply nested levels of trait
composition. In languages that support traits as a compile-time entity (similar



to classes), trait composition can be entirely performed at compile-time, effec-
tively “flattening” the composition and eliminating any composition overhead
at runtime.

Since their publication in 2003, traits have received widespread adoption in
other languages, although the details of the many traits implementations differ
significantly from the original implementation defined for Smalltalk. Traits have
been adopted in among others PHP, Perl, Fortress and Racket [9]. Although
originally designed in a dynamically typed setting, several type systems have
been built for Traits [10, 11, 12, 13].

4. traits.js in a Nutshell

As a concrete example of a trait, consider the “enumerability” of collec-
tion objects. In many languages, collection objects all support a similar set of
methods to manipulate the objects contained in the collection. Most of these
methods are generic across all collections and can be implemented in terms of
just a few collection-specific methods, e.g. a method forEach that returns suc-
cessive elements of the collection. Such a TEnumerable trait can be encoded
using traits.js as follows:

var TEnumerable = Trait({

// required property, to be provided by trait composer

forEach: Trait.required,

// provided properties

map: function(fun) {
varr = [|;
this.forEach(function (e) { r.push(fun(e)); });
return r;

}7

reduce: function(init, accum) {
var r = init;
this.forEach(function (e) { r = accum(r,e); });
return r;

}7
i

// an example enumerable collection
function Range(from, to) {
return Trait.create(Object.prototype,
Trait.compose(TEnumerable, Trait({
forEach: function(fun) {
for (var i = from; i < to; i++) { fun(i); }

D));
}

var r = Range(0,5);



r.reduce(0, function(a,b){return a+b;}); // 10

traits.js exports a single function object, named Trait. Calling Trait({...})
creates and returns a new trait'. We refer to this Trait function as the Trait
constructor. The Trait constructor additionally defines a number of properties:

e Trait.required is a special singleton value that is used to denote miss-
ing required properties. traits.js recognizes such data properties as
required properties and they are treated specially by Trait.create and
by Trait.compose (as explained later). Traits are not required to state
their required properties explicitly, but it is often useful to do so for doc-
umentation purposes.

e The function Trait.compose takes an arbitrary number of input traits
and returns a composite trait.

e The function Trait.create takes a prototype object and a trait, and re-
turns a new trait instance (an object). The first argument is the prototype
of the trait instance. Note the similarity to the built-in Object.create
function.

When a trait is instantiated into an object o, the binding of the this pseu-
dovariable of the trait’s methods refers to o. In the example, the TEnumerable
trait defines two methods, map and reduce, that require (depend on) the forEach
method. This dependency is expressed via the self-send this.forEach(...).
When map or reduce is invoked on the fully composed Range instance r, this
will refer to r, and this.forEach refers to the method defined in the Range
function.

5. Traits as Property Descriptor Maps

We now describe the unique feature of traits. js, namely the way in which
it represents trait objects. traits.js represents traits as property descriptor
maps (cf. Section 2): objects whose keys represent property names and whose
values are property descriptors. Hence, traits conform to an “open” representa-
tion, and are not opaque values that can only be manipulated by the functions
exported by the library. Quite the contrary: by building upon the property
descriptor map format, libraries that operate on property descriptors can also
operate on traits, and the traits. js library can consume property descriptor
maps that were not constructed by the library itself.

Figure 1 depicts the different kinds of objects that play a role in traits.js
and the conversion functions between them. These conversions are explained in
more detail in the following Sections.

L Alternatively one may call new Trait({...}). The new keyword is optional in this case.



Trait.compose(trait,...)

. Trait.resolve(map,trait,...
Trait nap )=
Trait.create(proto, trait)
Trait(record) Object.create(proto, trait)
Trait.object(record)
Record »{ Instance

Figure 1: Object types and conversions in traits.js

5.1. Atomic (non-composite) Traits

Recall that the Trait function acts as a constructor for atomic (non-composite)
traits. It essentially turns an object describing a record of properties into a trait.
For example:

var T = Trait({
a: Trait.required,
b: "foo”,
c: function() { ... }

b

The above trait T provides the properties b and ¢ and requires the property
a. The Trait constructor converts the object literal into the following property
descriptor map T, which represents a trait:

{a s {
value: undefined,
required: true,
enumerable: false,
configurable: false

by

b’
value: "foo”,
writable: false,
enumerable: true,
configurable: false

}7

e’ |
value: function() { ... },
method: true,
enumerable: true,
configurable: false

b}




The attributes required and method are not standard ES5H attributes, but
are recognized and interpreted by the Trait.create function described later.

The objects passed to Trait are meant to serve as plain records that describe
an atomic trait’s properties. Just like Javascript itself has a convenient and short
object literal syntax, in addition to the more heavyweight, yet more powerful
Object.create syntax (as shown in Section 2), passing a record to the Trait
constructor is a handy way of defining a trait without having to spell out all
meta-data by hand.

The Trait function turns a record into a property descriptor map with the
following constraints:

e Only the record’s own properties are turned into trait properties, inherited
properties are ignored. This is because the prototype of the record is not
significant. In Javascript, object literals by default inherit from the root
Object.prototype object. Properties of this shared root object should
not become part of the trait.

e Data properties in the record bound to the special
Trait.required singleton are bound to a property descriptor marked
with the required: true attribute.

e Data properties in the record bound to functions are marked with the
method: true attribute. traits. js distinguishes between such methods
and plain function-valued data properties in the following ways:

— Normal Javascript functions are mutable objects, but trait methods
are treated as frozen objects (i.e. objects with immutable structure).

— For normal Javascript functions, their this pseudovariable is a free
variable that can be set to any object by callers. For trait methods,
the this pseudovariable of a method will be bound to trait instances,
disallowing callers to specify a different value for this.

The rationale for treating methods in this way will become clear in Sec-
tion 6.

5.2. Composing Traits

The function Trait.compose is the workhorse of traits.js. It composes
zero or more traits into a single composite trait:

var T1 = Trait({ a: 0, b: 1});
var T2 = Trait({ a: 1, c: 2});
var Tc = Trait.compose(T1,T2);

The composite trait contains the union of all properties from the argument
traits. For properties whose name appears in multiple argument traits, a distinct
“conflicting” property is defined in the composite trait. The format of Tc is:



[a s
get: function(){ throw ...; },
set: function(){ throw ...; },
conflict: true
}7
b’ : { value: 1 },
¢’ i { value: 2 } }

The conflicting a property in the composite trait is marked as a conflicting
property by means of a conflict: true attribute (again, this is not a standard
ES5 attribute). Conflicting properties are accessor properties whose get and
set functions raise an appropriate runtime exception when invoked.

Two properties p1 and p2 with the same name are not in conflict if:

e pl or p2 is a required property. If either pl or p2 is a non-required
property, the required property is overridden by the non-required property.

e pl and p2 denote the same property. Two properties are considered to
be the same if they refer to identical values and have identical attribute
values. This implies that it is OK for the same property to be “inherited”
via different composition paths, e.g. in the case of diamond inheritance.

compose is a commutative and associative operation: the ordering of its argu-
ments does not matter, and compose(tl,t2,t3) is equivalent to compose(t1,
compose (t2,t3)) or compose (compose(t2,t1),t3).

5.8. Resolving Conflicts

The Trait.resolve function can be used to resolve conflicts created by
Trait.compose, by either renaming or excluding conflicting property names.
The function takes as its first argument an object that maps property names to
either strings (indicating that the property should be renamed) or to undefined
(indicating that the property should be excluded). Trait.resolve returns a
fresh trait in which the indicated properties have been renamed or excluded.

For example, if we wanted to avoid the conflict in the Tc trait from the
previous example, we could have composed T1 and T2 as follows:

var Trenamed =
Trait.compose(T1, Trait.resolve({ a: 'd’ }, T2);
var Texclude =
Trait.compose(T1, Trait.resolve({ a: undefined }, T2);

Trenamed and Texclude have the following structure:

// Trenamed =
{’a’ : { value: 0
'’ { value: 1
¢’ : { value: 2
1

'd’ : { value: Y // T2.a renamed to ’d’

10



// Texclude =

{’a’ : { value: 0 }, // T2.a excluded
b’ : { value: 1 },
¢’ i { value: 2 } }

When a property p is renamed or excluded, p itself is turned into a required
property, to attest that the trait is not valid unless the composer provides an
alternative implementation for the old name.

5.4. Instantiating Traits

traits.js provides two ways to instantiate a trait: using its own provided
Trait.create function, or using the ES5 Object.create primitive. We discuss
each of these below.

Trait.create. When instantiating a trait, Trait.create performs two “confor-
mance checks”. A call to Trait.create(proto, trait) fails if:

e trait still contains required properties, and those properties are not pro-
vided by proto. This is analogous to trying to instantiate an abstract
class.

e trait still contains conflicting properties.
In addition, traits. js ensures that the new trait instance has high integrity:

e The this pseudovariable of all trait methods is bound to the new instance,
using the bind method introduced in Section 2. This ensures clients cannot
tamper with a trait instance’s this-binding.

e The instance is created as a frozen object: clients cannot add, delete or
assign to the instance’s properties.

Object.create. Since Object.create is an ES5 built-in that knows nothing about
traits, it will not perform the above trait conformance checks and will not fail
on incomplete or inconsistent traits. Instead, required and conflicting properties
are interpreted as follows:

e Required properties will be bound to undefined, and will be non-enumerable
(i.e. they will not show up in for-in loops on the trait instance). This
makes such properties virtually invisible (in Javascript, if an object o does
not define a property x, o.x also returns undefined). Clients can still as-
sign a value to these properties later.

e Conlflicting properties have a getter and a setter that throws an excep-
tion when accessed. Hence, the moment a program touches a conflicting
property, it will fail, revealing the unresolved conflict.

11



Object.create does not bind this for trait methods and does not generate
frozen instances. Hence, the new trait instance can still be modified by clients.

It is up to the programmer to decide which instantiation method, Trait.create
or Object.create, is more appropriate: Trait.create fails on incomplete or
inconsistent traits and generates frozen objects, Object.create may generate
incomplete or inconsistent objects, but as long as a program never actually
touches a conflicting property, it will work fine (which fits with the dynamically
typed nature of Javascript).

In summary, because traits. js reuses the ES5 property descriptor format
to represent traits, it interoperates well with libraries that operate on the same
format, including the built-in primitives. While such libraries do not under-
stand the additional attributes used by traits.js (such as required:true),
sometimes it is still possible to encode the semantics of those attributes by
means of the standard attributes (for instance,representing required properties
as non-enumerable and conflicting properties as accessors that throw). As such,
even when a trait is created using Object.create, required and conflicting
properties have a reasonable representation. Furthermore, the semantics pro-
vided by Object.create provide a nice alternative to the semantics provided
by Trait.create: the former provides dynamic, late error checks and gener-
ates flexible instances, while the latter provides early error checks and generates
high-integrity instances.

6. High-integrity Objects

Recall from the introduction that one of the goals of traits. js is to facili-
tate the creation of high-integrity objects in Javascript, that is: objects whose
structure or methods cannot be changed by client objects, so that a client can
only properly interact with an object by invoking its methods or reading its
properties.

In Section 2 we mentioned that ECMAScript 5 supports tamper-proof ob-
jects by means of three new primitives that can make an object non-extensible,
sealed or frozen. Armed with these primitives, it seems that ECMAScript 5 al-
ready has good support for constructing high-integrity objects. However, while
freezing an object fixes its structure, it does not fix the this-binding issue for
methods, and leaves methods as fully mutable objects, still making it possible
for clients to tamper with them. Hence, simply calling Object.freeze(obj)
does not produce a high-integrity object.

traits.js, by means of its Trait.create function, provides a more robust
alternative to construct high-integrity objects: a trait instance constructed by
this function is frozen and has frozen methods whose this pseudovariable is
fixed to the trait instance using bind. A client can only use a trait instance by
invoking its methods or reading its fields.

In order to construct the 2D point object from Section 2 as a high-integrity
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object in plain ECMAScript 5, one has to write approximately? the following:

var point = {

x: 5,

toString: function() { return ’[Point +this.x+']’; }
2
point.toString =

Object.freeze(point.toString.bind(point));
Object.defineProperty(point, 'y’, {

get: Object.freeze(

function() { return this.x; }).bind(point)

};

Object.freeze(point);

With traits. js, the above code can be simplified to:

var point = Trait.create(Object.prototype,
Trait({
x: 9,
get y() { return this.x; },
toString: function() { return ’'[Point '+this.x+"]; }

)

In the above example, the original code for point was wrapped in a Trait
constructor. This trait is then immediately instantiated using Trait.create to
produce a high-integrity object. To better support this idiom, traits. js defines
aTrait.object function that combines trait declaration and instantiation, such
that the example can be further simplified to:

var point = Trait.object({
x: b,
get y() { return this.x; },
toString: function() { return ’[Point ’+this.x+’]’; }

b

This pattern makes it feasible to work with high-integrity objects by default.

7. Operational Semantics

The goal of this section is to provide a precise description of the key func-
tionality of the traits. js library. In particular, we want to formally specify:

e the this-binding of methods in the presence of method extraction (ex-
tracting a method as a first-class function) and method binding (as per-
formed by Trait.create).

e the distinction between trait instances generated by Trait.create and
Object.create.

2To fully fix the object’s structure, the prototype of its methods should also be fixed.
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e the precise rules of trait composition and renaming.

As Javascript is a complex language to formalize, we introduce the TRAITS-JS
calculus, which models a simple subset of a Javascript-like language with built-in
support for traits. TRAITS-JS features objects with data and method properties.
As in Javascript, method properties can be extracted from an object as first-class
functions. TRAITS-JS does not model Javascript’s prototypal inheritance.

Asin traits. js, traits can either be defined as atomic traits or by compos-
ing existing traits via the compose, override and resolve operators. Objects
in TRAITS-JS can be instantiated from traits only, either via the newTrait oper-
ator (which models the Trait.create function) or via the newObject operator
(which models the Object . create function). While traits in TRAITS-JS are first-
class, they are not represented as objects, to clearly separate trait declarations
from trait instances.

Figure 2 depicts the values of a TRAITS-JS program. Trait declarations are
modelled as a data type distinct from objects (trait instances). Both trait
declarations and objects are represented by a partial function s — p mapping
strings s to properties p. Objects are additionally represented by a boolean flag
b that models whether or not the object is extensible. First-class functions are
represented by their parameter list Z, their method body e and a reference to
a bound this object v. v can be null, in which case the function is unbound.
Contrary to Javascript, functions in TRAITS-JS are not full objects with their
own properties. They are first-class, but the only useful operation supported on
them is invocation.

o,t € Object == O(s+ p,b) Objects
|  T(s—p) Traits
|  F(Z, e, v) Functions

p € Property := D(v,b) Data property
| M(x, e) Method property
| R Required property
| C Conlflicting property

v € Value = ¢, |null Values
H € Heap := Objectld — Object Heaps

Lo € Objectld, x € VarName, b € Boolean, s € String

Figure 2: Semantic entities of TRAITS-JS.

Trait declarations consist of four kinds of properties. Data properties D(v, b)
are tuples of a value v and a boolean flag b, indicating whether the property
binding is frozen (i.e. constant). Method properties M(T,e) store the formal
parameters T and method body e of trait methods. Method properties of trait
instances are immutable (i.e. cannot be updated). Required properties R mark
property names to be provided by other traits. Conflicting properties C mark
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conflicting property names.

Values v are either references to objects, traits or functions, or the null
value. Finally, the heap H is a partial function from such references to the
actual object, trait or function representations.

7.1. Syntax

TRAITS-JS defines standard expressions for referring to and introducing lex-
ically scoped variables x. These variable bindings are immutable. There are
standard expressions for accessing, updating and invoking the properties of an
object.

Atomic traits are defined using the syntax trait{...}. Data properties can
be marked “const”, which are equivalent to frozen data properties in Javascript.
Function-valued properties are considered “methods” of a trait. A required
property “s : required” is equivalent to a property bound to traits.js’s
Trait.required marker.

Syntax
{

e € Expr this |z |null |e; e|letz =eine|es|es=e
e.s(€) | trait{p} | newTrait e | newObject e
compose e e | override e e | resolve S a e

p € PropDecl s:e|consts:els: function(Z){e} | s : required

a € Alias == s|null

Syntactic Sugar

e;e ' Yotz =eine x ¢ FV(e)

Evaluation Contexts and Runtime Syntax

eg == 0O|letx = egine|eg.s|eg.s=e|v.s=eq]en.s(€)|v.s(T,eq,e)
|  trait{p pg D} | newTrait eg | newObject e | compose e e
|  compose v e | override e e | override v e | resolve 7 a e

po == S : eq|consts:en

e n= o

In TRAITS-JS, objects can only be created by instantiating traits. The expres-
sion newTrait t instantiates a trait as if by Trait.create(t). The expression
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newObject t instantiates a trait as if by Object.create(t).

The compose, override and resolve operators can be used to define com-
posite traits. They model the equivalent functions provided by traits.js. The
resolve operator takes as its first argument a sequence of aliases, which map
strings to either new strings to denote renaming, or to the null value to denote
exclusion, as in traits. js.

Finally, expression sequencing e; €’ is simply syntactic sugar for a let-expression
that binds the result of e to a variable that is not free in ¢’.

Evaluation Contexts and Runtime Expressions. We use evaluation contexts [14]
to indicate what subexpressions of an expression should be fully reduced before
the compound expression itself can be further reduced. e denotes an expression
with a “hole”. Each appearance of e indicates a subexpression with a possible
hole. The intent is for the hole to identify the next subexpression to reduce in
a compound expression.

Our reduction rules operate on “runtime expressions”, which are simply all
expressions including values v, as a subexpression may reduce to a value before
being reduced further.

Substitution Rules
[

[v/z]lzr = wv
[v/z]e’ = o [v/z]e.s =e = ([v/x]e).s = [v/x]e
[v/z]o = [v/x]s : e = s: [v/x]e
[v/z]le.s = ([v/z]e).s [v/z]const s:e = consts:[v/x]e
[v/z]e.s(e) = [v/z]e.s([v/z]e) [v/z]s : required = s :required
[v/x]s : function(Z){e} = s: function(T){e} ifrez
[v/x]s : function(Z){e} = s: function(Z){[v/x]e} ifedx
[v/z]let 2’ =eine = leta’ =[v/z]lein[v/x]e
[v/z]letz =eine = letx =[v/z]eine
[v/x]composeee’ = compose [v/z]e [v/x]e’
[v/x]overrideee’ = override [v/x]e [v/x]e
[v/x]newTraite = newTrait [v/x]e
[v/zlnewObject e = mnewObject [v/x]e
[v/z]resolves=ae = resolves—a [v/x]e
[v/x]trait{p} = trait{[v/z]p} if & # this

[v/this]trait{p}

trait{p}

Figure 3: Substitution rules: x denotes a variable name or the pseudovariable this.
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7.2. Reduction Rules

The reduction rules describe property lookup, property update, trait cre-
ation, trait composition and trait instantiation in TRAITS-JS. Before explaining
each rule in detail, we explain some notational conventions.

Notation. Our notation is mostly derived from the operational semantics of
JCoBox [15]. T denotes a sequence of items, with € denoting the empty sequence.
The notation v - T deconstructs a sequence into a subsequence v and its first
element v. We use the notation S’ = SWU{s} to lookup and extract an element
s from the set S, such that s € S, 5 = 5"\ {s}.

The function dom(f) denotes the domain of a partial function f as a set.
The notation f[s — v] denotes a function that extends the domain of f with
a new element s. If s € dom(f), the extended function overrides the previous
value of f(s).

The notation egle] indicates that the expression e is (potentially) part of
a compound expression e, and should be reduced first before the compound
expression can be reduced further.

Variables. Variables are introduced via let-expressions. The rule [LET] de-
scribes that such an expression reduces to the body e, with v substituted for x
in e, where the heap H remains unchanged. The precise semantics of variable
substitution is given in Figure 3.

Trait construction. The rule [CONSTRUCT-TRAIT| describes that an expression
“trait {p}” reduces to an object reference ¢,, where ¢, is a fresh identity not yet
present in the heap H. After executing this rule, the heap is updated with a
reference to the new trait ¢.

The auxiliary function “construct” (see p.19) describes t’s partial function f
from strings s to properties p, given the property declarations p. The function
fo denotes a function whose domain is the empty set @), i.e. fy is undefined for
any string s.

For any data property declaration s : v in p, t’s partial function f maps s to
a mutable data property D(v, true). Similarly, for any constant data property
declaration const s : v, f(s) = D(v,false). Function property declarations s :
function(Z){e} are mapped to method properties M(Z,e). Finally, required
property declarations “s : required” are mapped to required properties R.

Property access and update. The rule [ACCESS-DATA-PROPERTY] describes that
accessing a property s on an object reference ¢, reduces to a value v, if ¢, refers
to a valid object in the heap H and that object’s partial function f maps s to
a data property D(v,b’). The mutability b’ of the data property is irrelevant.

The rule [ACCESS-MISSING-PROPERTY] describes property lookup when the
property s is not present in the target object ¢,. Such property lookups always
reduce to null.
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(LET)

H,egllet x = vine] — H,eg|[v/x]e]

(CONSTRUCT-TRAIT)
Lo ¢ dom(H) t="T(f)

f = construct(p, fy)

(ACCESS-DATA-PROPERTY)

H(w) = O(f,b)  f(s) =D{v,V)

H, egltrait{p}] — Hlt, — t], eqfto)

(ACCESS-MISSING-PROPERTY)

H(w,) = O(f,b)

s ¢ dom(f)

H,eglte.s] — H,eq[v]

(INVOKE-METHOD)

H(Lo) :O<f’b> f(s) :M<f,€>

H, eqlto-s] — H,eg[null]

(INVOKE-UNBOUND-FUNCTION)
H(to) = O<f’ b>
H(iy) = F(T,e,null)

f(s) = D<LO” b>

H,eqlt,.s(v)] — H,eq[[to/this|[v/T]e]

(INVOKE-BOUND-FUNCTION)
H(Lo) = O<f7 b> f(S) :D<L0’7b>
H(LO’) = ]:<j; €, Lthis>

H, eqlt,.s(T)] — H,en[[to/this]|[v/Z]e]

(ACCESS-METHOD-PROPERTY)
H(i,) = O(f,b)
Lo & dom(H)

f(s) = M(z,¢)
o = F(T,e,null)

H, eqlt,-s(T)] — H,eq[[tenis/this][v/Z]e]

(UPDATE-DATA-PROPERTY)
H(i,) = O(f,b) f(s) =D, true)
o' = O(f[s — D(v,true)], b)

H, eqlto.s] — Hlio — 0], eqftor]

(UPDATE-MISSING-PROPERTY )
H(1,) = O(f, true) s ¢ dom(f)
o' = O(f[s — D(v, true)], true)

H,eqlto.s = v] — Hlio, — 0], en[v]

(COMPOSE)
H(to)) =T(f1) H(toy) =T(f2) t=T(f)
Lo ¢ dom(H)  f = compose(dom(f1), f1, f2)

H,eqlto.s = v] — Hli, — 0], ep[v]

(OVERRIDE)
H(o,) =T(f1) H(o,) =T(f2) t=T(f)
Lo ¢ dom(H) f = override(f1, f2)

H, eg[compose Lo, to,] = Hlto — t], eqfto]

(RESOLVE)
H(io) =T(f) 1o ¢ dom(H)
t="T(f") [ =resolve(s = a, f)

H, egloverride to, to,] — Hto > t], eq]to]

(NEW-OBJECT)
H(i,) =T(f) Ly ¢ dom(H)
o= O(f true) f' = instantiate(f)

H, eglresolve 57— a to]| — Hlto — t], eqftor]

(NEW-TRAIT)

H(to) =T(f) ity ¢ dom(H) o= O(f false)
Psedom(f): f(s) =RV f(s)=C
H', ' = freeze(dom(f), f, tor, H, fp)

H, eg[newObject t,] — Hiy > 0], eqftor]

H,eg[newTrait ¢,] — H'[tor +— 0], eg|tor]
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Auxiliary functions
[

construct(e, f) = f
construct((s : v) -, f) = construct(p, f[s — D(v, true)])
construct((const s : v) - D, f) = construct(p, f[s — D(v, false)])
construct((s : function(z){e}) - B, f) = construct(p, f[s — M(Z, e)])
construct((s : required) - p, f) = construct(p, f[s — R])
compose(D, f1. f2) < f
ovus gy der | compose(S, i, fals - £i(s)) i s ¢ dom(f,)
compose({s}Us, f1, f) = compose(S, f1, fa[s — f1(s) ® f2(s)]) otherwise
def fi(s) if s edom(fi) A fi(s) #R
override(f1, f2) = f(s)= ’R( | if s ¢ dom(f2) A f1(s) =R
f2(s) otherwise
resolve(e, /) Ive(d, f) if s ¢ dom(f)
resolve(a, if s ¢ dom
resolve(s — s - @, f) = { resolve(a, f[s — R,s" — f(s)® f(s')]) if s,s’ € dom(f)
resolve(a, f[s — R,s — f(s)]) otherwise
_ def resolve(a, f) if s ¢ dom(f)
resolve(s — null -3, f) = { resolve(a, f[s — R]) otherwise
freeze(0, f, 0o, H, ') < H,f'
freeze(S, f,to, H, f'[s — D(v, false)])
def if f(s) = D{(v,b)

freeze({s}US, f, 0, H, 1) = freeze(S, f, o, Htor — F(T,€,t0)], ['[s — D{(io, false)])

if f(s) = M(Z,e) where 1, ¢ dom(H)

. . def D(null, true) if f(s) =R
ity 1= { Bl 10
Diw, by e Mz e) < ¢
D(Ul,b1>@D<U2,b2> déf C
MaeyeM.¢) < ¢
p®C “oe
per Y p
def
pdp = p

d
P1Op2 = p2DmMm
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The rule [INVOKE-METHOD] states that invoking a method property amounts
to evaluating the method body e with proper substitution of actual arguments
v for formal parameters T, and with the this pseudovariable replaced by the
receiver t,.

The rule [INVOKE-UNBOUND-FUNCTION] is similar to [INVOKE-METHOD], ex-
cept that this time, s refers to a function-valued data property. The function-
valued property has a null-valued this-binding, so that the this pseudovari-
able in the invoked function body will be bound to the receiver of the method
invocation ¢,.

The rule [INVOKE-BOUND-FUNCTION] differs from [INVOKE-UNBOUND-FUNCTION]
only in the treatment of the this-binding: instead of using the receiver ¢,, the
this-binding this stored within the function is used.

The rule [ACCESS-METHOD-PROPERTY]| describes that when accessing a method
property, the property is extracted from the object as a fresh first-class function.
This new function o is unbound (i.e. it has a null-valued this-binding). In
TRAITS-JS, as in Javascript, methods are not automatically bound on extraction.

The rule [UPDATE-DATA-PROPERTY] describes an update to a mutable data
property D(v’,true). No reduction rule is applicable to update an immutable
data property.

The rule [UPDATE-MISSING-PROPERTY] describes an update to a non-existent
property s. If the receiver object ¢, is extensible, the property s is added to
the object. No reduction rule is applicable to extend a non-extensible receiver
object with new properties.

Trait composition. The rule [COMPOSE] is applicable only if its two argument
values ¢,, and ¢,, both refer to existing trait values. The partial functions f; and
f2 of these traits are combined into a composite function f. This composition is
described in terms of structural induction on the domain of f;. Operationally,
each string s in the domain of f; is combined with f;. If s does not appear
in fo, then f(s) = fi(s). If s appears in the domain of both f; and fo, the
properties are combined using the & operator.

The @ operator is commutative and associative, with a zero element C and
a neutral element R. If the combined properties p; and ps are data or method
properties, p; @ po is always a conflicting property unless the properties are
identical.

The rule [OVERRIDE] is similar to [COMPOSE]. Here, f; and f2 are combined
such that any properties defined on f; always take precedence over any prop-
erties defined on fs. Required properties form an exception: if fi(s) = R and
f2(s) is defined, then fy(s) overrides the required property of fi. It is easy to
see that if f1 and f2 contain no conflicting properties, then override(fy, f2) will
also never contain conflicting properties.

The rule [RESOLVE] describes renaming and exclusion of properties from an
existing trait. The auxiliary function “resolve” processes the aliases in sequence.
An alias of the form s — s’ denotes a renaming. If s does not exist as the
property of the trait, the renaming has no effect. Otherwise, in the resolved
trait, s becomes a required property R. If both s and s’ exist as properties

20



of the trait, in the resolved trait, s’ is bound to the composition of s and s’,
otherwise s’ refers to whatever property s referred to in the original trait.

An alias of the form s — null denotes an exclusion. The property s becomes
a required property R in the resolved trait. As with renaming, excluding a
non-existent property has no effect on the resolved trait.

Trait instantiation. The rule [NEW-OBJECT] describes that the “newObject” op-
erator always evaluates to a fresh, extensible object. The object’s partial func-
tion is derived from that of its trait. The only difference between f’ and f is that
f’ transforms all required properties R in f into data properties D{null, true).
In other words, required properties are represented on objects as normal data
properties bound to null.

Note that the function f’ may still contain conflicting properties C. This does
not prevent the newly created object from being used, but since there are no
reduction rules applicable for looking up, assigning to or invoking a conflicting
property, a program will get stuck when trying to manipulate a conflicting
property. This reflects the behavior that in traits. js, accessing or updating a
conflicting property throws an exception.

The rule [NEW-TRAIT| describes trait instantiation. A first important differ-
ence with [NEW-OBJECT] is that this rule is only applicable if the trait’s function
f does not contain any required or conflicting properties. This prevents incom-
plete or inconsistent traits from being instantiated using “newTrait”.

The second difference is that the new instance’s partial function f’ is derived
from f such that all data properties of f are frozen in f’. Moreover, all method
properties of f are turned into bound function-valued data properties on f’. This
guarantees that these properties can only be extracted as bound functions, such
that clients will never be able to modify the this-binding within these methods.
Allocating a bound function per method property requires modifying the heap,
which is why the “freeze” function describes both the updated function f’ as
well as the updated heap H' which contains the new trait’s bound functions.

A third difference is that [NEW-TRAIT] defines the new instance o as a non-
extensible object, while [NEW-OBJECT] defines o as an extensible object.

7.8. Example

As mentioned previously, one of the reasons for formalizing traits. js is to
gain a better insight into the precise rules of trait composition and renaming.
Armed with the calculus, we can for instance answer questions such as what is
the semantics when two properties are renamed to the same alias. To answer
this question, we can derive the structure of the following trait definition:

Trait.resolve({ a: ’¢’, b: '¢’ }, Trait({ a: 1, b: 2 }))

Or, restated in TRAITS-JS (assuming numbers are legal values):

resolve (a — ¢, b — ¢) (trait{a : 1,b: 2})

21



Reducing the “resolve” operator according to the [RESOLVE] rule involves
applying the auxiliary “resolve” function defined on p. 19, as follows:

resolve({a — ¢,b — c}, f) where f = fyla — D(1,true), b — D(2,true)]
= resolve({b— ¢}, f') where f' = fla — R, c— D(1,true)]
= resolve({}, f") where f” = f'[b— R, c+— D(1,true) @ D(2, true)]
= f@[aHR,bHR,CHC]

In other words, we can verify that renaming two properties to the same
property leads to a conflict.

7.4. Related Work

Trait-based object composition has previously been formalized. Bergel et.
al [16] have formalized trait composition with support for stateful traits in the
SMALLTALKLITE calculus. They similarly formalize trait composition, overrid-
ing, aliasing and exclusion. Contrary to TRAITS-JS, SMALLTALKLITE is class-
based, has no notion of constant properties, non-extensible objects or methods
that can be extracted as first-class functions. TRAITS-JS also does not treat
state (data properties) differently from method properties.

Formal work on traits in Java-like languages (i.e. statically typed and class-
based) include Smith and Drossopoulou [11]’s Chai language, Liquori and Spi-
wack’s FeatherTrait Java [12] and Reppy and Turon’s Meta-trait Java [13]. In
these formal models, traits are typically not first-class values, and objects in
Java-like languages are high-integrity by default: they are non-extensible and
their methods cannot be extracted as first-class unbound function values.

The purpose of TRAITS-JS is not to accurately formalize Javascript. For a
more accurate formal semantics of Javascript, see [17].

7.5. Summary

While the TRAITS-JS calculus models only a small subset of Javascript, it
provides a fairly complete coverage of the traits.js library semantics. In
particular, it makes explicit the this-binding of methods in the presence of
method extraction (rule [ACCESS-METHOD-PROPERTY]) and method binding
(rule [INVOKE-BOUND-FUNCTION]). Moreover, it shows how Trait.create gen-
erates tamper-proof instances (rule [NEW-TRAIT]), as opposed to Object.create,
which generates extensible objects with potentially mutable properties (rule
[NEw-OBJECT]). Finally, the rules for trait composition and renaming are de-
tailed, making more explicit the fact that trait composition is indeed commu-
tative and associative.

8. Discussion

8.1. Traits and Inheritance

As noted in Section 3, traits were originally defined as reusable groups of
methods that can be composed together to form a class [5]. Classes can further
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be composed using standard inheritance, which is still useful to e.g. inherit
instance variables from superclasses (since traits as originally proposed were
stateless).

In traits. js, traits are not composed into classes (or constructor functions,
which is the closest analog to a class in Javascript). Instead, the philosophy of
traits.js is to compose atomic traits into larger, composite traits, and then
to directly instantiate those traits into instances (i.e. objects), without any
intermediate class-like abstraction. Since traits can be stateful, there is no need
for a separate class-hierarchy to introduce state.

While Javascript has no notion of class-based inheritance, it does feature
prototypal inheritance, which is the language’s primitive object composition
mechanism. The question remains how trait instances interact with this proto-
typal inheritance. That is: can a trait instance still serve as a prototype object
so that it can be further extended using prototypal inheritance?

The answer depends on how the trait instance was instantiated. Trait in-
stances created using Trait.create do not compose well with prototypal in-
heritance, as the following example illustrates:

var instance = Trait.create(Object.prototype, Trait({
message: 'hello world’,
greeting: function() { return this.message; }

1);

var child = Object.create(instance);

child.message = ’goodbye world’;

child.greeting(); // returns ’hello world’

In this example, instance is a trait instance used as the prototype of another
child object. The child object inherits the instance’s greeting method,
but overrides the message property. However, when invoking the greeting
method, the method fails to return the overridden property. This is because
trait instances generated using Trait.create have only bound methods: the
this-pseudovariable inside the greeting method is bound to the instance
object.

As stated in Section 6, the explicit goal of Trait.create was to generate
high-integrity instances. To guarantee high-integrity, the instance should be a
self-contained unit. It is no longer meant to be a unit of reuse. Clients of such
instances can only invoke the instance’s methods and read its properties. Being
able to inherit and override methods from such instances is explicitly not part
of the contract. In a nutshell: high-integrity objects don’t compose (but the
traits from which they were instantiated do).

Trait instances generated using Object.create are normal Javascript ob-
jects without any restrictions to support high-integrity. As a result, such objects
can be freely used as prototype objects and their methods may be overridden
by child objects.

8.2. Library or Language Extension?
Traits are not normally thought of as a library feature, but rather as a
declarative language feature, tightly integrated with the language semantics.
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By contrast, traits.js is a stand-alone Javascript library. We found that
traits.js is quite pleasant to use as a library without dedicated syntax.

Nevertheless, there are issues with traits as a library, especially with the
design of traits.js. In particular, binding the this pseudovariable of trait
methods to the trait instance, to prevent this from being set by callers, re-
quires a bound method wrapper per method per instance. Hence, instances
of the same trait cannot share their methods, but rather have their own per-
instance wrappers. This is much less efficient than the method sharing afforded
by Javascript’s built-in prototypal inheritance.

We did design traits. js in such a way that a smart Javascript engine could
partially evaluate trait composition statically, provided that the library is used
in a restricted manner. If the argument to Trait is an object literal rather than
an arbitrary expression, then transformations like the one below apply:

Trait.compose(Trait({ a: 1 }), Trait({ b: 2}))
—->
Trait({ a:1, b:2 })

Transformations like these would not only remove the runtime cost of trait
composition, they would also enable implementations to recognize calls to
Trait.create that generate instances of a single kind of trait, and replace
those calls to specialized versions of Trait.create that are partially evaluated
with the static trait description. The implementation can then make sure that
all trait instances generated by this specialized method efficiently share their
common structure.

Because of the dynamic nature of Javascript, and the brittle usage restric-
tions required to enable the transformations, the cost of reliably performing the
sketched transformations is high. An extension of Javascript with proper syntax
for trait composition would obviate the need for such complex optimizations,
and would likely improve error reporting and overall usability as well.

9. Validation

9.1. Micro-benchmarks

This section reports on a number of micro-benchmarks that try to give a
feel for the overhead of traits.js as compared to built-in Javascript object
creation and method invocation.

The results presented here were obtained on an Intel Core i7 2.4Ghz Macbook
Pro with 8GB of memory, running Mac OS X 10.7.3 and using the Javascript
engines of three modern web browsers, with the latest traits. js version 0.4. In
the interest of reproducibility, the source code of the microbenchmarks used here
is available at http://es-1lab.googlecode.com/files/traitsjs-microbench.
html.

First, independent of traits. js, we note that creating an object using the
built-in Object.create function is roughly a factor of 10 slower than creating
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Firefox 11.0 Chrome 17.0.963.79 Safari 5.1.3 (7534.53.10)

alloc. | Trait.create | Object.create Trait.create Object.create | Trait.create | Object.create
size 10 8.56x +.62 1.04x +.08 9.00x =£.59 JT1x £.04 | 3.98x +£1.33 48x £.18
size 100 9.45x+.27 1.00x +£.01 11.42x £.17 .98x +.01 7.70x £.25 1.11x +.04
size 1000 7.85x+.09 91x £.01 11.20x £.06 97x +.01 6.65x +.24 1.04x £.01
meth call 5.53x £.93 .93x £.13 | 15.30x £3.40 1.30x +£.60 2.28x £.36 1.02x +£.19

Table 1: Overhead of traits.js versus built-in Object.create.

objects via the standard prototypal inheritance pattern, whereby an object is
instantiated by calling new on a function, and methods are stored in the object’s
prototype, rather than in the object directly.

Therefore, in Table 1, we compare the overhead of traits.js relative to
creating an object using the built-in Object.create API. The numbers shown
are the ratios between runtimes (> 1.0 indicates a slowdown, < 1.0 a speedup).
Each number is the mean ratio of 5 runs (each in an independent, warmed-up
browser session, performing the operation 1000 times), & the standard deviation
from the mean.

The first three rows report the overhead of allocating a new trait instance
with respectively 10, 100 or 1000 methods, compared to allocating a non-trait
object with an equal amount of methods (using Object.create). The col-
umn indicates whether the trait instance was created using Trait.create or
Object.create.

Across different platforms and sizes, there is on average a factor of 8.42x
slowdown when using Trait.create. This overhead stems from both additional
trait conformance checks (checks for missing required and remaining conflict-
ing properties), and the creation of bound methods. As expected, there is no
particular overhead when instantiating traits using Object.create compared
to instantiating regular property descriptors. But to repeat, Object.create is
itself roughly 10 times slower than prototypal object creation.

The last row measures the overhead of invoking a method on a trait instance,
compared to invoking a method on a regular object. Since Trait.create cre-
ates bound methods, there is a 2.28 to 15.30x slowdown compared to a standard
method invocation. The large differences among platforms stem from the de-
pendence on the implementation of bound methods, which are fairly rare in
regular Javascript code, and thus far less optimized than regular methods calls.
Again, for instances created by Object.create there is no overhead, since such
instances do not have bound methods.

These micro-benchmarks provide little insight into the overhead of traits. js
when used in realistic Javascript applications. This type of overhead is studied
in the next Section.

9.2. Morphic Ul Framework

traits.js has been used to build a small UI widget library in the browser.
The widgets are rendered using an HTML5 Canvas, a standard API to perform
2D graphics in the browser. The UI widget library was inspired by Morphic,
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the UI framework of the Self programming language [18]. The library comprises
roughly 2800 lines of Javascript code and defines 18 traits. The core widget,
named BaseMorph, is a trait that is itself composed out of 5 composite traits, to
reuse behavior related to the calculation of bounding boxes, collections (com-
posite morphs are represented as hierarchical trees), coloring and animation.
Figure 4 shows a screenshot of the Morphic bouncing atoms demo, built
using traits. js and running in a browser. The demo renders animated atoms
(circles) that bounce around within a gas (the green area). The slider on the
right is used to control temperature (influencing the speed of the atoms). With
10 bouncing atoms, the demo achieves a smooth 40 frames per second (each
visual widget on the screen is a trait instance). Figure 5 shows the same browser
session where the user re-arranged the widgets, demonstrating that each widget
on the screen is a malleable object, according to the philosophy of Morphic.

Mozilla Firefox

[
° [ ]
[ J
[ J [ ] o o
e e R .
[ ]  Speca] ° L ™. .
[ J
sgd ssa
304Tps 30Tps
Figure 4: Bouncing atoms demo in initial Figure 5: Bouncing atoms demo with dis-
configuration (animating at 40fps). placed morphs.

Naturally, a UI widget library exposes lots of opportunity for reuse and for
the creation of extensive abstraction hierarchies. However, the library does not
make use of traits.js’s support for creating high-integrity objects: all trait
instances are created using Object.create. To test the cost of Trait.create
versus Object.create in a more realistic setting, we changed the code so all
trait instances would be created using Trait.create. Since the trait instances
in our application defined mutable state (e.g. the position of a morph), we
refactored all such mutable state into accessor properties that modify a lexically
enclosing variable. The measured overhead was acceptable: over a 60 second
time window, our modified demo achieved an average 39.42fps, compared to
40.961ps for the original (a slowdown of 3.76%).

10. Conclusion

traits.js is a small, standards-compliant trait composition library for
Javascript. Compared to the object composition functionality of most popu-
lar Javascript libraries, it provides support for true trait-based (as opposed to
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mixin-based) composition. The novelty of traits.js is that it uses a standard
object-description format, introduced in the recent ECMAScript 5 standard,
to represent traits. Traits are not opaque values but an open set of property
descriptors. This increases interoperability with other libraries using the same
format, including built-in primitives.

By carefully choosing the representation of traits in terms of property de-
scriptor maps, traits.js allows traits to be instantiated in two ways: us-
ing its own library-provided function, Trait.create, which performs early
conformance checks and produces high-integrity instances; or using the ES5
Object.create function, which is oblivious to any trait semantics, yet produces
meaningful instances with late, dynamic conformance checks. This freedom of
choice allows traits. js to be used both in situations where high-integrity and
extensibility are required.

Finally, the convenience afforded by Trait.object makes it feasible to work
with high-integrity objects by default. In web content where mutually distrust-
ing scripts have to cooperate, this ability to conveniently define high-integrity
objects is a useful addition to the Javascript programmer’s toolbox.

Acknowledgements

We thank the members of the ECMAScript committee and the es-discuss
mailing list for their valuable feedback. We also thank the anonymous reviewers
for their constructive feedback on an earlier version of this paper.

Tom Van Cutsem is a Postdoctoral Fellow of the Research Foundation, Flan-
ders (FWO). Part of this work was carried out while the first author was on
a Visiting Faculty appointment at Google, sponsored by Google and a travel
grant from the FWO.

References

[1] ECMA International, ECMA-262: ECMAScript Language Specification,
ECMA, Geneva, Switzerland, fifth edition, 2009.

[2] T. Van Cutsem, A. Bergel, S. Ducasse, W. Meuter, Adding state and
visibility control to traits using lexical nesting, in: ECOOP ’09, Springer-
Verlag, Berlin, Heidelberg, 2009, pp. 220-243.

[3] T. Van Cutsem, M. S. Miller, Traits.js: robust object composition and
high-integrity objects for ECMAScript 5, in: Proceedings of the 1st ACM
SIGPLAN international workshop on Programming language and systems
technologies for internet clients, PLASTIC '11, ACM, New York, NY, USA,
2011, pp. 1-8.

D. Crockford, Javascript: The Good Parts, O’Reilly, 2008.

o=

N. Scharli, S. Ducasse, O. Nierstrasz, A. Black, Traits: Composable units
of behavior, in: ECOOP ’03, volume 2743 of LNCS, Springer Verlag, 2003,
pp- 248-274.

27



[6]

S. Ducasse, O. Nierstrasz, N. Scharli, R. Wuyts, A. P. Black, Traits: A
mechanism for fine-grained reuse, ACM Trans. Program. Lang. Syst. 28
(2006) 331-388.

G. Bracha, W. Cook, Mixin-based inheritance, in: OOPSLA/ECOOP ’90,
ACM, New York, NY, USA, 1990, pp. 303-311.

A. Snyder, Encapsulation and inheritance in object-oriented programming
languages, in: OOPSLA ’86, ACM, New York, NY, USA, 1986, pp. 38—45.

M. Flatt, R. B. Finder, M. Felleisen, Scheme with classes, mixins and
traits, in: AAPLAS ’06.

K. Fisher, J. Reppy, Statically typed traits, Technical Report TR-2003-13,
University of Chicago, Department of Computer Science, 2003.

C. Smith, S. Drossopoulou, Chai: Typed traits in Java, in: Proceedings
ECOOP 2005.

L. Liquori, A. Spiwack, FeatherTrait: A modest extension of Feather-
weight Java, ACM Transactions on Programming Languages and Systems
(TOPLAS) 30 (2008) 1-32.

J. Reppy, A. Turon, Metaprogramming with traits, in: Proceedings of
European Conference on Object-Oriented Programming (ECOOP’2007).

M. Felleisen, R. Hieb, The revised report on the syntactic theories of
sequential control and state, Theor. Comput. Sci. 103 (1992) 235-271.

J. Schéfer, A. Poetzsch-Heffter, JCoBox: generalizing active objects to con-
current components, in: Proceedings of the 24th European conference on
Object-oriented programming, ECOOP’10, Springer-Verlag, Berlin, Hei-
delberg, 2010, pp. 275-299.

A. Bergel, S. Ducasse, O. Nierstrasz, R. Wuyts, Stateful traits and their
formalization, Journal of Computer Languages, Systems and Structures 34
(2007) 83-108.

A. Guha, C. Saftoiu, S. Krishnamurthi, The essence of Javascript, in:
Proceedings of the 24th European Conference on Object-oriented Program-
ming, ECOOP’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 126-150.

J. H. Maloney, R. B. Smith, Directness and liveness in the morphic user
interface construction environment, in: Proceedings of the 8th annual ACM
symposium on User interface and software technology, UIST 95, ACM,
New York, NY, USA, 1995, pp. 21-28.

28



